ph: Measurement and Uses



Similar documents
Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

Acid Base Titrations

Determining the Identity of an Unknown Weak Acid

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Acid-Base Titrations Using ph Measurements

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

CHM1 Review for Exam 12

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Acid Base Titration: ph Titration Curve

Chem101: General Chemistry Lecture 9 Acids and Bases

Name period Unit 9: acid/base equilibrium

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

9. Analysis of an Acid-Base Titration Curve: The Gran Plot

Chemical equilibria Buffer solutions

Experiment 17: Potentiometric Titration

Experiment 6 Titration II Acid Dissociation Constant

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Acids and Bases: A Brief Review

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

Acid Dissociation Constants and the Titration of a Weak Acid

Chemistry 52. Reacts with active metals to produce hydrogen gas. Have a slippery, soapy feeling. React with carbonates to produce CO 2

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

Lab #10 How much Acetic Acid (%) is in Vinegar?

UNIT (6) ACIDS AND BASES

Chapter 9 Lecture Notes: Acids, Bases and Equilibrium

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

3 The Preparation of Buffers at Desired ph

Auto-ionization of Water

AP FREE RESPONSE QUESTIONS ACIDS/BASES

Topic 18 Acids and Bases Exercises

Chapter 14 - Acids and Bases

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

Experiment 7: Titration of an Antacid

The Determination of Acid Content in Vinegar

GA/7 Potentiometric Titration

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

Note: (H 3 O + = hydronium ion = H + = proton) Example: HS - + H 2 O H 3 O + + S 2-

TOPIC 11: Acids and Bases

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1

EXPERIMENT 20: Determination of ph of Common Substances

Equilibrium Constants The following equilibrium constants will be useful for some of the problems.

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

Chapter 14: Acids and Bases

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Lab #11: Determination of a Chemical Equilibrium Constant

Properties of Acids and Bases

TITRATION OF VITAMIN C

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -

EXPERIMENT 10: TITRATION AND STANDARDIZATION

EXPERIMENT 4 Acid Strength

Phenolphthalein-NaOH Kinetics

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

POTENTIOMETRIC TITRATION OF A WEAK ACID

Health Science Chemistry I CHEM-1180 Experiment No. 12 Acids, Bases, ph, Hydrolysis and Buffers (Revised 05/27/2015)

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

Titration curves. Strong Acid-Strong Base Titrations

EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES

stoichiometry = the numerical relationships between chemical amounts in a reaction.

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50

Topic 8 Acids and bases 6 hours

CHAPTER 16: ACIDS AND BASES

We remember that molarity (M) times volume (V) is equal to moles so this relationship is the definition of the equivalence point.

Acids and Bases. Chapter 16

Electrical Conductivity of Aqueous Solutions

This value, called the ionic product of water, Kw, is related to the equilibrium constant of water

Acids, Bases, and ph

Chemistry Unit 2 Acids and Bases

TITRATION OF AN ACID; USING A ph METER. The ph meter is an instrument that measures the ph of a solution and affords a

Chapter 16 Acid-Base Equilibria

Acids and Bases. An Introduction. David A Katz Department of Chemistry Pima Community College, Tucson, AZ, USA

Acid/base Definitions. Acid/Base Definitions. Acid / Base Chemistry. Acid/Base Definitions. Identifying Acids and Bases

Experiment 16-Acids, Bases and ph

Review for Solving ph Problems:

Stoichiometry and Aqueous Reactions (Chapter 4)

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent

Calcium Analysis by EDTA Titration

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Topic 5. Acid and Bases

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Suggested Problems: p #58, 59, 65, 69, 74, 80, 85, 86, 90, 92, 93, 98, 99

Experiment 9: Acids and Bases Adapted from: Chemistry, Experimental Foundations, 4th Ed. Laboratory Manual, by Merrill, Parry & Bassow.

Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

4. Acid Base Chemistry

Practical Lesson No 4 TITRATIONS

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1

6 Reactions in Aqueous Solutions

Experiment 8 - Double Displacement Reactions

Transcription:

ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic species, the nature of complex metal cations and the rates of chemical reactions. For convenience the concentration of H + is frequently expressed as the ph of the solution rather than hydrogen ion molarity. ph is defined by the equation: ph = -log[h + ] (1) where the logarithm is taken to the base 10. If [H + ] is 1 x 10-4 moles per liter, the ph of the solution is 4. If [H + ] = 5 x 10-2 M, the ph is 1.3. Basic solutions are also described in terms of ph. In water the following relation exists: [H + ] x [OH - ] = K w = 1.0 x 10-14 at 25 ºC (2) Since [H + ] equals [OH - ] in pure water, by Equation 2, [H + ] must be 1 x 10-7 M. Therefore, the ph of distilled water is 7. Solutions in which [H +1 ] > [OH -1 ] are acidic and will have a ph < 7. When [H + ] < [OH - ], a solution is basic and ph >7. A solution with a ph of 10 will have [H + ] = 1 x 10-10 M and a [OH - ] = 1 x 10-4 M. ph Measurement ph can be determined experimentally in two ways. One is to use an indicator, a soluble dye whose color is sensitive to ph. Indicator colors change over a relatively short (about 2-unit) ph range. When properly chosen, they give the approximate ph of solutions. Two common indicators are litmus, usually used on paper, and phenolphthalein, commonly used in acid-base titrations. Litmus changes from red to blue in the ph range 6 to 8. Phenolphthalein changes from colorless to red in the range 8 to 10. Any one indicator is useful for determining ph only in the region where it changes color. Indicators are available for measuring ph in any part of the scale. Universal indicator papers, which contain a mixture of several indicators and change color over a wide ph range, are also in common use. An electronic ph meter is used for more precise measurements. A ph meter determines ph from the electrical potential between two electrodes in a solution. The potential varies with ph and activates an analog or digital meter calibrated to read ph directly to the nearest 0.01 or 0.001 unit. A ph meter is used when reliable knowledge or control of ph is necessary. 1

Weak Acids and Bases Strong acids such as HCl and HNO 3, ionize completely in solution. [H + ] in a 1M HCl solution is also 1M because there are no undissociated HCl molecules in the system. Similarly, strong bases such as NaOH, ionize completely in solution; [OH - ] is 0.5M in 0.5M NaOH; there are no NaOH molecules present. Weak acids, so called because they do not dissociate completely in solution, also produce acidic solutions. The general formula of a weak acid can be written as HA. In water, HA ionizes to a small extent according to the equation HA(aq) H + (aq) + A - (aq) (3) In 0.1 M CH 3 COOH, [H + ] equals about 0.001 M. [CH 3 COO - ] is also 0.001 M, [CH 3 COOH] remains about 0.1 M and the ph of the solution is approximately 3 (see equation 5 below). In solutions of CH 3 COOH, in contrast to those of HCl, there are many undissociated acid molecules. The species in solution will obey the law of chemical equilibrium, so that K a = + [ H ][ A ] [ HA] (4) The conditions imposed by equation 4 are obeyed in any solution where some HA molecules are present. K a, the equilibrium constant for the reaction, is the dissociation constant of HA, and has a constant value at a given temperature. The species HA may be an organic acid, such as acetic acid, a hydrated metal cation, such as Cu(H 2 O) 4 2+, ammonium ion, NH 4 + or an inorganic molecule like H 2 CO 3. Acid dissociation equations for these species are: CH 3 COOH CH 3 COO - + H + (5) Cu(H 2 O) 4 2+ + H 2 O Cu(OH)(H 2 O) 3 + + H 3 O + (6) NH 4 + + H 2 O NH 3 + H 3 O + (7) H 2 CO 3 H + + HCO 3 - (8) 2

Hydrolysis Other substances besides those identified as acids including many metal cations, form acidic solutions through hydrolysis. Metal cations, especially those having multiple positive charges and small radii, generate protons in solution from the dissociation of water molecules coordinated to the metal ion, as shown in equation (9). Cu(H 2 O) 4 2+ + H 2 O Cu(OH)(H 2 O) 3 + + H 3 O + (9) Many substances in addition to NaOH form basic solutions. These materials are related in a simple way to weak acids. Consider the properties of the A - ion from the weak acid HA, in a solution of the salt NaA. Since HA is a weak acid, A -1 ions in solution combine with H + to form HA molecules. In a solution of NaA, some anions undergo hydrolysis, that is, accept protons from the solvent water molecules, according to the equation: A - (aq) + H 2 O OH - (aq) + HA(aq) (10) Reaction 10 usually does not go very far, since K a is typically very small. Even if the reaction proceeds to a small extent, excess OH - ions are produced and the solution becomes basic. Because of Reaction 10, A - ion is a weak base. As a general rule, the sodium or potassium salts of weak acids behave as weak bases. Ammonia, NH 3 is a common molecular weak base. NH 3, in equation 11, plays the same role as C 2 H 3 O 2 - in equation 12. Both are analogous to the A - ion and both behave as weak bases. The reaction similar to (11) in which NH 3 participates is NH 3 (aq) + H 2 O NH 4 + (aq) + OH - (aq) (11) C 2 H 3 O 2 - + H 2 O HC 2 H 3 O 2 + OH - (12) In 0.1 M NH 3 about 1 per cent of NH 3 molecules react according to Equation 11. In that solution, [OH - ] is about 0.001 M. [NH 4 + ] is also 0.001 M. [NH 3 ] does not decrease significantly from 0.1 M. 3

Buffers Solutions which undergo only a small change in ph when small quantities of acid or base are added to them are called buffers. For example, human blood is a complex buffered mixture with a normal ph range of 7.35-7.45. Three different buffer systems keep blood ph from varying more than ± 0.1 unit. A buffer solution consists of approximately equal amounts of a weak acid, HA, and its conjugate base, A -, or of a weak base, B, and its conjugate acid, BH +. The [H + ] depends primarily on K a and to a lesser extent on the ratio of the concentration of undissociated acid to the acid anion is seen in equation 15: HA(aq) H + (aq) + A - (aq) (13) K a = + [ H ][ A ] [ HA] (14) [H + [ HA] ] = K a (15) [ A ] Taking the log of both sides and rearranging the equation gives the Henderson-Hasselbalch equation that relates the ph of a buffer solution to the pk a of the acid and the anion/acid concentration ratio. [ A ] ph = pk a + log (16) [ HA] If a small quantity of base is added to a buffered acid solution, OH - reacts with H + to form water. This reaction lowers [H + ]. However, the weak acid in the buffer solution then dissociates to produce additional H +, maintaining the equilibrium. [HA] decreases slightly while [A - ] increases. The ratio of [HA]/[A - ], which controls ph, changes very little and the ph remains almost unchanged. Solutions of weak bases and their salts behave in a similar manner to stabilize ph. 4

Molar Mass and pk a of a Monoprotic Acid The pk a and molar mass of a weak acid can be obtained from its titration curve, a plot of ph versus volume of added base. The equivalence point is half way up the vertical part the titration curve. At the equivalence point, all the weak acid, HA, has reacted completely with an equivalent amount of base. The moles of base added equals the moles of acid originally present. From the mass of the acid weighed out, one can calculate the molar mass (g/mol) of the acid. The pka of an acid is the ph at which half of the acid has been neutralized. This is because when [HA] = [A - ], their ratio is unity and the log term in the Henderson-Hasselbalch equation (16) becomes zero. ph then equals pk a. Your instructor will sketch the titration curve of a weak acid and a strong base, showing the equivalence point at ph above 7 and the ph at which half of the acid has been titrated. The following diagram shows the titration of acetic acid with NaOH. The equivalence point occurs at 13 ml. Going to ½ the equivalence point, 6.5 ml of added NaOH, then going up to the titration curve and across to the ph axis we see the ph is around 4.7 to 4.9. The true Ka of acetic acid is 1.8 x 10-5 and its pka is 4.74. 5

Experimental Your instructor will show you how to calibrate (if not previously calibrated) and operate the ph meter, taking care not to damage the delicate hydrogen ion electrode. For the best accuracy, the meter must be calibrated with a buffer solution of known ph in the range where you will be making your measurements. A. The ph of a Buffer Solution Prepare a buffer by adding 4.20 g of sodium acetate to 8.5 ml of 6.0 M acetic acid in a 250 ml beaker. Make the solution up to 100 ml with distilled water and mix. (As an exercise before you come to lab, verify that this solution contains equal concentrations of acetic acid and acetate ion.) Label four 50 ml beakers 1 through 4. Put 40 ml of this buffer solution into beakers 1 and 2. Put 40 ml of distilled water into beakers 3 and 4. Measure the ph of each solution. Pipet 1 ml of 6 M HC1 into beakers 1 and 3. Pipet 1 ml of 6 M NaOH solution into beakers 2 and 4. Stir each solution and measure its ph. B: Titration of a Monoprotic Acid Preparation and Standardization of 0.10 M HCl Prepare a 0.10 M NaOH solution by weighing 1.53 grams of concentrated NaOH (50% NaOH by mass) into a 250 ml Erlenmeyer flask and adding 200 ml of distilled water. Be careful as concentrated NaOH is very corrosive. Mix the solution THOROUGHLY to insure a homogeneous mixture. Weigh 0.40 grams of potassium acid phthalate (KHC 8 H 4 O 4, also labelled as KHP, 204.23 molar mass) into two separate 125 ml Erlenmeyer flasks, add 50 ml of distilled water, and 2-3 drops of phenolphthalein indicator to each. Fill a buret with the prepared 0.10 M NaOH solution and titrate each to a pink endpoint. Do a third titration if the first to do not agree and average the best two. Calculate the average molarity of the NaOH using the equation: NaOH(aq) + KHC 8 H 4 O 4 (aq) NaKC 8 H 4 O 4 (aq) + H 2 O(l) 6

Titration of a Monoprotic Solid Acid Obtain a vial of an unknown solid monoprotic acid and weigh the mass shown on the label into a 400 ml beaker. Add about 100 ml of distilled water and a magnetic stirring bar to the beaker. Place the beaker with the unknown acid on a magnetic stirrer plate and arrange the buret and ph electrode as shown by the instructor. Activate the magnetic stirrer, wait until the solid acid dissolves and record the initial ph of the solution. Record the ph of the solution after each 1 ml addition of the 0.10M NaOH is added up to 10 ml of added base. Then record the ph for every 0.5 ml of added base until you have added a total of 20 ml. Then record the ph after every 1 ml of added base from 20 to 30 ml, and record the ph after every 2 ml added base until you have added a total of 40 ml of base. Plot a graph of ph vs. volume of added base. Scale the x-axis from 0 to 40 ml and the y-axis from ph 0 to 15. Determine the K a of the acid from the midpoint of the titration and the molar mass from the moles of base needed to titrate to the equivalence point. 7

Name: Partner: ph: Measurement and Uses: Data A: ph of Buffer Solutions Solution Measured ph Beaker 1, Buffer Beaker 2, Buffer Beaker 3, Distilled Water Beaker 4, Distilled Water Beaker 1, Buffer + HCl Beaker 2, Buffer + NaOH Beaker 3, Distilled Water + HCl Beaker 4, Distilled Water + NaOH B: Standardization of NaOH Solution Mass KHC 8 H 4 O 4 Moles KHC 8 H 4 O 4 Moles NaOH used Final Buret Reading Initial Buret Reading Volume NaOH used NaOH Molarity Trial 1 Trial 2 Trial 3 (If necessary) Average NaOH Molarity 8

Name: Partner: ph Measurement and Uses: Data B: Titration of Monoprotic Acid ml Added NaOH ph ml Added NaOH ph 0.00 16.50 1.00 17.00 2.00 17.50 3.00 18.00 4.00 18.50 5.00 19.00 6.00 19.50 7.00 20.00 8.00 21.00 9.00 22.00 10.00 23.00 10.50 24.00 11.00 25.00 11.50 26.00 12.00 27.00 12.50 28.00 13.00 29.00 13.50 30.00 14.00 32.00 14.50 34.00 15.00 36.00 15.50 38.00 16.00 40.00 Plot a graph of ph vs. volume of added base. Scale the x-axis from 0 to 40 ml and the y-axis from ph 0 to 15. Determine the K a of the acid from the midpoint of the titration and the molar mass from the moles of base needed to titrate to the equivalence point. 9

Name: Partner: Part A: ph of Buffer Solutions: ph Measurement and Uses: Calculations a) What is the measured ph of the buffer solution you prepared? b) Using the Henderson-Hasselbalch equation, calculate the theoretical ph of the buffer solution you prepared. The K a of acetic acid is 1.8 x 10-5. c) What is the measured ph of the buffer solution to which you added hydrochloric acid? d) Calculate the ph of the buffer solution to which you added hydrochloric acid. (A mole of added HCl consumes one mole of acetate ion and creates one mole of acetic acid.) e) What is the measured ph of the buffer solution to which you added sodium hydroxide? f) Calculate the ph of the buffer solution to which you added sodium hydroxide. (A mole of added NaOH consumes one mole of acetic acid and creates one mole of acetate ion.) 10

Name: Partner: Unknown Acid Number Part B: Calculation of the Molar Mass of the Monoprotic Acid a. Volume NaOH solution used to reach equivalence point: b. Molarity of the NaOH solution (page 6): c. Moles NaOH used in titration: d. Moles of unknown acid titrated: e. Mass of unknown acid titrated (on label of vial): f. Molar Mass of unknown acid: Part B: K a of the Monoprotic Acid a. ph at one half the equivalence point (see page 4): b. pk a of the unknown acid: c. K a of the unknown acid: 11

Name: ph : Measurement and Uses Prestudy 1. Tell if an aqueous solution of each compound is acidic, basic or neutral. Explain your answers by writing equations for any reactions which occur. NaCl NaC 2 H 3 O 2 Na 2 CO 3 NH 4 NO 3 1. Calculate [H +1 ] and ph for a 1.14 M HC 2 H 3 O 2 solution. The K a of acetic acid equals 1.8 x 10-5. 3. Calculate the [H +1 ] and ph of a buffer solution made by dissolving 0.0556 moles of NaC 2 H 3 O 2 and 0.0346 moles of HC 2 H 3 O 2 in a total volume of 100 ml. 12