The one dimensional heat equation: Neumann and Robin boundary conditions



Similar documents
The two dimensional heat equation

Second Order Linear Partial Differential Equations. Part I

The Heat Equation. Lectures INF2320 p. 1/88

An Introduction to Partial Differential Equations

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

Taylor and Maclaurin Series

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

Review Solutions MAT V (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

1. First-order Ordinary Differential Equations

Lectures 5-6: Taylor Series

Inner Product Spaces

LS.6 Solution Matrices

Particular Solution to a Time-Fractional Heat Equation

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, The Neumann Boundary Condition

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Integrals of Rational Functions

Representation of functions as power series

Solutions for Review Problems

Math 115 HW #8 Solutions

4.5 Linear Dependence and Linear Independence

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Nonhomogeneous Linear Equations

5.4 The Heat Equation and Convection-Diffusion

Sequences and Series

tegrals as General & Particular Solutions

Math 447/547 Partial Differential Equations Prof. Carlson Homework 7 Text section Solve the diffusion problem. u(t,0) = 0 = u x (t,l).

Math Assignment 6

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

In this section, we will consider techniques for solving problems of this type.

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

4 The M/M/1 queue. 4.1 Time-dependent behaviour

I. Pointwise convergence

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Chapter 20. Vector Spaces and Bases

Calculus 1: Sample Questions, Final Exam, Solutions

1 Inner Products and Norms on Real Vector Spaces

2.2 Separable Equations

1 The 1-D Heat Equation

Math 241, Exam 1 Information.

Scalar Valued Functions of Several Variables; the Gradient Vector

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

Introduction to Partial Differential Equations By Gilberto E. Urroz, September 2004

A Brief Review of Elementary Ordinary Differential Equations

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

Homework #2 Solutions

The 1-D Wave Equation

Section 2.7 One-to-One Functions and Their Inverses

3. INNER PRODUCT SPACES

Differentiation and Integration

Introduction to the Finite Element Method (FEM)

Homework # 3 Solutions

General Theory of Differential Equations Sections 2.8, , 4.1

15 Kuhn -Tucker conditions

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

9 Multiplication of Vectors: The Scalar or Dot Product

THREE DIMENSIONAL GEOMETRY

8 Hyperbolic Systems of First-Order Equations

Inverse Functions and Logarithms

Class Meeting # 1: Introduction to PDEs

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs

The Quantum Harmonic Oscillator Stephen Webb

TOPIC 4: DERIVATIVES

Limits and Continuity

5.1 Radical Notation and Rational Exponents

Review of Fundamental Mathematics

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Lecture Notes on PDE s: Separation of Variables and Orthogonality

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

5 Numerical Differentiation

1 Lecture: Integration of rational functions by decomposition

Scientic Computing 2013 Computer Classes: Worksheet 11: 1D FEM and boundary conditions

Advanced Microeconomics

3 Contour integrals and Cauchy s Theorem

Math 55: Discrete Mathematics

Name: ID: Discussion Section:

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

minimal polyonomial Example

Section 5.1 Continuous Random Variables: Introduction

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

arxiv: v2 [physics.class-ph] 27 Aug 2012

G.A. Pavliotis. Department of Mathematics. Imperial College London

Scientific Programming

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Introduction to Complex Fourier Series

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication)

Numerical Analysis Lecture Notes

Using a table of derivatives

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) Write the given system in matrix form x = Ax + f ( ) sin(t) x y z = dy cos(t)

Solutions to Math 51 First Exam January 29, 2015

Inner product. Definition of inner product

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

Transcription:

The one dimensional heat equation: Neumann and Robin boundary conditions Ryan C. Trinity University Partial Differential Equations February 28, 2012

with Neumann boundary conditions Our goal is to solve: u t = c 2 u xx, 0 < x < L, 0 < t, (1) u x (0,t) = u x (L,t) = 0, 0 < t, (2) u(x,0) = f (x), 0 < x < L. (3) As before, we will use separation of variables to find a family of simple solutions to (1) and (2), and then the principle of superposition to construct a solution satisfying (3).

Separation of variables Assuming that u(x,t) = X(x)T(t), the heat equation (1) becomes XT = c 2 X T. This implies which we write as X X = T c 2 T = k, X kx = 0, (4) T c 2 kt = 0. (5) The initial conditions (2) become X (0)T(t) = X (L)T(t) = 0, or X (0) = X (L) = 0. (6)

Case 1: k = µ 2 > 0 The ODE (4) becomes X µ 2 X = 0 with general solution The boundary conditions (6) are X = c 1 e µx + c 2 e µx. 0 = X (0) = µc 1 µc 2 = µ(c 1 c 2 ), 0 = X (L) = µc 1 e µl µc 2 e µl = µ(c 1 e µl c 2 e µl ). The first gives c 1 = c 2. When we substitute this into the second we get 2c 1 µ sinhµl = 0. Since µ,l > 0, we must have c 1 = c 2 = 0. Hence X = 0, i.e. there are only trivial solutions in the case k > 0.

Case 2: k = 0 The ODE (4) is simply X = 0 so that X = Ax + B. The boundary conditions (6) yield 0 = X (0) = X (L) = A. Taking B = 1 we get the solution X 0 = 1. The corresponding equation (5) for T is T = 0, which yields T = C. We set T 0 = 1. These give the zeroth normal mode: u 0 (x,t) = X 0 (x)t 0 (t) = 1.

Case 3: k = µ 2 < 0 The ODE (4) is now X + µ 2 X = 0 with solutions X = c 1 cos µx + c 2 sinµx. The boundary conditions (6) yield 0 = X (0) = µc 1 sin0 + µc 2 cos 0 = µc 2, 0 = X (L) = µc 1 sinµl + µc 2 cos µl. The first of these gives c 2 = 0. In order for X to be nontrivial, the second shows that we also need sinµl = 0.

Case 3: k = µ 2 < 0 This can occur if and only if µl = nπ, that is µ = µ n = nπ L, n = ±1, ±2, ±3,... Choosing c 1 = 1 yields the solutions X n = cos µ n x, n = 1,2,3,... For each n the corresponding equation (5) for T becomes T = λ 2 n T, with λ n = cµ n. Up to a constant multiple, the solution is T n = e λ2 nt.

Normal modes and superposition Multiplying these together gives the nth normal mode u n (x,t) = X n (x)t n (t) = e λ2 nt cos µ n x, n = 1,2,3,... where µ n = nπ/l and λ n = cµ n. The principle of superposition now guarantees that for any choice of constants a 0,a 1,a 2,... u(x,t) = a 0 u 0 + a n u n = a 0 + a n e λ2nt cos µ n x (7) n=1 n=1 is a solution of the heat equation (1) with the Neumann boundary conditions (2).

Initial conditions If we now require that the solution (7) satisfy the initial condition (3) we find that we need f (x) = u(x,0) = a 0 + n=1 a n cos nπx L, 0 < x < L. This is simply the cosine series expansion of f (x). Using our previous results, we finally find that if f (x) is piecewise smooth then a 0 = 1 L L 0 f (x)dx, a n = 2 L L 0 f (x)cos nπx L dx, n 1.

Conclusion Theorem If f (x) is piecewise smooth, the solution to the heat equation (1) with Neumann boundary conditions (2) and initial conditions (3) is given by u(x,t) = a 0 + a n e λ2 n t cos µ n x, where n=1 µ n = nπ L, λ n = cµ n, and the coefficients a 0,a 1,a 2,... are those occurring in the cosine series expansion of f (x). They are given explicitly by a 0 = 1 L L 0 f (x)dx, a n = 2 L L 0 f (x)cos nπx L dx, n 1.

Example 1 Example Solve the following heat conduction problem: u t = 1 4 u xx, 0 < x < 1, 0 < t, u x (0,t) = u x (1,t) = 0, 0 < t, u(x,0) = 100x(1 x), 0 < x < 1. With L = 1, µ n = nπ and f (x) = 100x(1 x) we find a n = 2 1 0 a 0 = 1 0 100x(1 x)dx = 50 3 100x(1 x)cos nπx dx = 200(1 + ( 1)n ) n 2 π 2, n 1.

Example 1 Since c = 1/2, λ n = nπ/2. Plugging everything into our general solution we get u(x,t) = 50 3 200 π 2 n=1 (1 + ( 1) n ) n 2 e n2 π 2t/4 cos nπx. As in the case of Dirichlet boundary conditions, the exponential terms decay rapidly with t. We have lim u(x,t) = 50 t 3.

Remarks At any given time, the average temperature in the bar is u(t) = 1 L L 0 u(x,t)dx. In the case of Neumann boundary conditions, one has u(t) = a 0 = f. That is, the average temperature is constant and is equal to the initial average temperature. Also in this case lim t u(x,t) = a 0 for all x. That is, at any point in the bar the temperature tends to the initial average temperature.

with Robin boundary conditions We now consider the problem u t = c 2 u xx, 0 < x < L, 0 < t, u(0,t) = 0, 0 < t, (8) u x (L,t) = κu(l,t), 0 < t, (9) u(x,0) = f (x), 0 < x < L. In (9) we take κ > 0. This states that the bar radiates heat to its surroundings at a rate proportional to its current temperature. Recall that conditions such as (9) are called Robin conditions.

Separation of variables As before, the assumption that u(x,t) = X(x)T(t) leads to the ODEs X kx = 0, T c 2 kt = 0, and the boundary conditions (8) and (9) imply X(0) = 0, X (L) = κx(l). Also as before, the possibilities for X depend on the sign of the separation constant k.

Case 1: k = 0 We have X = 0 and so X = Ax + B with 0 = X(0) = B, A = X (L) = κx(l) = κ(al + B). Together these give A(1 + κl) = 0. Since κ,l > 0, we have A = 0 and hence X = 0. Thus, there are only trivial solutions in this case.

Case 2: k = µ 2 > 0 Once again we have X µ 2 X = 0 and The boundary conditions become X = c 1 e µx + c 2 e µx. 0 = c 1 + c 2, µ(c 1 e µl c 2 e µl ) = κ(c 1 e µl + c 2 e µl ). The first gives c 2 = c 1, which when substituted in the second yields 2µc 1 cosh µl = 2κc 1 sinhµl.

Case 2: k = µ 2 > 0 We may rewrite this as c 1 (µ cosh µl + κsinhµl) = 0. The quantity in parentheses is positive (since µ,κ and L are), so this means we must have c 1 = c 2 = 0. Hence X = 0 and there are only trivial solutions in this case.

Case 3: k = µ 2 < 0 From X + µ 2 X = 0 we find X = c 1 cos µx + c 2 sinµx and from the boundary conditions we have 0 = c 1, µ( c 1 sinµl + c 2 cos µl) = κ(c 1 cos µl + c 2 sinµl). Together these imply that c 2 (µ cos µl + κsinµl) = 0.

Case 3: k = µ 2 < 0 Since we want nontrivial solutions (i.e. c 2 0), we must have µ cos µl + κsinµl = 0 which can be rewritten as tanµl = µ κ. This equation has an infinite sequence of positive solutions 0 < µ 1 < µ 2 < µ 3 <

Case 3: k = µ 2 < 0 The figure below shows the curves y = tanµl (in red) and y = µ/κ (in blue). The µ-coordinates of their intersections (in pink) are the values µ 1, µ 2, µ 3,...

Remarks From the diagram we see that: For each n (2n 1)π/2L < µ n < nπ/l. As n µ n (2n 1)π/2L. Smaller values of κ and L tend to accelerate this convergence.

Normal modes As in the earlier situations, for each n 1 we have the solution and the corresponding X n = sinµ n x T n = e λ2 n t, λ n = cµ n which give the normal modes of the heat equation with boundary conditions (8) and (9) u n (x,t) = X n (x)t n (t) = e λ2 n t sinµ n x.

Superposition Superposition of normal modes gives the general solution u(x,t) = c n u n (x,t) = n=1 c n e λ2nt sinµ n x. n=1 Imposing the initial condition u(x,0) = f (x) gives us f (x) = c n sinµ n x. n=1 This is a generalized Fourier series for f (x). It is different from the ordinary sine series for f (x) since µ n is not a multiple of a common value.

Generalized Fourier coefficients To compute the generalized Fourier coefficients c n we will use the following fact. Proposition The functions X 1 (x) = sinµ 1 x,x 2 (x) = sinµ 2 x,x 3 (x) = sinµ 3 x,... form a complete orthogonal set on [0,L]. Complete means that all sufficiently nice functions can be represented via generalized Fourier series. This is a consequence of Sturm-Liouville theory, which we will study later. We can verify orthogonality directly, and will use this to express the coefficients c n as ratios of inner products.

Generalized Fourier coefficients Assuming orthogonality for the moment, for any n 1 we have the familiar computation f,x n = c m sinµ m x,sinµ n x = m=1 c m sinµ m x,sin µ n x m=1 = c n sinµ n x,sinµ n x = c n X n,x n since the inner products with m n all equal zero.

Generalized Fourier coefficients It follows immediately that the generalized Fourier coefficients are given by c n = f,x n X n,x n = L 0 L f (x)sin µ n x dx. 0 sin 2 µ n x dx For any given f (x) these integrals can typically be computed explicitly in terms of µ n. The values of µ n, however, must typically be found via numerical methods.

Conclusion Theorem The solution to the heat equation (1) with Robin boundary conditions (8) and (9) and initial condition (3) is given by u(x,t) = c n e λ2 n t sinµ n x, n=1 where µ n is the nth positive solution to tanµl = µ κ, λ n = cµ n, and the coefficients c n are given by c n = L 0 f (x)sin µ nx dx L. 0 sin2 µ n x dx

Example 2 Example Solve the following heat conduction problem: u t = 1 25 u xx, 0 < x < 3, 0 < t, u(0,t) = 0, 0 < t, u x (3,t) = 1 u(3,t), 0 < t, 2 ( u(x,0) = 100 1 x ), 0 < x < 3. 3 We have c = 1/5, L = 3, κ = 1/2 and f (x) = 100(1 x/3).

Example 2 The integrals defining the Fourier coefficients are 100 3 0 ( 1 x ) sinµ n x dx = 100(3µ n sin3µ n ) 3 3µ 2 n and 3 sin 2 µ n x dx = 3 2 + cos2 3µ n. Hence 0 c n = 200(3µ n sin3µ n ) 3µ 2 n (3 + 2cos 2 3µ n ).

Example 2 We can therefore write out the full solution as u(x,t) = n=1 200(3µ n sin3µ n ) 3µ 2 n (3 + 2cos 2 3µ n ) e µ2 nt/25 sinµ n x, where µ n is the nth positive solution to tan3µ = 2µ.

Example 2 Remarks: In order to use this solution for numerical approximation or visualization, we must compute the values µ n. This can be done numerically in Maple, using the fsolve command. Specifically, µ n can be computed via the command fsolve(tan(m L)=-m/k,m=(2 n-1) Pi/(2 L)..n Pi/L); where L and k have been assigned the values of L and κ, respectively. These values can be computed and stored in an Array structure, or one can define µ n as a function using the -> operator.

Example 2 Here are approximate values for the first 5 values of µ n and c n. n µ n c n 1 0.7249 47.0449 2 1.6679 45.1413 3 2.6795 21.3586 4 3.7098 19.3403 5 4.7474 12.9674 Therefore u(x,t) = 47.0449e 0.0210t sin(0.7249x) + 45.1413e 0.1113t sin(1.6679x) + 21.3586e 0.2872t sin(2.6795x) + 19.3403e 0.5505t sin(3.7098x) + 12.9674e 0.9015t sin(4.7474x) +