Developments and Challenges for Aluminum A Boeing Perspective



Similar documents
Backgrounder. Boeing Commercial Airplanes

Current Aircraft Finance Market Outlook 2015

Training Pilot & Technician Outlook Pilot & Technician Outlook 1

Training Pilot & Technician Outlook Pilot & Technician Outlook 1

Fuel Performance Management

The Art of Safe Landings

Boeing Capital Corporation. Current Aircraft Finance Market Outlook Copyright 2015 Boeing. All rights reserved.

TURBULENCE AHEAD DISENGAGE THE AUTOPILOT GLOBAL FLEET & MRO MARKET FORECAST

[Docket No. FAA ; Directorate Identifier 2008-NM-171-AD; Amendment ; AD ]

Professional Services. Consulting Solutions for the Aerospace Industry

Case Study BOEING 787: GLOBAL SUPPLY CHAIN MANAGEMENT TAKES FLIGHT. Leveraging Global Partners to Maximize Customer Value

THE AMERICAN AIRLINEW INDUSTRY AND SOUTHWEST AIRLINES. low profit margins. Within the industry, however, there have been differences in terms of

ALLOY 7475 PLATE AND SHEET HIGHEST TOUGHNESS/STRENGTH

Broad Base. Best Solutions. SIGRAFIL Continuous Carbon Fiber Tow

Current Market. Predicting the future is a risky business. Meet your new

HexWeb CR III Corrosion Resistant Specification Grade Aluminum Honeycomb

TURBULENCE AHEAD DISENGAGE THE AUTOPILOT

[Docket No. FAA ; Directorate Identifier 2008-NM-190-AD; Amendment ; AD ]

Study also shows defense sector must readjust to lower U.S. and European federal budgets

The Impact of In-Service Aircraft Mission Variation on Fleet Management and Logistic Support Analysis

Pierre Marchand, product director, speciality product Meeting NEI-NRC March 14th 2013

Software Centre 4 th June 2015

EASYJET TRADING STATEMENT FOR THE QUARTER ENDED 31 DECEMBER 2015

The company Premium AEROTEC

Supply Chain and Maintenance Imperatives for the Next Generation Aircraf

First-Quarter 2016 Performance Review

Aerion and Airbus Group, Inc. Announce New Agreement, Expanded Collaboration

Enhanced spare part engineering support

Phosphoric Acid Anodized Aluminum Honeycomb

NUARB TRAINING ACADEMY

Airline Fleet Planning Models J/1.234J Airline Management Dr. Peter P. Belobaba April 10, 2006

Implications for Service Parts Management in the Rapidly Changing Aviation MRO Market

ADVANCED MANUFACTURING: AIR TRANSPORTATION CAREER PATHWAY

Aircraft performance monitoring

Commerzbank German Investment Seminar. Dr. Jürgen Köhler, CEO New York. January 2016

Speech of Mr. Raoul Starmans, Vice President of Royal TenCate China at the ITMF Conference 2014 in Beijing, China

Filling New Orders One Million Items at a Time: Marketing Masters Secures Customers in New Markets and Industries

Aerospace in Washington State. Impact Washington NIST-MEP Affiliate

Chapter 2. Basic Airplane Anatomy Delmar, Cengage Learning

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

Reach for the skies. The Aerospace Growth Partnership. Industry and government working together to secure the future for UK aerospace

Aviation Academy MAGNET PROGRAM Course Guide

ELECTRICAL & POWER DISTRIBUTION

PROPELLING MALAYSIA INTO GLOBAL AEROSPACE HUB FRANCIS HIEW MANAGING DIRECTOR SPIRIT AEROSYSTEMS MALAYSIA

COALITION OF VOCATIONAL AND REGULAR AVIATION MAINTENANCE TECHNICIAN EDUCATION

MATERIALS OPTIMIZATION

[Docket No. FAA ; Directorate Identifier 2015-NM-141-AD] Airworthiness Directives; The Boeing Company Airplanes

Advanced aerospace materials: past, present and future

ALLOY 6022 SHEET. Higher Strength with Improved Formability SUPPLYING THE WORLD S BEST

NEW ALUMINUM LITHIUM ALLOYS FOR AEROSPACE APPLICATIONS

Trends in Aviation & Impact on MROs. Khwaja M. (KM) Ali Director, Maintenance Economics

Advanced MRO Solutions

Aloha Airlines Flight 243 Boeing April 28,1988 Honolulu, HI

Our strategy and objectives

Dissimilar Metal Corrosion

Lean enterprise Boeing 737 manufacturing Lean Production System

Bridge Rehabilitation Financial Model and Case Study

enterpriseseattle King County Aerospace Study

Commercial Update. John Leahy Chief Operating Officer Customers Airbus. Global Investor Forum 2009, Broughton, 1 st & 2 nd April 2009

OR Applications in the Airline Industry

Commercial aviation is constantly under threat of terrorist attacks

Going local and engaging with the world. Finnair. Maarit Keränen

Cincinnati-Dayton Aerospace Corridor

J.P. Morgan Global High Yield & Leveraged Finance Conference. February 26, 2014

T E A C H E R S N O T E S

Benefits of Optimizing Maintenance Intervals

Broad Base. Best Solutions. SIGRAPREG Prepregs Made from Carbon, Glass, and Aramid Fibers

Information meeting. Cheuvreux Conference September Philippe Calavia CFO, Air France-KLM

Raymond James Global Airline and Transportation Conference

Major Components of a Typical Startup-Airline Business Plan

The Solar Impulse 2 hopes to achieve the first circumnavigation of the Earth by a piloted fixed-wing aircraft using solar power.

THE MEDA PROCESS IS THE WORLDWIDE STANDARD FOR MAINTENANCE ERROR INVESTIGATION.

ATAC International Business Development Strategy 2012/2013

Specifications for Programs: 737, 747, 757, 767, 777, 787

Aeronautics AERO, FLTEC, ATCAD

Luis Pinto, CFO, NetJets Europe. NetJets Europe - Flying the fractional flag

Airline Schedule Development

Many of our fiberglass models have optional lay-ups to suit their alternate intended usage.

CLICKBOND FASTENER OVERVIEW:

Opportunities and risks for Start up airlines in Africa

Maintenance Performance Toolbox

LASER CUTTING OF STAINLESS STEEL

CHAPTER10 MATERIALS SUBSTITUTION. Materials and Process Selection for Engineering Design: Mahmoud Farag

STRESS FRACTURE ON A BOEING 757 : OBSERVATIONS BY A GEOLOGIST May 21, 2012

Chinese Aerospace Market Supply Chain and Opportunities:

CACRC - Repair Techniques Task Group

Introduction. Why Focus on Heavy Trucks?

EASYJET TRADING STATEMENT FOR THE QUARTER ENDED 30 JUNE 2015

Alternative Fuels. Overview

Delcam s Aerospace Heritage

Joe Randell President and Chief Executive Officer. Rick Flynn Chief Financial Officer. Nathalie Megann Director, Investor Relations.

Composites and light weight metals - the best of two worlds

DISCUSSION AND CONCLUSIONS

Aramid Fibre/Phenolic Honeycomb

Program Update June G500, G600 Program Update 06.15

SOLVING SECONDARY CONTAINMENT PROBLEMS

Transcription:

MATERIALS FORUM VOLUME 28 - Published 2004 Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd 24 Developments and Challenges for Aluminum A Boeing Perspective A.S. Warren Commercial Airplanes, The Boeing Company, P.O. Box 3707 MC 73-44, Seattle, WA 98124-2207 Keywords: aluminum, aerospace Abstract Aluminum has long been the material of choice for commercial aircraft primary structure. Aluminum suppliers have steadfastly improved products to support performance needs. Selection of composites for Boeing s 7E7 challenges aluminum s predominant position. Composites must prove their abilities; but improvements in manufacturability, performance, and affordability supported their selection for the 7E7 program to enable operating efficiency improvements. To win future airframe applications, aluminum must compete with and/or be compatible with composites. Recently demonstrated improvements in aluminum product properties suggest further advances are feasible. Research supporting improved performance and cost reductions is needed to meet the composite challenge and keep aluminum flying. 1. Introduction During the 100 year history of powered flight, aircraft have evolved from the initial wood and fabric structures to robust structures of aluminum alloys; the world has witnessed the growth of the commercial airline industry and the evolution of aircraft design, production, and operating philosophies under competitive market pressures. Historically, the airframe industry has relied on new and improved structural materials to meet competitive challenges by implementing material options that increase performance, support reliability, reduce weight, lower costs, and/or solve problems. Boeing currently has a safe, reliable fleet of revenue generating commercial airplanes that are produced using aluminum primary structure. We have years of experience in the design, production, operation, and maintenance of aluminum airframes. The operating history of our fleet provides guidance for decision making and contains many examples of lessons learned, both positive and negative. The infrastructure and knowledge base necessary to support the current commercial fleet, the airline customers, and ultimately, the flying public, is complex and has evolved over many years. Through a long history of sustained development activities, the aluminum industry has supported Boeing and the airframe industry via the development and introduction of new products. Figure 1 provides a timeline highlighting the introduction of several aluminum structural materials on new and derivative airplane programs. Each of these new aluminum materials provided a performance, weight, and/or cost benefit to help the airplane program meet its objectives. Each successfully commercialized product represents the culmination of years of committed research and development activities.

25 Figure 1: Timeline highlighting introduction of new aluminum alloys. Aluminum product development efforts have been successful in improving the static strength and fracture toughness of aluminum alloys either through composition design and control, or through development of thermal mechanical practices and tempers which allow retention of high strength with acceptable corrosion performance. New aluminum product options with improvements in both strength and toughness are still of interest in current development programs, particularly for upgrades to existing aluminum designs. Figure 2 shows several significant aluminium sheet and plate product improvements implemented for production airplanes, and highlights the desired improvements that will allow us to build on these successes. Figure 2: Illustration of continued strength-toughness development in aluminum alloys. There is active engineering research and development work to support new aluminum products that offer benefits to Boeing s derivative airplane product development efforts for improvement of current airplane models. Boeing is interested in aluminum products that can be used to improve airplane performance via improved material properties, as well as aluminum products which provide the ability to reduce weight and/or reduce production costs.

2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 26 Current advanced aluminum development at Boeing is working with the global aluminum industry to develop targeted technical solutions to support derivative models of current programs. Additionally, we are working to position aluminum to compete with composites for future new airplane programs. Our materials development approach is integrated with airplane needs to provide advanced options for airframe design [1]. Our current aluminum product performance goals are challenging suppliers to develop and demonstrate aluminum alloys with significant increases in static strength, fracture toughness, fatigue performance, and corrosion behavior. In addition to the technical challenges, the competitive industry environment and the economic environment are creating significant cost pressure that cannot be ignored. 2. Current Commercial Airplane Market Airplane development programs and related material development activities are influenced by the larger context of the commercial airplane market; current market conditions are marked by global issues which have created unprecedented times of uncertainty for the world economy. Airlines are facing the economic impact of a series of disruptive world events, as summarized in Figure 3, and many must develop new business models in order to survive and compete. Net Profit (Loss) Billions [bars] $10 Percent of Revenue [line] 10% $6 6% $2 2% ($2).. -2% ($6) -6% ($10) -10% ($14) -14% Figure 3: Airline profitability While recent times have not been favorable for airline profitability, in the long view, the world economy will improve and grow, and a strong transportation network will be required to support that growth. Boeing s 20 year forecast [2] anticipates long term growth for air travel with increases in both passenger and cargo traffic based on worldwide economic growth, as shown in Figure 4.

27 1970 1980 1990 2000 2010 2020 Figure 4: Growth trends in passenger traffic as measured in revenue passenger kilometers (standard industry unit = number of passengers x kilometers they fly). Within the overall global forecast, expectations for growth by region vary and strategic decisions reflect differing interpretations of the data. The airline industry will continue to respond to the changing business and regulatory environment, and will continue to adapt their strategies to take advantage of developments in airplane capacity and range capabilities. 3. Boeing Commercial Airplane s Strategy and the 7E7 Boeing s strategy continues to be based on the view that the flying public wants safe, reliable service with the shortest trip times possible, a wide variety of flight choices direct to multiple destinations, low fares, and comfortable surroundings. The cornerstone of the Boeing strategy is that passengers generally prefer point-to-point service rather than routing through connecting hubs. This leads to the expectation that the world market will demand more non-stop flights and increasing flight frequency to meet increased air traffic needs. Boeing refers to this as fragmentation, and believes that this philosophy is supported by airplanes that serve the middle of the market in the 200 300 seat range. Boeing s newest airplane, the 7E7 is being designed with airline input to support needs in the middle of the market. The 7E7 program is using technical advances in a number of areas in addition to materials, including: aerodynamics, systems, and engines. Advances in these technology areas are interdependent and are expected to work together synergistically to provide targeted performance benefits, most notably improved operating efficiency. There have been systematic increases in the application of composite materials on Boeing commercial aircraft [3, 4], as illustrated in Figure 5. The growth of composites applications began in secondary structures (i.e. cowlings, fairings, spoilers) on the 757 and 767, and later moved into the empennage and primary control surfaces for the 777. These commercial applications have provided design, manufacturing, and operational experience with composites which have, in turn, guided additional developments in material properties, cost reductions, and manufacturability.

28 Figure 5: Approximate primary structure material usage by weight on several Boeing programs. The 7E7 decision to use graphite epoxy composites as primary structure reflects belief that composite technologies have advanced sufficiently to meet the new performance, cost, and weight targets necessary to support stated goals of delivering 20% better fuel efficiency than current similarly sized models, while reducing overall operating costs for the airline and improving passenger comfort. Working in concert with other technical advances, composite materials are expected to meet weight reduction goals, support reduced maintenance based on reductions in corrosion and fatigue, and support program cost objectives. For example, the improved fatigue and corrosion resistance of composites will help to enable a cabin environment equivalent to a lower altitude with a more comfortable cabin pressure and improved humidity. Composite materials still face considerable challenges as their applications expand into primary structure, but composites are also expected to provide significant development potential for the future. Current composites work is focused on optimization of structural designs to make the best use of unique composite capabilities and reduce manufacturing costs for new structure, and on development of in service repairs necessary to support dispatch reliability for the airlines. 4. Challenges for Aluminum Research and Development The selection of composite materials for the primary structure of the 7E7 is a significant, immediate, and direct challenge for aluminum [5]. Composite materials are considered disruptive technology by members of the aluminum industry who have long discussed the composite threat. The current focus of materials development activities for both composites and aluminum includes: further demonstrated improvements in material performance, ability to support optimized structural designs, continued lowering of manufacturing costs, and ability to perform reliably in service. In terms of airplane design drivers, there are significant cost and weight challenges for both aluminium and for composites as shown schematically in Figure 6.

29 Cost Manufacturing Low-Cost Composite Processes Advanced Composites Current Aluminum Alloys Innovative Structural Concepts Target Advanced Aluminum Alloys Materials Weight Figure 6: Schematic view of cost weight considerations for material selection. The perception is that composites have significant potential for performance and producibility improvements as they continue to mature technically. Additionally, as applications increase, composite material costs are expected to continue to moderate. The infrastructure necessary for production and support of composite airframe structure is developing in a time where lean manufacturing principles can be readily applied to allow efficiency and flexibility to be built into these new processes. The challenge faced by composites is that they must prove their capabilities and cost effectiveness in both production and in service as they expand their role into primary structure. For aluminium, the focus of our active development work is two fold. For existing airplane programs, the focus is on improving the design values to support improved structural performance and weight reductions on existing aluminum designs. For future new airplane programs, the desire is to provide aluminum options that can compete favorably with graphite epoxy composites, or be compatible with next generation composite materials. Accumulated past experiences with aluminum have created the perception that aluminum represents a mature technology. There is a general concern that performance improvements are typically incremental and that improved materials end up costing more, not less. While the cost of raw material may not appear large when viewed relative to the cost of the finished airplane, material costs and associated manufacturing costs are a large fraction of those for individual structural elements and there is strong pressure to demonstrate cost savings. Economic targets could be difficult to meet with the pricing structure traditionally applied to sole source, proprietary aluminium products. Research and bold thinking by the aluminum industry which could provide for breakthrough efficiencies in the energy intensive aluminium production process and enable a new aluminum product cost structure would be of great interest in meeting the competitive pressures from other material systems. There is current active interest in improved aluminium alloy products to support needs for derivative airplane programs; goals of these product development activities include development of future passenger and freighter airplane models and require aluminum alloy products to support improvements in fuselage and wing applications. The primary design

30 drivers for derivative aircraft remain static strength properties, fatigue behavior, damage tolerance and corrosion performance. Alloy development activities are focused on supporting improvements in airplane performance as well as reducing the overall operating costs for the airlines. Related research and development work to support manufacturing efficiency and cost reduction via improved and/or novel processing is also of interest, but processing must be robust to support production and the data necessary to support implementation and business case development must be available. For the 7E7, specific selection of carbon fiber reinforced plastic composites creates an additional challenge for application of aluminium on this airframe based on corrosion considerations. Direct coupling of graphite fiber composites to aluminium creates a galvanic cell which drives corrosion degradation of the aluminium. Available isolation techniques add weight, and create inspection and/or maintenance issues which can make them impractical. In many applications, composite and/or titanium components are selected to avoid potential galvanic corrosion issues with aluminum in service. For the future, continued developments in composite materials where current graphite based fiber systems are replaced with emerging high modulus, chemically inert, organic fibers, such as M5 TM, may provide opportunities for increasing aluminium applications by removing the galvanic corrosion concerns. These new fibers also offer the potential for development of new hybrid materials, including the possibility for a new generation of fiber metal laminate materials. In order to win future applications for aluminum on new and derivative airplane programs, aluminum will need to meet or exceed targets for performance and life cycle cost affordability. It is fully expected that future trade studies will compare aluminum solutions with new composite options. Aluminum must be well positioned to meet these technical and market challenges by being competitive with or compatible with composite design options. 5. Summary Aluminum development for Boeing commercial airplanes is in a very unique position at the moment; recently demonstrated improvements in aluminum alloy properties have certainly captured the interest of those who work on developing derivatives of the existing airplane models. We continue to support improvements for these programs via active participation in exciting technical development with the global aluminum industry. At the same time, the selection of graphite epoxy based composites for the 7E7 represents a significant challenge to aluminum for the future. Aluminum research that supports new aluminum alloy product development is of continued interest. Challenging performance goals supporting airplane program needs are being worked with members of the global aluminium industry via alloy and temper design capabilities. Related research and development work ultimately contributing to support of manufacturing efficiency and cost reduction via improved and/or novel processing is also of interest and Boeing is engaged in continued technical discussions with the aluminum research and development community on these topics. Future developments of advanced

31 hybrid materials could provide additional opportunities for aluminum and new material options for the airframe industry. References [1] S.E. Axter, et al, AIAA 2003-7879, Evolution of an Integrated Approach to Material Development, 44 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 7 10, 2003 Norfolk, VA, to be published 2004. [2] R. Baseler, Boeing Commercial Airplanes Market Forecast, 2003. [3] P. Harradine and J. T. Quinlivan Composites and the Commercial Jet A Boeing Viewpoint AIAA- 89-2126, Aircraft Design and Operations Conference, 1989. [4] B.W. Smith The Boeing 777 Advanced Materials and Processes, September 2003. [5] American Metal Market Staff, Dreamliner Handed Boarding Pass to Composites, AMM 12/24/03.