MANAGEMENT SCIENCE doi 10.1287/mnsc.1070.0804ec pp. ec1 ec17



Similar documents
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004

Circle Geometry (Part 3)


Campus Sustainability Assessment and Related Literature

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage


JCUT-3030/6090/1212/1218/1325/1530

HFCC Math Lab Intermediate Algebra - 13 SOLVING RATE-TIME-DISTANCE PROBLEMS



Generalized Difference Sequence Space On Seminormed Space By Orlicz Function




i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

R e t r o f i t o f t C i r u n i s g e C o n t r o l

Practice Writing the Letter A

Transient Analysis of First Order RC and RL circuits



Worked Examples. v max =?

EM EA. D is trib u te d D e n ia l O f S e rv ic e

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics

Transformations. Computer Graphics. Types of Transformations. 2D Scaling from the origin. 2D Translations. 9/22/2011. Geometric Transformation

Chapter 13. Network Flow III Applications Edge disjoint paths Edge-disjoint paths in a directed graphs

Doppler Effect. wavelength

Fuld Skolerapport for Hunderupskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 7. med reference Tilsvarende klassetrin i kommunen

Fuld Skolerapport for Søhusskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 9. med reference Tilsvarende klassetrin i kommunen

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Standardized Coefficients

Tuition Reimbursement Program. Handbook

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

Open Source Software Open Standards

Determining solar characteristics using planetary data


Steps for D.C Analysis of MOSFET Circuits

Chapter 4: Matrix Norms

Thuraya XT-LITE Simple. Reliable. Affordable.

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

>

CIS CO S Y S T E M S. G u ille rm o A g u irre, Cis c o Ch ile , C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

Pricing strategy of e-commerce platform under different operational models



Modeling the Yield Curve Dynamics

Overview of Spellings on



OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION

How To Know If You Are A Good Or Bad Person

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

A Versatile Method for Analyzing the Influence of Track Irregularity on Vehicle-track-bridge Coupled System


Bewährte Six Sigma Tools in der Praxis

Topic 5: Confidence Intervals (Chapter 9)

Signal Rectification


Workload Management Services. Data Management Services. Networking. Information Service. Fabric Management

Put the human back in Human Resources.


Mascots, Mentors, Facebook & Snacks

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

Give a formula for the velocity as a function of the displacement given that when s = 1 metre, v = 2 m s 1. (7)

APPLICATION REQUIREMENTS Failure to include the following may delay the processing of your application.

AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL P. A. V a le s, Ph.D.

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

MTH6121 Introduction to Mathematical Finance Lesson 5

Math 22B, Homework #8 1. y 5y + 6y = 2e t

Catálogo de rodillos A.B.Dick

PY1052 Problem Set 8 Autumn 2004 Solutions


Anti-Money Laundering Distributor Due Diligence

L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o

Rayleigh Flow - Thermodynamics


Mechanics 1: Motion in a Central Force Field


Physics 110 Spring 2006 Fluid Mechanics Their Solutions


Chapter 8: Regression with Lagged Explanatory Variables

ACE-1/onearm #show service-policy client-vips

B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

In English there are 26 letters which represent 44 phonemes. These phonemes are represented by approximately 140 different letter combinations.

O R G A N I C P R O D U C T L I N E

1D STEADY STATE HEAT



CUSTOMER INFORMATION SECURITY AWARENESS TRAINING

ASCII CODES WITH GREEK CHARACTERS

Phonics. Phonics is recommended as the first strategy that children should be taught in helping them to read.

Transcription:

MAAEMET SCIECE doi 087/mn0700804e e e7 e-omanion OY AAIABE I EECTOIC OM infom 008 IOMS Eleoni Comanion Call Cene Ououing Cona Unde Infomaion Aymmey by Samee aija Edieal J inke and obe A Sumky Managemen Siene doi 087/mn0700804

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e oof of ooiion and emma Ti doumen onain oof fo all ooiion and emma EC oof of ooiion Te fi ode ondiion fo i ' [ / ] Unde a C-only ona e fi ode ondiion fo i ' Teefoe only if / ien i ondiion e lien ofi i < 0 EC oof of ooiion Condiion i and ii imly a e endo will make a aaiy oie u a Aume a > eefoe Te endo ofi - Teefoe e lien ofi

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e3 Tu e lien maximize ofi EC3 oof of ooiion 3 Te ofi funion of e endo i Teefoe e endo ofi maximizing aaiy deiion i e ame a e eie uly ain ofi maximizing aaiy In addiion e endo ofi Teefoe e lien ofi Tu e lien maximize ofi EC4 oof of ooiion 4 om ooiion we know a a ig oduiiy ye endo will ean a ofi equal o unde ona CS- Aume e ig ye endo ae CS- and ooe a affing leel of Aoding o e SA onain α ow Teefoe i a feaible oluion fo e endo oblem Ti imlie

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e4 Tu e ig oduiiy ye endo will ae CS- Teefoe offeing a oie beween CS- and CS- will no een beween a ig and a low oduiiy ye endo oe a wile e ig oduiiy-ye endo will no ae e oe ona CS- e low ye will ae e oe ona CS- ee ooiion 7 EC5 oof of ooiion 5 om ooiion 3 we know a a ig oduiiy ye endo will ean a ofi equal o unde ona CW- Aume e ig oduiiy ye endo ae CW- Te endo ofi funion i Ti imlie a e endo ofi maximizing aaiy deiion unde ona CW- i equal o Teefoe e endo ofi i Teefoe e ig oduiiy-ye endo will ae ona CW- and ean infomaion en on o of i eeaion alue ene offeing a oie beween CW- and CW- will no een beween a ig and a low ye endo EC6 oof of emma e fax ax-ax We know a f a x a x x ax Teefoe we need o ow a x x ax 0 a x We know a e azad funion fo e andad nomal diibuion i an ineaing funion Ti imlie x x x x x 0 x Teefoe x x fo all x

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e5 Tu i i uffiien o ow a ax a x o y y o omlee e oof Uing oial' ule i an be own a im x x x x ow o omlee e oof i i uffiien o ow a / x < u a xx-x > Aume x < u a xx-x > We know im x x x i imlie a x [ y y y] y < u a yy-y > and < 0 y [ y y y] ow y[ y y y y ] y Ti imlie y y y y < 0 Bu we know yy-y > Ti imlie y-y > 0 Teefoe e inequaliy 0 an be wien a y y y y < y y y By e-aanging em y y y y < 0 Te inequaliy i no ue Ti lead o a onadiion and ene omlee ou oof EC7 oof of ooiion 6 i we oe a oey old Aume i no ue Ti imlie < By e SA onain fo e ig oduiiy ye endo unde ona TS-

e6 e-omanion o aija inke and Sumky: Call Cene Ououing Cona α We now ue e diffuion aoximaion e e Ψ Ψ Teefoe e Ψ Teefoe e inequaliy an be wien a om emma we know a ax-ax i ineaing in a fo all x Alo ax-ax 0 fo a Ti imlie a ax-ax 0 fo all a Teefoe

e7 e-omanion o aija inke and Sumky: Call Cene Ououing Cona Ti lead o a onadiion and ene ou aumion a < i no ue ow we oe a oey old e u aume < 3 om e diffuion aoximaion Te inequaliy 3 an be wien a <

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e8 om emma we know a ax-ax i ineaing in a fo all x Alo ax-ax 0 fo a Ti imlie a ax-ax 0 fo all a Teefoe Ti lead o a onadiion and ene omlee ou oof EC8 oof of emma Aume a e endo a low oduiiy and ae e ona TS- By e definiion of endo will maximize i ofi a and we know a e o all e SA onain i aified ie all ae a feaible oluion o e endo oblem Ti imlie Teefoe EC9 oof of ooiion 7 A low oduiiy-ye endo will ean a ofi equal o unde ona TS- Aume a a low oduiiy ye endo ae CS- e be e aaiy deiion a e low oduiiy ye endo make unde ona CS- ow Ti imlie

e9 e-omanion o aija inke and Sumky: Call Cene Ououing Cona 4 Beaue we aume a e low-oduiiy endo ae CS- α We know a and fo Teefoe Ti imlie a Teefoe a low oduiiy ye endo will no ae ona CS- e u aume a a ig oduiiy-ye endo ae e ona TS- Te ofi eaned by e endo i

e0 e-omanion o aija inke and Sumky: Call Cene Ououing Cona Teefoe e ig oduiiy-ye endo will no ae ona TS- EC0 oof of ooiion 8 A low oduiiy endo will ean a ofi equal o unde ona TW- Aume a a low oduiiy endo ae CW- Te endo ofi funion i Ti imlie a e endo ofi maximizing aaiy deiion unde ona CW- i equal o Teefoe e endo ofi i Teefoe e low oduiiy endo will no ae ona CW- e u aume a a ig oduiiy endo ae ona TW- and ooe a aaiy equal o Te ofi eaned by e endo By e-aanging em 5

e e-omanion o aija inke and Sumky: Call Cene Ououing Cona By e definiion of Uing oey 6 Equaion 5 and 6 imly and eefoe 7 We ae aumed a e ig oduiiy-ye endo ae ona TW- Teefoe we mu ae 0 We an ow a and i imlie a 0 0 Teefoe fom inequaliy 7 we find a Tu e ig oduiiy-ye endo will no ae ona TW- EC oof of ooiion 9

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e A low oduiiy-ye endo will ean a ofi equal o unde ona TS- Aume a a low oduiiy-ye endo ae ona TSA- e be e aaiy deiion a e low oduiiy ye endo make unde ona TS- Te ofi funion fo e endo i AT Teefoe 0 Teefoe a low ye of endo will no ae ona TSA- A ig-ye endo will ean a ofi equal o unde ona TSA- and no ae ona TS- a i would ean a ofi lowe an unde ona TS- ee e oof of ooiion 7 EC oof of ooiion 0 Aume wo endo and wi µ > µ We fi onide a CSA ona e and be e ofi maximizing aaiy deiion and le and be e oeonding ofi fo endo wi eie ae µ and µ eeiely Teefoe e endo ofi ae wee α and wee α i a feaible oluion fo endo Teefoe By definiion and eefoe

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e3 ex we onide a CW ona Again le and be e ofi maximizing aaiy deiion and le and be e oeonding ofi fo endo wi eie ae µ and µ eeiely Teefoe e endo ofi ae: and By definiion EC3 oof of ooiion Aume wo endo and wi µ > µ We fi onide a TSA ona e and be e ofi maximizing aaiy deiion and le and be e oeonding ofi fo endo wi eie ae µ and µ eeiely Teefoe e endo ofi ae: wee α and wee α Aume If i aumion i no ue en

e4 e-omanion o aija inke and Sumky: Call Cene Ououing Cona < Uing e diffuion aoximaion e aboe inequaliy an be ewien a 0 emma and ou aumion a > imly a e aboe inequaliy doe no old Teefoe i ue By definiion α Ti imlie a i a feaible affing leel fo endo Ti imlie Uing oey ex we onide a CW ona Again le and be e ofi maximizing aaiy deiion and le and be e oeonding ofi fo endo wi eie ae µ and µ eeiely Teefoe e endo ofi ae: and By definiion i oimal fo endo

e5 e-omanion o aija inke and Sumky: Call Cene Ououing Cona Uing ooiion 6 EC4 oof of ooiion Te eie uly ain ofi fo a gien affing leel i: Wi e CW ona e endo ofi i: By definiion ewiing e endo ofi Teefoe enue a e CW ona i oodinaing a long a EC 5 oof of ooiion 3

e-omanion o aija inke and Sumky: Call Cene Ououing Cona e6 e u aume a define a oodinaing ay e all ona wi a linea enaly fo waiing e µ l be u a Te lien exeed ofi unde i ona i l M < 8 l l l ow aume a e endo i offeed a oie beween a TWAT o TSAAT ona a maximize e lien ofi if e endo eie ae i µ l and a oodinaing CW ona a maximize e lien ofi if e endo eie ae i oe a if e endo eie ae [ l en e endo will ae e ay e ime ona and ooe o wok a l ee ooiion 8 and If e endo eie ae en e endo will ae e ay e all ona and ooe o wok a ee ooiion 8 and 0 In i ae e eie uly ain l will be oodinaed ee ooiion I an be own a fo i ae e uly ain ofi ineae a and e endo ean an infomaion en of aboe i eeaion alue Te lien exeed ofi i M < > l l l 9 Te oof of e eoem follow by omaing equaion 8 and 9 EC6 oof of ooiion 4 Aume a e lien offe e endo a oie beween a TWAT o TSAAT a maximize e lien ofi if e endo eie ae i µ l we will all i e lowe-t-ona and a TWAT o TSAAT ona a maximize e lien ofi if e endo eie ae i µ we will all i e ige-t-ona oe a if e endo eie ae [ l en e endo will ae e lowe-t-ona and ooe o wok a l ee ooiion 9 and If e endo eie ae en e endo will ae e ige-tona and ooe o wok a ee ooiion 9 and 0 In i ae e eie uly ain

e7 e-omanion o aija inke and Sumky: Call Cene Ououing Cona will no be oodinaed and eefoe e uly ain ean le ofi an unde e ona deibed in ooiion 3 Te lien exeed ofi i e ame a unde e eening ona deibed in ooiion 3 > < l l l M