Protein Phosphorylation



Similar documents
In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates

Master course KEMM03 Principles of Mass Spectrometric Protein Characterization. Exam

Pinpointing phosphorylation sites using Selected Reaction Monitoring and Skyline

Electrospray Ion Trap Mass Spectrometry. Introduction

La Protéomique : Etat de l art et perspectives

Workshop IIc. Manual interpretation of MS/MS spectra. Ebbing de Jong. Center for Mass Spectrometry and Proteomics Phone (612) (612)

Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists

ProteinScape. Innovation with Integrity. Proteomics Data Analysis & Management. Mass Spectrometry

Application Note # MT-90 MALDI-TDS: A Coherent MALDI Top-Down-Sequencing Approach Applied to the ABRF-Protein Research Group Study 2008

Characterization of Intact Proteins by ESI-LC/MS

Tutorial for Proteomics Data Submission. Katalin F. Medzihradszky Robert J. Chalkley UCSF

Global and Discovery Proteomics Lecture Agenda

Application Note # LCMS-81 Introducing New Proteomics Acquisiton Strategies with the compact Towards the Universal Proteomics Acquisition Method

ProteinPilot Report for ProteinPilot Software

Introduction to Proteomics 1.0

Error Tolerant Searching of Uninterpreted MS/MS Data

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

SimGlycan Software*: A New Predictive Carbohydrate Analysis Tool for MS/MS Data

Building innovative drug discovery alliances. Evotec Munich. Quantitative Proteomics to Support the Discovery & Development of Targeted Drugs

Mass Spectrometry Based Proteomics

PROTEIN SEQUENCING. First Sequence

Proteomics in Practice

The Scheduled MRM Algorithm Enables Intelligent Use of Retention Time During Multiple Reaction Monitoring

Lecture 15: Enzymes & Kinetics Mechanisms

Laboration 1. Identifiering av proteiner med Mass Spektrometri. Klinisk Kemisk Diagnostik

Aiping Lu. Key Laboratory of System Biology Chinese Academic Society

TECHNICAL BULLETIN. HIS-Select Nickel Affinity Gel. Catalog Number P6611 Storage Temperature 2 8 C

MultiQuant Software 2.0 for Targeted Protein / Peptide Quantification

Effects of Intelligent Data Acquisition and Fast Laser Speed on Analysis of Complex Protein Digests

Rapid and Reproducible Amino Acid Analysis of Physiological Fluids for Clinical Research Using LC/MS/MS with the atraq Kit

Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays

泛 用 蛋 白 質 體 學 之 質 譜 儀 資 料 分 析 平 台 的 建 立 與 應 用 Universal Mass Spectrometry Data Analysis Platform for Quantitative and Qualitative Proteomics

TECHNICAL BULLETIN. ProteoMass Peptide & Protein MALDI-MS Calibration Kit. Catalog Number MSCAL1 Store at Room Temperature

Identification of Surfactants by Liquid Chromatography-Mass Spectrometry

MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics

HiPer Ion Exchange Chromatography Teaching Kit

Principles and Applications of Proteomics

AB SCIEX TOF/TOF 4800 PLUS SYSTEM. Cost effective flexibility for your core needs

Guide to Reverse Phase SpinColumns Chromatography for Sample Prep

Introduction to Proteomics

High-Throughput 3-D Chromatography Through Ion Exchange SPE

Absolute quantification of low abundance proteins by shotgun proteomics

Peptide Antibody Production

Pesticide Analysis by Mass Spectrometry

Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests

Quan%ta%ve proteomics. Maarten Altelaar, 2014

An In-Gel Digestion Protocol

Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics

Choose your optimal tools for protein studies

Monoclonal Antibody Fragment Separation and Characterization Using Size Exclusion Chromatography Coupled with Mass Spectrometry

SimGlycan Software*: A New Predictive Carbohydrate Analysis Tool for MS/MS Data

Purification of reaction mixtures using flash chromatography.

Quantitative mass spectrometry in proteomics: a critical review

Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances

STANFORD UNIVERSITY MASS SPECTROMETRY 333 CAMPUS DR., MUDD 175 STANFORD, CA

Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System

Chapter-21b: Hormones and Receptors

Affi-Prep Protein A Matrix Instruction Manual

Research-grade Targeted Proteomics Assay Development: PRMs for PTM Studies with Skyline or, How I learned to ditch the triple quad and love the QE

Agilent G2721AA/G2733AA Spectrum Mill MS Proteomics Workbench

--not necessarily a protein! (all proteins are polypeptides, but the converse is not true)

Protein Prospector and Ways of Calculating Expectation Values

Introduction to Proteomics

About the Kits...2 Description 2 Components 2

ProSightPC 3.0 Quick Start Guide

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction

SpikeTides TM Peptides for relative and absolute quantification in SRM and MRM Assays

Proteomic Analysis using Accurate Mass Tags. Gordon Anderson PNNL January 4-5, 2005

How To Use An Acquity Qda Detector

AMD Analysis & Technology AG

Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS

Lecture 10 Enzymes: Introduction

Industry Perspective: Advantages of Open Access and Walkup LC/ MS Supporting Protein Drug Discovery and Development

Aurum Ion Exchange Mini Kits and Columns. Instruction Manual

Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance?

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater

DRUG METABOLISM. Drug discovery & development solutions FOR DRUG METABOLISM

A feasibility study of the determination of B-group vitamins in food by HPLC with Mass Spectrometric detection. LGC/R/2011/181 LGC Limited 2011

Enzymes: Introduction

MASCOT Search Results Interpretation

KMS-Specialist & Customized Biosimilar Service

Thermo Scientific Mass Spectrometric Immunoassay (MSIA)

Henry Shion, Robert Birdsall, Steve Cubbedge, and Weibin Chen Waters Corporation, Milford, MA, USA APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS

Improving the Metabolite Identification Process with Efficiency and Speed: LightSight Software for Metabolite Identification

Application Note # LCMS-66 Straightforward N-glycopeptide analysis combining fast ion trap data acquisition with new ProteinScape functionalities

Chapter 3. Protein Structure and Function

Efficient Multi-Well Protein Purification Strategies

Wizard DNA Clean-Up System INSTRUCTIONS FOR USE OF PRODUCT A7280.

Investigating Biological Variation of Liver Enzymes in Human Hepatocytes

Introduction to Database Searching using MASCOT

L. Yu et al. Correspondence to: Q. Zhang

Mass Spectrometry Signal Calibration for Protein Quantitation

Transcription:

Phosphorylation Site Mapping 1

Protein Phosphorylation Reversible protein phosphorylation is the most common signal transduction event. Kinases catalyze the transfer of a γ-phosphate group from ATP to a Ser, Thr, or Tyr residue in a substrate protein. Phosphatases catalyze the removal of a phosphate group from ps, pt, or py in a substrate protein. As many as 1/3 of proteins thought ht to be phosphorylated. h An estimated 2-5% of all proteins thought to be kinases. Relative abundance of phosphoresidues: pser: 90% pthr: 10% ptyr: 0.05% 05% 2

Phosphorylation Analysis: The Relevant Questions How heavily phosphorylated is the protein? (stoichiometry) On which residues is the protein phosphorylated? (site identification) How heavily is each site phosphorylated? (sitespecific stoichiometry) Phosphoproteomics: How does the phosphoproteome change in response to a stimulus? Challenges low levels of phosphorylated proteins low phosphorylation stoichiometry transient modification 3

Phosphorylation Analysis: The Toolbox Affinity Purification Methods Phosphoantibody, IMAC, TiO 2, SAX ESI/MALDI-MSMS Tandem MS CID, ETD, marker ions product/precursor ion scanning Chemical Labeling Methods Isolation, relative quantitation 4

Phosphorylation Stoichiometry from an Intact Protein Molecular Weight (ESI) CFM-S T90 Hassell, A q3t00134 443 (8.482) Sm (Mn, 3x5.00); Cm (437:451) 1048.64 100 917.65 Recombinant Kinase Autophosphorylation CFM-S T90 Hassell, A TOF MS ES+ q3t00134 443 (8.482) M1 [Ev-65849,It9] (Gs,0.750,1378:1898,2.00,L40,R20); Sm (Mn, 3x5.00); 100 100 37526.00 37606.00 37688.00 95.2 37368.00 37448.00 37768.00 1313.98 37288.00 % 893.53 % 37208.00 873.51 584.31 780.44 752.45 1332.81 1390.90 1443.40 580.36 1447.51 553.39 1505.32 37166.00 0123456 Moles Phosphate/Mole Protein 80 Da Spacing/Phos 0 m/z 0 mass 500 750 1000 1250 1500 1750 2000 2250 37000 37200 37400 37600 37800 Need purified protein; more of a challenge by MALDI-Tof to resolve the 80Da difference 5

Mapping of Phosphorylation Sites Sample protein or proteome Digest IMAC, TiO 2 SAX, etc. Marker Ions, Neutral Losses, Peptide Sequence Isolate ppeptides MS Analysis Identify ppeptides/ Assign Site MALDI, LC/MS, LC/MS/MS MS Analysis Identify ppeptides/ Assign Site Marker Ions, Neutral Losses, Peptide Sequence Workflow taken depends upon tools, sample, coverage requirements 6

Mapping of Phosphorylation Sites Phosphoprotein is cleaved (digested) with a protease. Use of multiple proteases of differing specificity can increase coverage of the protein sequence. Cleavage with Trypsin H 2 N Y R K K Y R P Y K K P Y K COOH Cleavage with Asp-N H 2 N Y D Y D P Y D D P Y D COOH +80 Da mass shift per phosphate group added 7

Metastable Decomposition of ps and pt in MALDI-MS Abundant Ions Observed Include: [MH-H 3 PO 4 ] + (or MH-98) and [MH-HPOHPO + 3 ] (or MH-80) Matrix effects: αhca vs DHB Annan et al., Anal. Chem., 1996, 68, 3413. 8

Metastable Decomposition of py in MALDI-MS For ptyr containing peptides: [MH-H 3 PO 4 ] + <<< than for pser or pthr (MH-98) [MH-HPO 3 ] + < than for pser or pthr (MH-80) Annan et al., Anal. Chem., 1996, 68, 3413. Can also analyze digests/ fractions before and after treatment with Calf Intestinal Phosphatase (-80Da shift with removal of phosphate 9 group)

Phosphorylation Site Mapping by Data Directed Acquisition iti (DDA) Database Searching shotgun approach Data directed acquisition (automated LC/MS/MS) of product ion spectra of all peptides total digest or after phosphopeptide enrichment Search (Mascot, Sequest) all spectra against protein database allowing for Ser, Thr, or Tyr phosphorylation Database search tentatively ID s phosphopeptides and assigns sites if possible User confirms phosphorylation assignment Challenges Complex proteomes Limitations of DDA Poor quality CID spectra for some ps/pt peptides 10

Phosphorylation Site Mapping by DDA/Database Searching- Abl Phosphorylation of PLCγ Sample: GST-PLCγ/Abl kinase reaction mix Analysis by data directed LC/MS/MS Product ion spectra searched with variable modification for phosphorylation 4 Phosphorylation sites tentatively ID d 1. P10686 Mass: 148454 Total score: 873 Peptides matched: 52 PIP4_RAT 1-PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE PHOSPHODIESTERASE GAMMA 1 (EC 3.1.4.11) (PLC-GAMMA Check to include this hit in archive report Query Observed Mr(expt) Mr(calc) Delta Miss Score Rank Peptide 43 491.67 981.32 981.47-0.15 0 42 1 EDELTFTK 48 501.18 1000.34 1000.56-0.21 0 50 1 SAIIQNVEK 75 543.66 1085.31 1085.51-0.20 0 52 1 AQAEHMLMR 90 581.68 1161.35 1161.56-0.21 0 (40) 1 EWYHASLTR 102 603.21 1204.41 1204.60-0.19 0 63 1 YPINEEALEK 109 621.65 1241.29 1241.52-0.23 0 47 1 EWYHASLTR + 1 Phospho (STY) 116 649.20 1296.39 1296.61-0.22 0 48 1 NEPNSYAISFR 127 446.50 1336.47 1336.66 66-0.19 1 52 1 AQREDELTFTK 141 727.22 1452.43 1452.71-0.28 1 13 3 RNEPNSYAISFR 143 737.76 1473.51 1473.78-0.28 1 57 1 LRYPINEEALEK 156 494.48 1480.41 1480.65-0.24 1 12 2 QDGGWWRGDYGGK 165 768.74 1535.45 1535.76-0.30 0 61 1 LSEPVPQTNAHESK 186 805.68 1609.35 1610.76-1.41 0 101 1 IGTAEPDYGALYEGR 206 846.20 1690.38 1690.72-0.34 0 (75) 1 IGTAEPDYGALYEGR + 1 Phospho (STY) 208 846.24 1690.47 1690.72-0.26 0 (22) 1 IGTAEPDYGALYEGR + 1 Phospho (STY) 209 856.25 1710.48 1710.81-0.33 0 102 1 NPGFYVEANPMPTFK 216 886.20 1770.38 1770.69-0.31 0 (56) 1 IGTAEPDYGALYEGR + 2 Phospho (STY) 217 896.23 1790.44 1790.77-0.34 0 (76) 1 NPGFYVEANPMPTFK + 1 Phospho (STY) 230 918.78 1835.54 1835.84-0.29 0 36 1 ESETFVGDYTLSFWR 234 629.54 1885.59 1885.94-0.36 1 58 1 SAIIQNVEKQDGGWWR 239 695.22 2082.65 2083.03-0.38 0 61 1 LLTEYCIETGAPDGSFLVR 253 670.70 2678.77 2679.30-0.53 1 31 1 LSEPVPQTNAHESKEWYHASLTR 11

Phosphorylation Site Mapping by DDA/ Database Searching-PLCγ IGTAEPDYGALYEGR y10 y4 Nonphos IGTAEPDpYGALpYEGR Y10* Y4* Diphos (Y448 +Y552) y4 IGTAEPDpYGALYEGR Y10* y4 y4 Monophos IGTAEPDY(448)GALY(452)EGR Two sites ID d within this peptide p All phos in monophos peptide is on Y448 Less phosphopeptide coverage as sample complexity increases 12

Issues with DDA Assignments Phosphorylation of Bri-1 Treated Untreated T1169 T1169 13

Elution profile for EIQAGSGIDSQSTIR from LC/MS E (Data Independent d Acquisition, iti DIA) Nonphos Monophos DDA 14

Mascot assigns phosphorylation at T1169, although the spectrum captured product ions from two species differing by phosphorylation site Treated Score 77 EIQAGSGIDSQSTIR Q 15

Elution profile for phospho- EIQAGSGIDSQSTIR LC/MS E independently captures both forms XFW_1_flagBRI1_CD_bak1-CD_MSE_25Mar08 XFW_1_flagBRI1_CD_bak1-CD_MSE_25Mar08 1: TOF MS ES+ 100 23.96 821.37 0.10Da 4.67e3 23.42 % 0 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 Time 16

Product ions unique to each phosphorylation site S1166 S1168 T1169 T1169 S1168 S1166 b-98 b b-98 b b-98 b y y-98 y y-98 y y-98 15 - - - - - - Arg 175.1 175.1 175.1 1 14 1369.6 1467.6 1369.6 1467.6 1369.6 1467.6 Ile 288.2 288.2 288.2 2 13 1256.66 1354.6 1256.66 1354.6 1256.66 1354.6 Thr 469.2 371.2 389.33 389.33 3 12 1155.5 1253.5 1155.5 1253.5 1173.5 Ser 556.3 458.3 556.3 458.3 476.3 4 11 1068.5 1166.5 1086.5 1086.5 Gln 684.3 586.3 684.3 586.3 604.3 5 10 940.4 1038.4 958.5 958.5 Ser 771.3 673.3 771.3 673.3 771.3 673.3 6 9 871.4 871.4 871.4 Asp 886.7 788.7 886.7 788.7 886.7 788.7 7 8 756.4 756.4 756.4 Ile 999.5 901.5 999.5 901.5 999.5 901.5 8 7 643.3 643.3 643.3 Gly 1056.5 958.5 1056.5 958.5 1056.5 958.5 9 6 586.3 586.3 586.3 Ser 1143.5 1045.5 1143.5 1045.5 1143.5 1045.5 10 5 499.3 499.3 499.3 Gly 1200.5 1102.5 1200.5 1102.5 1200.5 1102.5 11 4 442.2 442.2 442.2 Ala 1271.6 1173.6 1271.6 1173.6 1271.6 1173.6 12 3 371.2 371.2 371.2 Gln 1399.6 1301.6 1399.6 1301.6 1399.6 1301.6 13 2 243.1 243.1 243.1 Ile 1512.7 1414.7 1512.7 1414.7 1512.7 1414.7 14 1 130.1 130.1 130.1 Glu - - - - - - 15 Ret. Time Site 23.4 23.9 S1166 476.3 - Y 604.3 - Y S1168 389.3 - Y 556.3 Y Y 458.3 Y - 1166.5 - - 1068.5 - Y T1169 469.2 Y - S1166: 476.3, 604.3 S1168: 389.3, 556.3, 458.3, 1166.5, 1068.5 T1169: 469.2 23.9 S1168/T1169 23.9 S1166 17

S1166 (23.9 ) Ret. Time Site 23.4 23.9 S1166 476.3 - Y 604.3 - Y S1168 389.3 - Y 556.3 Y Y 458.3 Y - 1166.5 - - 1068.5 - Y T1169 469.2 Y - 18

DDA vs DIA Interpret DDA derived product ion spectra for phosphorylation site assignment cautiously Realize spectra may actually be a composite of multiple species with different sites DIA methods like MS E provide an alternative for qualitative assignment which doesn t suffer from duty cycle limitations it ti of DDA 19

Diagnostic Ions for Phosphorylation in Negative Ion CID Spectra pser or pthr containing peptides 79 (PO 3- ), 63 (PO 2- ), and 97 (H 2 PO 4- ) [M-H-H 3 PO 4 ] - (Loss of 98) ptyr 79 (PO - - 3- ), 63 (PO 2- ) [M-H-HPO 3 ] - (Loss of 80) 20

Orifice Potential Stepping LC/MS -250V 79 (PO 3- ) Re elative Intensity 97 (H 2 PO 4- ) [M-2H] 2- -80V [M-H] - -140V 200 400 600 800 1000 1200 Ding et al., 1994; Huddleston et al., 1994 21

Diagnostic 79 ions Yields a Chromatographic Marker for Phosphopeptides h TIC TIC SIC m/z 79 SIC m/z 79 Ding et al., Rapid Commun. Mass Spectrom., 1994 22

Low Mass Product Ions in Negative Ion CID 23

LC/MS with Stepped Orifice Potential Scanning for Phosphopeptides Perform one stepped orifice LC/MS experiment in negative ion mode. Tentative identification of phosphopeptides based on coelution with phosphopeptide marker ion and MW Perform one LC/MS experiment in positive ion mode. Confirm MW of putative phosphopeptide Perform one LC/MS/MS experiment in positive ion mode. Target putative phosphopeptides Split flow LC/MS with fraction collection Use m/z 79 ion to mark fractions containing phosphopeptides Further interrogation of phosphopeptide fractions to sequence phosphopeptides and identify site(s) of phosphorylation 24

Precursor Ion Scanning for m/z 79 Precursor ion scanning for m/z 79 may be used in a similar manner to stepped orifice potential Kassel et al., In Mass Spectrometry of Biological Materials, 2nd Ed. New York: Marcel Dekker, 1998, p. 137-158. 25

Neutral Losses, Blessing or Curse? Marker ions can be useful as a signature to flag putative phospho-peptides for further analysis However, for ps and pt containing i peptides, the primary fragmentation pathway often involves loss of the phosphate from the precursor. Resulting product ion spectra are often devoid of peptide backbone-sequence specific product ions 26

Neutral Losses, Blessing or Curse? 27

Neutral loss of phosphate can be used to trigger an additional stage of fragmentation on an ion trap 28

MS->MS 2 (831.6)->MS 3 (782.1) Additional Sequence Information by Fragmenting Peptide from Neutral Loss Courtesy of David Kusel, Ken Miller, ThermoFisher 29

ETD Provides an Alternative to CID for Improving Phosphopeptide Product Ion Spectra 11_08_2005_AKT4_ETD_load_elute01 #11690 RT: 84.44 AV: 1 NL: 8.02E3 T: ITMS + c NSI d Full ms2 562.17@35.00 [ 50.00-2000.00] 100 95 90 85 80 Tubulin peptide: VRTGtYRQLFHPE MH +2 2 842.67 MH +1 1684.68 11_08_2005_AKT4_ETD_load_elute01 #11367 RT: 82.12 AV: 1 NL: 4.31E2 T: ITMS + c NSI d Full ms2 562.47@35.00 [ 50.00-2000.00] 100 95 90 85 80 MH +2 2 1123.28 PLCG1 peptide: RGSDASGQLFHGRAREGsFE Relative Abundance 75 70 65 60 55 50 45 40 35 30 25 z 3 z 4 c 5 c c 3 2 c 4 612.24 20 273.20 c 8 c 10 15 z c z 1073.36 8 1412.35 626.07 5 7 c 431.31 931.44 9 z 9 10 z6 1254.26 1569.50 c 5 374.24 561.11 6 z 7 1172.58 1319.64 229.21 642.42 1508.73 1746.54 1852.32 0 200 400 600 800 1000 1200 1400 1600 1800 2000 m/z z10 10 z 11 z 12 Relative Abundance 75 70 65 60 55 50 45 40 35 30 25 20 318.13 15 10 5 c 1 174.13 c 2 561.20 c 10 c 3 z 10 z 17 z 6 1058.84 c 7 c 8 c z 16 12 c 4 c c z 14 z7 9 z 8 z 11 6 c 749.54 859.26 1387.61z 1681.60 433.19 984.37 12 c 1210.57 648.26 1599.69 1813.79 5 c14 z 13 z 505.02 15 c 17 c 18 1968.09 0 200 400 600 800 1000 1200 1400 1600 1800 2000 m/z T: ITMS + c NSI d Full m s2 452.04@ 35.00 [ 50.00-2000.00] 11_08_2005_akt4_etd_load_elute02 #13021 RT: 69.60 AV: MH +2 1 NL: 7.26E4 Relative Abundance e 100 95 90 85 80 75 70 65 60 55 50 45 40 S6 peptide: QIAKRRRLSsLRASTSKSE 1128.51 z 3 z 35 c 4 c 5 1098.81 30 c +2 16 c 9 614.38 458.24 z 2 347.15 z 6 z 7 c 6 770.58 z 8 849.19 z 9 c 8 10 25 20 15 1406.72 1486.71 955.33 10 5 0 c c 6 1 2 z 4 c 3 z 5 258.98 434.23 564.70 1295.60 146.16 c 7 1278.88 c 10 c 11 z z 14 13 1642.81 c 12 1562.96 c 14 z 15 1798.85 z 16 1927.90 0 200 400 600 800 1000 1200 1400 1600 1800 2000 m/z Courtesy of David Kusel, Ken Miller, ThermoFisher 1720.94 Relative Abundance 95 90 85 FLNA peptide: NGATGPVKRAREEtDKEEPASKQQKTE 80 75 70 65 60 55 50 45 40 35 30 c 4 z 25 3 z 361.23 c7 10 1510.99 613.00 20 z z 7 z 8 5 1225.28 z 13 c 1022.73 1130.45 13 z 12 c 14 15 3 c 1564.71 260.04 742.45 8 c c z c9 10 1403.93 969.63 10 1814.63 c 4 2 489.04 898.61 c c 12 11 1354.78 z z 14 15 188.98 832.50 z 5 1679.87 698.39 180.11 570.39 11 377.33 1736.67 c c 17 15 200 400 600 800 1000 1200 1400 1600 1800 2000 m/z 30 1937.56 z 16

ETD Provides Complementary Phosphopeptide Coverage Compared to CID MS 2 /MS 3 127 peptides MSA ETD 531 peptides MS2 / MS3 ETD Number of phosphopeptides 127 531 average peptide length 14.4 19.5 average number of basic 1.7 5.2 residues R s (%) 70.9 76.3 R t (%) 26.0 26.6 Overlap MS 2 /MS 3 : ETD 0.9% MS 2 /MS 3 : MSA ~60-70% K s (%) 1.6 0.8 K t (%) 2.4 0.4 RR..s/t (%) 6.3 41.6 R.R..s/t (%) 7.9 34.1 Courtesy of David Kusel, Ken Miller, ThermoFisher 31

Affinity Isolation of Phoshopeptides p Anion Exchange Phospho-antibody h affinity it IMAC (Immobilized Metal-ion Affinity Chromatography) TiO 2 affinity Other Common Challenges Specificity Efficiency of capture Peptide/protein/sample dependent!!! Common requirement: SAMPLE MUST BE IN AN APPROPRIATE STATE FOR CAPTURE (ph, buffer, salt concentration) 32

Affinity Isolation of Phoshopeptides IMAC: Immobilized Metal ion Affinity Chromatography Fe 3+ -IDA (iminodiacetic acid) Fe 3+ 33

Affinity Isolation of Phoshopeptides p Metal Ions Fe 3+ Ga 3+ Loading Buffers 01%A 0.1% Acetic Acid 50mM 2-(N-morpholino)-ethanesulfonic acid (MES), ph 5.5, 1M NaCl Elution Buffers AmBic, ph 8.0 Dilute ammonium hydroxide Phosphate buffer, ph 8 Many kits are commercially available with their own recipes and cocktails No magic bullets 34

IMAC Pipet Tip Microcolumns 1. Pack MC resin into tip (after inserting frit) using water. Do not let liquid level fall below surface of MC resin. 2. If resin is precharged with another metal, strip metal with 250 ul 100 mm EDTA, ph 8.5. 3. After washing tip with 250 ul water, charge column with 250 ul of either 20 mm GaCl 3 or 20 mm FeCl 3. Caution: GaCl 3 (s) must be dissolved slowly with stirring under a hood. HCl(g) is liberated quite violently during dissolution. 4. After washing away excess metal ion with water, equilibrate tip column with loading buffer (0.1% HOAc or 50 mm MES, ph 5.5, 1 M NaCl). 5. Dissolve sample into 200 ul of loading buffer. Sample volumes > 50 ul might require a larger volume of loading buffer. 6. Load sample onto column adjusting flow rate to 50-100 ul/min. 7. Wash column with another 250-500 ul of loading buffer. 8. Elute phosphopeptides with 500 mm NH 4 HCO 3, ph 8. 35

Ga-Sepharose-NTA Isolation of a CD19 Phosphopeptide from an Abl/CD19 Reaction Asp-N Digest not phos IMAC Eluant Esterification of carboxylate groups with MeOH can improve selectivity Ficarro et al, JBC, 2003, p11579. 36

Chemical Modification of Phosphates for Affinity Isolation/Relative Quantitation A number of approaches have been reported where ps or pt are chemically modified with a tag to facilitate phosphopeptide isolation and/or quantitation These methods tend to be plagued with issues around recovery and side reactions Work with standards, difficulty with real samples Not broadly used For relative quantitation between treatment states, label-free methods are preferable Zhou et al. 2001, Knight et al. 2003, Adamczyk et al. 2001, Oda et al. 2001, Weckworth et al. 2000, Goshe et al. 2001, Zhang et al. 2002 37

PhIAT (Phosphoprotein Isotope-coded Affinity Tag) Goshe et al. 2001, Anal. Chem. vol. 73, no. 11, pp. 2578-2586. 38

Phosphorylation Site Specific Quantitation Determining Phosphorylation Stoichiometry MS response of phosphorylated and nonphosphorylated forms of a given peptide are roughly equivalent and can be used to semiquantitate site specific phosphorylation stoichiometry (+/- 30%, Carr et al, Anal. Biochem., 1996, 68, p.1). Calculate % phosphorylated based on total peak area (phosphorylated + nonphosphorylated intensities) within a sample Calculate difference between treatments 39

Combining LC/MS/MS and LC/MS for Site Specific Quantitation 1. P10686 Mass: 148454 Total score: 873 Peptides matched: 52 PIP4_RAT 1-PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE PHOSPHODIESTERASE GAMMA 1 (EC 3.1.4.11) (PLC-GAMMA Check to include this hit in archive report Query Observed Mr(expt) Mr(calc) Delta Miss Score Rank Peptide 43 491.67 981.32 981.47-0.15 0 42 1 EDELTFTK 48 501.18 1000.34 1000.56-0.21 0 50 1 SAIIQNVEK 75 543.66 1085.31 1085.51-0.20 0 52 1 AQAEHMLMR 90 581.68 1161.35 1161.56-0.21 0 (40) 1 EWYHASLTR 102 603.21 1204.41 41 1204.60-0.19 0 63 1 YPINEEALEK 109 621.65 1241.29 1241.52-0.23 0 47 1 EWYHASLTR + 1 Phospho (STY) 116 649.20 1296.39 1296.61-0.22 0 48 1 NEPNSYAISFR 127 446.50 1336.47 1336.66-0.19 1 52 1 AQREDELTFTK 141 727.22 1452.43 1452.71-0.28 1 13 3 RNEPNSYAISFR 143 737.76 1473.51 1473.78-0.28 1 57 1 LRYPINEEALEK 156 494.48 1480.41 1480.65-0.24 1 12 2 QDGGWWRGDYGGK 165 768.74 1535.45 1535.76-0.30 0 61 1 LSEPVPQTNAHESK 186 805.68 1609.35 1610.76-1.41 0 101 1 IGTAEPDYGALYEGR 206 846.20 1690.38 1690.72-0.34 0 (75) 1 IGTAEPDYGALYEGR + 1 Phospho (STY) 208 846.24 1690.47 1690.72-0.26 0 (22) 1 IGTAEPDYGALYEGR + 1 Phospho (STY) 209 856.25 1710.48 1710.81-0.33 0 102 1 NPGFYVEANPMPTFK 216 886.20 1770.38 1770.69-0.31 0 (56) 1 IGTAEPDYGALYEGR + 2 Phospho (STY) 217 896.23 1790.44 1790.77-0.34 0 (76) 1 NPGFYVEANPMPTFK + 1 Phospho (STY) 230 918.78 1835.54 1835.84-0.29 0 36 1 ESETFVGDYTLSFWR 234 629.54 1885.59 1885.94-0.36 1 58 1 SAIIQNVEKQDGGWWR 239 695.22 2082.65 2083.03-0.38 0 61 1 LLTEYCIETGAPDGSFLVR 253 670.70 2678.77 77 2679.30-0.53 1 31 1 LSEPVPQTNAHESKEWYHASLTR Mascot Matches for PLCγ Peptide EWpYHASLTR EWYHASLTR y7 EWpYHASLTR y7 Nonphos Monophos 40

Phosphorylation Stoichiometry for PLCγ Peptide EWpYHASLTR Phos % Phos = 5.5/(939.8+5.5)*100 = 0.6% Phos NonPhos 41

Phosphorylation Site Stoichiometry by LC/MS E Bri1 Treated vs Untreated 42

Bri1 treated (S1166) Nonphos: 310525 Phos: 132628 Calculation %Phos = (Intensity Phos/Total Intensity) * 100% %Phos = [132628/(132628 + 310525)] * 100% % Phos = 30% 43

Phosphorylation Site Quantitation Summary EIQAGSGIDSQSTIR Treated + Bak1 Untreated - Bak1 S1166 30% 18% S1168/T1169 23% 22% Conclusion: S1166, but not S1168/T1169, is responsive to treatment. 44

PhosphoProteomics Isolation and characterization of phosphorylation at proteome level Apply methods discussed earlier on a larger scale of complexity 2,002 phos sites in 967 proteins 45