In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates
|
|
|
- Alice Mathews
- 10 years ago
- Views:
Transcription
1 In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates Using the Explore Workflow on the AB SCIEX TripleTOF 5600 System A major challenge in proteomics research and biomarker discovery by mass spectrometry is the analysis of complex samples. As sample complexity increases, so does the need for powerful hardware with high sensitivity and large dynamic range capabilities. Equally important for a thorough analysis of complex samples is the ability to acquire the maximum number of MS/MS spectra without loss of spectral quality during an LC/MS/MS run. The AB SCIEX TripleTOF 5600 System has the speed and sensitivity to deliver comprehensive qualitative exploration, rapid profiling, and high-resolution quantification in complex matrices all on a single platform, all in a single run. The system can acquire up to 50 MS/MS spectra in a second using powerful IDA (information-dependent acquisition) workflows. Even at the fastest acquisition rates, highresolution and high mass accuracy is maintained in both MS and MS/MS mode,,unlike other high mass accuracy, high resolution instruments. While many different qualitative and quantitative workflows can be performed on the TripleTOF 5600 system, here we focus on the unique attributes of the whole system solution for depth of exploration of complex samples and for high fidelity results. Whole System Solution for the Analysis of Complex Proteomes The TripleTOF 5600 System can perform high speed acquisition of MS and MS/MS data while maintaining high resolution and high mass accuracy. The Eksigent nanolc Ultra system with the chiplc nanoflex enables high quality separations with the highest reproducibility. Digging deeper requires that the database search algorithm is able to broadly detect many different PTMs. ProteinPilot Software with its unique Paragon Algorithm enables the simultaneous identification of hundreds of modifications, substitutions, and unexpected cleavages. Figure 1. Explore Workflow for Comprehensive Protein Identifications. In the Explore workflow, high resolution TOF MS spectra are acquired and precursors are selected and sent for MS/MS acquisition. The acquisition method is designed such that maximal time is spent in MS/MS mode to obtain the most peptide identifications and therefore deep proteome coverage. Requiring as little as 20 ms to obtain a high quality MS/MS spectrum, very fast acquisition rates are achieved.
2 Methods Sample Preparation: Yeast cell lysate was denatured using RapiGest, then reduced with tris-(2-carboxyethyl)phosphine and alkylated with iodoacetamide. An overnight digestion with trypsin was performed at 37 C. RapiGest was cleaved with 0.5% trifluoroacetic acid and sample was centrifuged. A final concentration of 400 ng/ml was obtained. Chromatography: The sample was analyzed using the Eksigent nanolc-ultra 2D System combined with the chiplc -Nanoflex system in Trap-Elute mode. The cell lysate was loaded on the chiplc trap (200 µm x 500 µm ChromXP C18-CL 3 µm 300 Å) and washed for 10 mins at 4 µl/min. Then, an elution gradient of 5-35% acetonitrile (0.1% formic acid) in either a 30 or 60 min gradient was used on a nano chiplc column (75 µm x 15 cm ChromXP C18-CL 3 µm 300 Å). Mass Spectrometry: The TripleTOF 5600 System has high sensitivity which enables very fast MS/MS acquisition rates, as low as 20 ms accumulation time for MS/MS in Information Dependent Acquisition (IDA) mode. To fully leverage the instrument speed and obtain the best depth of coverage, the IDA workflow has been optimized such that software overhead is minimized (Figure 2). The IDA method consisted of a high resolution TOF MS survey scan followed by up to 50 MS/MS in a second with a minimum accumulation time of 20 msec. Figure 2. Information Dependent Workflow (IDA). Acquisition of MS/MS spectra at high speeds requires the minimization of software overhead. The maximum number of precursors and the minimum accumulation time is specified by the user. During acquisition, the precursor list is automatically generated and the accumulation time will be dynamically distributed across detected precursors per cycle. Data Processing: All data was processed using ProteinPilot Software 4.0 with integrated false discovery rate (FDR) analysis. Further data analysis was performed using the accompanying ProteinPilot Descriptive Statistics Template. Figure 3. Protein and Peptide Identifications from Yeast Cell Lysate. Single injections of yeast were run using varied gradient lengths and varied loading amounts. As more protein is loaded on column, more proteins and peptides are detected.
3 Fast MS/MS Acquisition Yields Greatest Proteome Coverage At any given moment in a gradient when analyzing a complex proteome, many peptides are co-eluting. The speed of acquisition and the quality of the MS/MS spectra will determine the depth of coverage obtained on the sample and the confidence of the results obtained. The TripleTOF 5600 System has high sensitivity which enables very fast MS/MS acquisition rates, as low as 20 ms accumulation time for MS/MS in IDA mode. At this acquisition rate, MS/MS spectra at >15,000 resolution are acquired with high mass accuracy. This speed and quality, in combination with the dynamic IDA strategy (Figure 2) provides the flexibility and dynamic range needed when analyzing a broad range of samples from diverse proteomes. In this experiment using a complex yeast cell lysate digest, the utility of speed was explored. The acquisition methods were created using a maximum of 50 MS/MS in a second and minimum accumulation times of 20 msec. By increasing the sample loading across injections, there is an increased analysis burden. On the TripleTOF 5600 system, IDA dynamically adjusts the number of precursors selected per cycle based on the precursors available. This allows for acquisition to be accelerated in precursor rich regions of the gradient and slowed down when fewer precursors are eluting. Figure 4. Visualization of the MS/MS Acquisition Speed. (Top) the total ion chromatogram (TIC) of Experiment 4 (2000 ng sample with 30 min gradient) shows how peptide rich the chromatogram is. In the bottom graph, the number of MS/MS obtained in each cycle is computed across the gradient. As seen in Figure 3, the average number of MS/MS acquired in each experiment dramatically increases as sample load increases or LC gradient time decreases due to the dynamic nature of IDA. Shown in Figure 4 is an example of the acquisition rate across the whole LC gradient for experiment 4. In this scenario where the entire sample is being forced to elute in half the time by using a much shorter gradient, the maximum speed of 50 MS/MS in a second was reached several times during the gradient with the average number of spectra acquired at 34 MS/MS spectra in a second. This indicates that the complexity of the sample at any one moment in time demands these faster acquisition rates in order to adequately observe all detected precursors. MS Mass Accuracy Figure 5. Mass Accuracy. (Top) Table of important mass accuracy values and (bottom) plot of the histogram of the delta m/z values seen for all detected peptides from Experiment 3. This information can be obtained using the ProteinPilot Descriptive Statistics Template that is provided with ProteinPilot Software 4.0. Similar RMS error was observed in all yeast runs. Accurate detection of the precursor mass is an important aspect of the fidelity of the database searching. Because of the inherent stability of the instrument, the AB SCIEX TripleTOF 5600 System can maintain an RMS error of <2 ppm over extended acquisition times. The mass accuracy for experiment 3 is shown in Figure 5, where the RMS error for the whole acquisition, including the many low abundant peptides is 1.72 ppm.
4 High Quality MS/MS Data The TripleTOF 5600 system has two operational modes for MS/MS acquisition, high sensitivity mode (~15,000 resolution) and high resolution mode (~30,000 resolution). The unique performance attributes of this instrument allow maintaining the resolution down to very low masses. As shown in Figure 6, this enables resolution of immonium ions and low m/z fragment ions. High resolution and therefore mass accuracy of the sequence ions are also advantageous for specificity when performing database searching for peptide / protein identification, especially when using tagbased algorithms such as the Paragon Algorithm in ProteinPilot Software. The TripleTOF 5600 System is typically run in high sensitivity mode for MS/MS acquisition when analyzing proteomic complex mixtures to further facilitate the high speed acquisition. Methods for protein identification are easily created using the template methods provided in the Method Wizard. Predetermined defaults designed for optimal acquisition are used. For example, selecting the method template for Prot Complex IDA will automatically set key acquisition parameters for protein ID from complex mixtures, such as faster MS/MS acquisition. Figure 6. High Resolution MS/MS Spectra. Low mass y1 ions of lysine and glutamic acid can be resolved easily with MS/MS resolution of >25000 at low mass. Highly resolved peaks at low mass are only 280 psec in width, however the 25 psec acquisition rate of the 40 GHz TDC detector provides ample sampling and good peak shape. Dynamic Range of Detected Peptide Signal The MS intensity of every detected peptide is determined in ProteinPilot Software 4.0 and can be used in many detailed analyses. Figure 7 shows a plot of the numbers of peptides identified across a range of MS precursor signals as provided by the ProteinPilot Descriptive Statistics Template and demonstrates the broad dynamic range of signal that can be interrogated in a single acquisition. Figure 7. Dynamic Range of Detected Peptide Signals. Using the MS peak intensities of each detected peptide, the signal range of identifications can be plotted. Shown is the data for experiment 3, where 4 orders of magnitude in precursor signal are successfully identified in a single acquisition.
5 Key Features of the TripleTOF 5600 System for Protein Identification High mass accuracy, high sensitivity and high resolution in both MS and MS/MS mode High acquisition rates of up to 50 MS/MS in a second in IDA mode with no loss in resolution or mass accuracy High specificity during database searching using tighter mass tolerances for higher confidence in results Good dynamic range for depth of coverage Conclusions The TripleTOF 5600 System establishes a new standard for acquisition speed, while still maintaining high data quality in both MS and MS/MS mode to deeply interrogate a proteomic sample. The yeast experiment demonstrated that there is an ever increasing need for faster acquisition as the sample complexity increases. As shown, higher loading and shorter gradients force the system to acquire data faster, reaching maximum capacity of 50 ms/ms in a second in heavily co-eluting areas of the gradient. Very high numbers of high confidence peptide and protein identifications are obtained as a result of the high numbers of high quality MS/MS spectra acquired. Mass accuracies of sub 2 ppm are easily achievable using the TripleTOF 5600 system and ProteinPilot Software 4.0. Coupled together with high fidelity LC separations using the Eksigent nanolc Ultra with chiplc -nanoflex, the TripleTOF 5600 System provides a powerful solution for proteomics. Literature code: For Research Use Only. Not for use in diagnostic procedures AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX is being used under license. Headquarters International Sales 353 Hatch Drive Foster City CA USA For our office locations please call the division Phone headquarters or refer to our website at
Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays
Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays Scheduled MRM HR Workflow on the TripleTOF Systems Jenny Albanese, Christie Hunter AB SCIEX, USA Targeted quantitative
Effects of Intelligent Data Acquisition and Fast Laser Speed on Analysis of Complex Protein Digests
Effects of Intelligent Data Acquisition and Fast Laser Speed on Analysis of Complex Protein Digests AB SCIEX TOF/TOF 5800 System with DynamicExit Algorithm and ProteinPilot Software for Robust Protein
AB SCIEX TOF/TOF 4800 PLUS SYSTEM. Cost effective flexibility for your core needs
AB SCIEX TOF/TOF 4800 PLUS SYSTEM Cost effective flexibility for your core needs AB SCIEX TOF/TOF 4800 PLUS SYSTEM It s just what you expect from the industry leader. The AB SCIEX 4800 Plus MALDI TOF/TOF
ProteinPilot Report for ProteinPilot Software
ProteinPilot Report for ProteinPilot Software Detailed Analysis of Protein Identification / Quantitation Results Automatically Sean L Seymour, Christie Hunter SCIEX, USA Pow erful mass spectrometers like
The Scheduled MRM Algorithm Enables Intelligent Use of Retention Time During Multiple Reaction Monitoring
The Scheduled MRM Algorithm Enables Intelligent Use of Retention Time During Multiple Reaction Monitoring Delivering up to 2500 MRM Transitions per LC Run Christie Hunter 1, Brigitte Simons 2 1 AB SCIEX,
MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics
MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics With Unique QTRAP and TripleTOF 5600 System Technology Targeted peptide quantification is a rapidly growing application
Application Note # LCMS-81 Introducing New Proteomics Acquisiton Strategies with the compact Towards the Universal Proteomics Acquisition Method
Application Note # LCMS-81 Introducing New Proteomics Acquisiton Strategies with the compact Towards the Universal Proteomics Acquisition Method Introduction During the last decade, the complexity of samples
EKSIGENT EKSPERT NANOLC 400. Unmatched flexibility for low flow LC/MS
EKSIGENT EKSPERT NANOLC 4 Unmatched flexibility for low flow LC/MS EKSIGENT EKSPERT NANOLC 4 Focused ekspertise In 23, Eksigent changed the way scientists looked at nanoscale chromatography with the introduction
Investigating Biological Variation of Liver Enzymes in Human Hepatocytes
Investigating Biological Variation of Liver Enzymes in Human Hepatocytes MS/MS ALL with SWATH Acquisition on the TripleTOF Systems Xu Wang 1, Hui Zhang 2, Christie Hunter 1 1 AB SCIEX, USA, 2 Pfizer, USA
Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests
Application Note: 386 Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests Rosa Viner, Terry Zhang, Scott Peterman, and Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA,
MultiQuant Software 2.0 for Targeted Protein / Peptide Quantification
MultiQuant Software 2.0 for Targeted Protein / Peptide Quantification Gold Standard for Quantitative Data Processing Because of the sensitivity, selectivity, speed and throughput at which MRM assays can
Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System
Investigating the use of the AB SCIEX TripleTOF 4600 LC/MS/MS System for High Throughput Screening of Synthetic Cannabinoids/Metabolites in Human Urine AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS
Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF
Simultaneous qualitative and quantitative analysis using the Agilent 654 Accurate-Mass Q-TOF Technical Overview Authors Pat Perkins Anabel Fandino Lester Taylor Agilent Technologies, Inc. Santa Clara,
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances TripleTOF 5600 + LC/MS/MS System with MasterView Software Adrian M. Taylor AB Sciex Concord, Ontario (Canada) Overview
DRUG METABOLISM. Drug discovery & development solutions FOR DRUG METABOLISM
DRUG METABLISM Drug discovery & development solutions FR DRUG METABLISM Fast and efficient metabolite identification is critical in today s drug discovery pipeline. The goal is to achieve rapid structural
A Streamlined Workflow for Untargeted Metabolomics
A Streamlined Workflow for Untargeted Metabolomics Employing XCMS plus, a Simultaneous Data Processing and Metabolite Identification Software Package for Rapid Untargeted Metabolite Screening Baljit K.
Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction
Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)
MultiQuant Software Version 3.0 for Accurate Quantification of Clinical Research and Forensic Samples
MultiQuant Software Version 3.0 for Accurate Quantification of Clinical Research and Forensic Samples Fast and Efficient Data Review, with Automatic Flagging of Outlier Results Adrian M. Taylor and Michael
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS Using PeakView Software with the XIC Manager to Get the Answers
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis Stephen Lock AB SCIEX Warrington (UK) Overview A rapid, robust, sensitive and specific LC-MS/MS method has been developed for
Simultaneous Metabolite Identification and Quantitation with UV Data Integration Using LightSight Software Version 2.2
Technical ote Simultaneous Metabolite Identification and Quantitation with UV Data Integration Using LightSight Software Version 2.2 Alek. Dooley, Carmai Seto, esham Ghobarah, and Elliott B. Jones verview:
API 3200 LC/MS/MS SYSTEM. Performance, productivity and value combined
API 3200 LC/MS/MS SYSTEM Performance, productivity and value combined API 3200 LC/MS/MS SYSTEM Reliability, reproducibility, and confidence in your data. With an unmatched heritage of technological innovation
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Stephen Lock 1 and Matthew Noestheden 2 1 AB SCIEX Warrington, Cheshire (UK), 2 AB SCIEX Concord, Ontario (Canada) Overview A rapid,
Metabolomic Profiling of Accurate Mass LC-MS/MS Data to Identify Unexpected Environmental Pollutants
Metabolomic Profiling of Accurate Mass LC- Data to Identify Unexpected Environmental Pollutants André Schreiber 1, David Cox 1, Nadia Pace 1, Christopher Borton 2 1 AB SCIEX, Concord, ntario, Canada; 2
Cliquid ChemoView 3.0 Software Simple automated analysis, from sample to report
PRODUCT BULLETIN Cliquid ChemoView 3.0 Software for Routine Screening and Quantitation Cliquid ChemoView 3.0 Software Simple automated analysis, from sample to report KEY FEATURES Secure user login that
Learning Objectives:
Proteomics Methodology for LC-MS/MS Data Analysis Methodology for LC-MS/MS Data Analysis Peptide mass spectrum data of individual protein obtained from LC-MS/MS has to be analyzed for identification of
MarkerView Software 1.2.1 for Metabolomic and Biomarker Profiling Analysis
MarkerView Software 1.2.1 for Metabolomic and Biomarker Profiling Analysis Overview MarkerView software is a novel program designed for metabolomics applications and biomarker profiling workflows 1. Using
Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping
Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping For Conclusive Characterization of Biologics Deep Protein Characterization Is Crucial Pharmaceuticals have historically been small
Mass Spectrometry Based Proteomics
Mass Spectrometry Based Proteomics Proteomics Shared Research Oregon Health & Science University Portland, Oregon This document is designed to give a brief overview of Mass Spectrometry Based Proteomics
Tutorial 9: SWATH data analysis in Skyline
Tutorial 9: SWATH data analysis in Skyline In this tutorial we will learn how to perform targeted post-acquisition analysis for protein identification and quantitation using a data-independent dataset
HRMS in Clinical Research: from Targeted Quantification to Metabolomics
A sponsored whitepaper. HRMS in Clinical Research: from Targeted Quantification to Metabolomics By: Bertrand Rochat Ph. D., Research Project Leader, Faculté de Biologie et de Médecine of the Centre Hospitalier
ProteinScape. Innovation with Integrity. Proteomics Data Analysis & Management. Mass Spectrometry
ProteinScape Proteomics Data Analysis & Management Innovation with Integrity Mass Spectrometry ProteinScape a Virtual Environment for Successful Proteomics To overcome the growing complexity of proteomics
Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance?
Optimization 1 Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance? Where to begin? 2 Sequence Databases Swiss-prot MSDB, NCBI nr dbest Species specific ORFS
# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water
Application Notes # LCMS-35 esquire series Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water An LC-APCI-MS/MS method using an ion trap system
A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes
A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes Zhiqi Hao 1, Yi Zhang 1, Shannon Eliuk 1, Justin Blethrow 1, Dave Horn 1, Vlad
Improving the Metabolite Identification Process with Efficiency and Speed: LightSight Software for Metabolite Identification
Improving the Metabolite Identification Process with Efficiency and Speed: LightSight Software for Metabolite Identification Overview LightSight Software for Metabolite Identification is a complete environment
泛 用 蛋 白 質 體 學 之 質 譜 儀 資 料 分 析 平 台 的 建 立 與 應 用 Universal Mass Spectrometry Data Analysis Platform for Quantitative and Qualitative Proteomics
泛 用 蛋 白 質 體 學 之 質 譜 儀 資 料 分 析 平 台 的 建 立 與 應 用 Universal Mass Spectrometry Data Analysis Platform for Quantitative and Qualitative Proteomics 2014 Training Course Wei-Hung Chang ( 張 瑋 宏 ) ABRC, Academia
Introduction to Proteomics 1.0
Introduction to Proteomics 1.0 CMSP Workshop Tim Griffin Associate Professor, BMBB Faculty Director, CMSP Objectives Why are we here? For participants: Learn basics of MS-based proteomics Learn what s
ProSightPC 3.0 Quick Start Guide
ProSightPC 3.0 Quick Start Guide The Thermo ProSightPC 3.0 application is the only proteomics software suite that effectively supports high-mass-accuracy MS/MS experiments performed on LTQ FT and LTQ Orbitrap
Pep-Miner: A Novel Technology for Mass Spectrometry-Based Proteomics
Pep-Miner: A Novel Technology for Mass Spectrometry-Based Proteomics Ilan Beer Haifa Research Lab Dec 10, 2002 Pep-Miner s Location in the Life Sciences World The post-genome era - the age of proteome
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide
MASCOT Search Results Interpretation
The Mascot protein identification program (Matrix Science, Ltd.) uses statistical methods to assess the validity of a match. MS/MS data is not ideal. That is, there are unassignable peaks (noise) and usually
Tutorial for Proteomics Data Submission. Katalin F. Medzihradszky Robert J. Chalkley UCSF
Tutorial for Proteomics Data Submission Katalin F. Medzihradszky Robert J. Chalkley UCSF Why Have Guidelines? Large-scale proteomics studies create huge amounts of data. It is impossible/impractical to
La Protéomique : Etat de l art et perspectives
La Protéomique : Etat de l art et perspectives Odile Schiltz Institut de Pharmacologie et de Biologie Structurale CNRS, Université de Toulouse, [email protected] Protéomique et Spectrométrie de Masse
for mass spectrometry calibration tools Thermo Scientific Pierce Controls and Standards for Mass Spectrometry
Thermo Scientific Pierce Controls and Standards for Mass Spectrometry calibration tools for mass spectrometry Ensure confidence in instrument performance with Thermo Scientific Pierce Calibration Solutions
UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs
Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs
Thermo Scientific Prelude SPLC System FPO. Making LC/MS accessible. to clinical research and toxicology labs
Thermo Scientific Prelude SPLC System FPO Making LC/MS accessible to clinical research and toxicology labs Specifically designed to make the power of LC/MS accessible Analysis of target compounds in complex
Proteomic data analysis for Orbitrap datasets using Resources available at MSI. September 28 th 2011 Pratik Jagtap
Proteomic data analysis for Orbitrap datasets using Resources available at MSI. September 28 th 2011 Pratik Jagtap The Minnesota http://www.mass.msi.umn.edu/ Proteomics workflow Trypsin Protein Peptides
Aiping Lu. Key Laboratory of System Biology Chinese Academic Society [email protected]
Aiping Lu Key Laboratory of System Biology Chinese Academic Society [email protected] Proteome and Proteomics PROTEin complement expressed by genome Marc Wilkins Electrophoresis. 1995. 16(7):1090-4. proteomics
Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists
Program Overview Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists Session 2. Principles of Mass Spectrometry Session 3. Mass spectrometry based proteomics
Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs
Liquid Chromatography Mass Spectrometry SSI-LCMS-068 Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs LCMS-8050 Summary By utilizing the LCMS-8050 s ultrafast scan
Extraction of Epinephrine, Norepinephrine and Dopamine from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis
Application Note AN844 Extraction of, and from Human Plasma Using EVOLUTE EXPRESS WCX Page 1 Extraction of, and from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis Introduction Catecholamines
Quantitative proteomics background
Proteomics data analysis seminar Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post transcriptional regulation of key cellular processes de Groot, M., Daran
Fast and Automatic Mapping of Disulfide Bonds in a Monoclonal Antibody using SYNAPT G2 HDMS and BiopharmaLynx 1.3
Fast and Automatic Mapping of Disulfide Bonds in a Monoclonal Antibody using SYNAPT G2 HDMS and BiopharmaLynx 1.3 Hongwei Xie and Weibin Chen Waters Corporation, Milford, MA, U.S. A P P L I C AT ION B
LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research
LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research J. Jones, J. Denbigh, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20581 Key Words SPE, SOLA,
Error Tolerant Searching of Uninterpreted MS/MS Data
Error Tolerant Searching of Uninterpreted MS/MS Data 1 In any search of a large LC-MS/MS dataset 2 There are always a number of spectra which get poor scores, or even no match at all. 3 Sometimes, this
PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW
OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental
A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening using LC/MS/MS
A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening using LC/MS/MS AB SCIEX QTRAP 4500 LC/MS/MS System and Gerstel, Inc. MultiPurpose Sampler
Application Note # LCMS-66 Straightforward N-glycopeptide analysis combining fast ion trap data acquisition with new ProteinScape functionalities
Application Note # LCMS-66 Straightforward N-glycopeptide analysis combining fast ion trap data acquisition with new ProteinScape functionalities Introduction Glycosylation is one of the most common and
Research-grade Targeted Proteomics Assay Development: PRMs for PTM Studies with Skyline or, How I learned to ditch the triple quad and love the QE
Research-grade Targeted Proteomics Assay Development: PRMs for PTM Studies with Skyline or, How I learned to ditch the triple quad and love the QE Jacob D. Jaffe Skyline Webinar July 2015 Proteomics and
MaxQuant User s Guide Version 1.2.2.5
MaxQuant User s Guide Version 1.2.2.5 Jűrgen Cox and Matthias Mann Nature Biotechnology 26, 1367-1372 (2008) Sara ten Have 2012 http://www.lamondlab.com/ http://greproteomics.lifesci.dundee.ac.uk/ References
Software for protein identification and quantitative analysis of mass spectrometry data used for protein characterization and proteomics Version 5.
Release Notes ProteinPilot Software for protein identification and quantitative analysis of mass spectrometry data used for protein characterization and proteomics Version 5.0 Introduction Thank you for
Standard Mixture. TOF/TOF Calibration Mixture. Calibration Mixture 1 (Cal Mix 1, 1:10) Calibration Mixture 1 (Cal Mix 1, 1:100)
Mass Standards Kit for Calibration of AB SCIEX TOF/TOF Instruments Protocol 1 Product Description The Mass Standards Kit includes reagents needed to test instrument function, optimize instrument parameters,
Proteomic Analysis using Accurate Mass Tags. Gordon Anderson PNNL January 4-5, 2005
Proteomic Analysis using Accurate Mass Tags Gordon Anderson PNNL January 4-5, 2005 Outline Accurate Mass and Time Tag (AMT) based proteomics Instrumentation Data analysis Data management Challenges 2 Approach
Agilent 6000 Series LC/MS Solutions CONFIDENCE IN QUANTITATIVE AND QUALITATIVE ANALYSIS
Agilent 6000 Series LC/MS Solutions CONFIDENCE IN QUANTITATIVE AND QUALITATIVE ANALYSIS AGILENT 6000 SERIES LC/MS SOLUTIONS UNRIVALED ACHIEVEMENT AT EVERY LEVEL The Agilent 6000 Series of LC/MS instruments
Bruker ToxScreener TM. Innovation with Integrity. A Comprehensive Screening Solution for Forensic Toxicology UHR-TOF MS
Bruker ToxScreener TM A Comprehensive Screening Solution for Forensic Toxicology Innovation with Integrity UHR-TOF MS ToxScreener - Get the Complete Picture Forensic laboratories are frequently required
Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract
Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract Lirui Qiao, 1 Rob Lewis, 2 Alex Hooper, 2 James Morphet, 2 Xiaojie Tan, 1 Kate
Rapid and Reproducible Amino Acid Analysis of Physiological Fluids for Clinical Research Using LC/MS/MS with the atraq Kit
Rapid and Reproducible Amino Acid Analysis of Physiological Fluids for Clinical Research Using LC/MS/MS with the atraq Kit Fast, simple and cost effective analysis Many areas of biochemical research and
Pinpointing phosphorylation sites using Selected Reaction Monitoring and Skyline
Pinpointing phosphorylation sites using Selected Reaction Monitoring and Skyline Christina Ludwig group of Ruedi Aebersold, ETH Zürich The challenge of phosphosite assignment Peptides Phosphopeptides MS/MS
Ultra Fast UHPLC-LCMSMS Method Development in Clinical Drug Monitoring
PO-CON1359E Ultra Fast UHPLC-LCMSMS Method Development in HPLC 2013 MASS-09 Anja Grüning 1 ; Brigitte Richrath 1 ; Klaus Bollig 2 ; Sven Vedder 1 ; Robert Ludwig 1 1 Shimadzu Europa GmbH, Duisburg, Germany;
High-Throughput 3-D Chromatography Through Ion Exchange SPE
High-Throughput 3-D Chromatography Through Ion Exchange SPE Application Note 205 Luke Roenneburg and Alan Hamstra (Gilson, Inc.) Introduction 2-dimensional (2-D) separation is the separation of a sample
Micromass LCT User s Guide
Micromass LCT User s Guide 1) Log on to MassLynx with your username & password. 2) After you have logged in, the MassLynx software will automatically run. 3) After MassLynx has come up, open your project
Quick and Sensitive Analysis of Multiclass Veterinary Drug Residues in Meat, Plasma, and Milk on a Q Exactive Focus LC-MS System
Quick and Sensitive Analysis of Multiclass Veterinary Drug Residues in Meat, Plasma, and Milk on a Q Exactive Focus LC-MS System Olaf Scheibner, Maciej Bromirski, Thermo Fisher Scientific, Bremen, Germany
SERVICE PLANS. More Productivity. Less Worry. SERVICE PLANS
SERVICE PLANS More Productivity. Less Worry. SERVICE PLANS Flexible service plans to help you maximize the value of your technology investment. Let us help you improve your laboratory productivity and
Thermo Scientific SIEVE Software for Differential Expression Analysis
m a s s s p e c t r o m e t r y Thermo Scientific SIEVE Software for Differential Expression Analysis Automated, label-free, semi-quantitative analysis of proteins, peptides, and metabolites based on comparisons
Building innovative drug discovery alliances. Evotec Munich. Quantitative Proteomics to Support the Discovery & Development of Targeted Drugs
Building innovative drug discovery alliances Evotec Munich Quantitative Proteomics to Support the Discovery & Development of Targeted Drugs Evotec AG, Evotec Munich, June 2013 About Evotec Munich A leader
LC-MS/MS for Chromatographers
LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS, with an emphasis on the analysis of drugs in biological matrices LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS,
NUVISAN Pharma Services
NUVISAN Pharma Services CESI MS Now available! 1st CRO in Europe! At the highest levels of quality. LABORATORY SERVICES Equipment update STATE OF THE ART AT NUVISAN CESI MS Now available! 1st CRO in Europe!
Agilent G2721AA/G2733AA Spectrum Mill MS Proteomics Workbench
Agilent G2721AA/G2733AA Spectrum Mill MS Proteomics Workbench Application Guide Agilent Technologies Notices Agilent Technologies, Inc. 2012 No part of this manual may be reproduced in any form or by any
Analyst 1.6.1 Software
MAX cover image size 4.8 inches X 7.8 inches In Body page mode, draw a graphic frame to match this section and then go to the next step. Delete this text from the Front Cover Master page. View>Master Pages,
Setting up a Quantitative Analysis MS ChemStation
Setting up a Quantitative Analysis MS ChemStation Getting Ready 1. Use the tutorial section "Quant Reports" on the MSD Reference Collection CD-ROM that came with your ChemStation software. 2. Know what
Authenticity Assessment of Fruit Juices using LC-MS/MS and Metabolomic Data Processing
Authenticity Assessment of Fruit Juices using LC-MS/MS and Metabolomic Data Processing Lukas Vaclavik 1, Ondrej Lacina 1, André Schreiber 2, and Jana Hajslova 1 1 Institute of Chemical Technology, Prague
Quick Start Guide Chromeleon 7.2
Chromeleon 7.2 7229.0004 Revision 1.0 July 2013 Table of Contents 1 Introduction... 1 1.1 About this Document... 1 1.2 Other Documentation... 2 2 Using Chromeleon... 3 2.1 Overview... 3 2.2 Starting Chromeleon...
INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE. AxION iqt GC/MS/MS
AxION iqt GC/MS/MS INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE IDENTIFY WHAT YOU RE LOOKING FOR (AND EVEN WHAT YOU RE NOT) The GC/MS/MS Solution for the Work You Do The ideal solution for industrial,
Pesticide Analysis by Mass Spectrometry
Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine
How To Use An Ionsonic Microscope
Sample Analysis Design Element2 - Basic Software Concepts Scan Modes Magnetic Scan (BScan): the electric field is kept constant and the magnetic field is varied as a function of time the BScan is suitable
Analyst 1.6.1 Software. Advanced User Guide
This document is provided to customers who have purchased AB Sciex equipment to use in the operation of such AB Sciex equipment. This document is copyright protected and any reproduction of this document
Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan
Fast, Reproducible LC-MS/MS Analysis of and Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 685 Key Words Accucore C18, dextromethorphan, dextrorphan, SOLA CX Abstract
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection Evelyn Goh, Antonietta Gledhill Waters Pacific, Singapore, Waters Corporation, Manchester, UK A P P L I C AT
How To Use An Acquity Qda Detector
Mass-Directed Isolation of a Synthetic Peptide Using the ACQUITY QDa Detector Jo-Ann M. Jablonski and Andrew J. Aubin Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The ACQUITY QDa Detector
amazon SL Innovation with Integrity Setting New Standards in Performance, Simplicity and Value Ion Trap MS
amazon SL Setting New Standards in Performance, Simplicity and Value Innovation with Integrity Ion Trap Best-In-Class Ion Trap Mass Spectrometer for Routine Analysis The amazon SL entry-level system is
AMD Analysis & Technology AG
AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds
Analyst 1.6 Software. Software Reference Guide
Analyst 1.6 Software Software Reference Guide Release Date: August 2011 This document is provided to customers who have purchased AB SCIEX equipment to use in the operation of such AB SCIEX equipment.
Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics
Ma B. Challenges in computational analysis of mass spectrometry data for proteomics. SCIENCE AND TECHNOLOGY 25(1): 1 Jan. 2010 JOURNAL OF COMPUTER Challenges in Computational Analysis of Mass Spectrometry
Alignment and Preprocessing for Data Analysis
Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise
Application Note # LCMS-92 Interlaboratory Tests Demonstrate the Robustness and Transferability of the Toxtyper Workflow
Application Note # LCMS-92 Interlaboratory Tests Demonstrate the Robustness and Transferability of the Toxtyper Workflow Abstract There is high demand in clinical research and forensic toxicology for comprehensive,
RapidFire for High Throughput Screening in early Drug Discovery
RapidFire for High Throughput Screening in early Drug Discovery Fast but do we stay on track? Markus Trunzer ADME Profiling in Basel High analytical burden ~8 000 compounds per year by HT-Sol and HT-Perm
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications Introduction The resolving power of chromatography combined with the sensitivity and selectivity
