MC-PAD WP4: Micro Pattern Gas Detectors Leszek Ropelewski CERN PH -DT CERN, 14 th of January 2009
Current Trends in Micro Pattern Gas Detectors (Technologies) Micromegas GEM Thick-GEM and RETGEM Gridpix Technologies 0.18 μm m CMOS VLSI CMOS high density readout electronics Ions 40 % 60 % Electrons Micromegas GEM THGEM MHSP Ingrid
Current Trends in Micro-Pattern Gas Detectors (Performance) GEM THGEM Rate Capability High Gain Space Resolution Time Resolution Energy Resolution Ageing Properties Ion Backflow Reduction Photon Feedback Reduction Micromegas Spatial resolution σ ~ 12 μm 2x10 6 p/mm 2 GEM Ar/CO2/CF4 (45/15/40) rms = 4.5ns 10-1 E drift =0.2kV/cm 10-2 MHSP Micromegas Micromegas IBF 10-3 10-4 F-R-MHSP/GEM/MHSP R-MHSP/GEM/MHSP A/CH 10-5 Ar/CH 4 (95/5), 760 Torr 10 2 10 3 10 4 Total gain
MC-PAD WP4: Micro Pattern Gas Detectors CERN, GSI, LNF; ESR: 3 yrs, ER: 2 yrs (contact person: L. Ropelewski, CERN) High precision and ultra-low mass tracking detectors based on the GEM technology. The CERN group is currently optimizing the single mask GEM technology which allows building large area detectors. The R&D program consists of the construction and evaluation of small size detector prototypes and the performance comparison with detectors of alternative technologies. Based on the results of these studies a full size prototype detector for TOTEM will be designed, constructed and studied in a test beam. Electronics cross talk issues will be addressed in readout structure design by detailed detector and signal simulations, the radiation tolerance and material budget will be investigated. The LNF group is working on an ultra-light, cylindrical and dead-zone free triple-gem detector (C- GEM) for KLOE made of five concentric layers. A small size prototype has already been built successfully. The proposed detector is optimized for applications where large size combined with low mass is essential. The project is technologically innovative and represents a significant step forward with respect to the existing vertex tracking technology.
Single mask process
Large area planar GEM detectors development (CERN) New single mask technology development and evaluation with small prototypes: Max. gain Stability Uniformity 3500 rate (Hz) GEM foils splicing technology development and tools 3000 2500 2000 1500 1000 500 0 Large prototype g p yp construction lab tests beam test postponed due to the LHC accident
Cylindrical GEM detectors development (LNF) C-GEM prototype Proof of principle Mechanical stability simulations G C-GEM test (lab, cosmic & beam tests) Gain Efficiency Time and space resolution Open issues Single mask foils Readout electrode B-field performance Support structure Detector simulation Final design - TDR
Software tools development for MPGD simulations New features: microscopic electron tracking + avalanches (under test); updates of the gas parameters (regularly); boundary element field calculations (2009); root+geant4 interface (prototypes). In progress: avalanche statistics; Penning transfer from experimental data; the big mystery: behaviour of GEMs; Insulators properties
Planning and Collaborations P4: Micro Pattern Gas Detectors P4-D1 Characterization of single GEM mask small prototype Report m09 P4-D2 Analysis of C-GEM beam test Report m18 P4-D3 Technology assessment report C-GEM Report m21 P4-D4 Technology assessment report single mask GEM Report m33 Collaborations: CERN former TS-DEM group RD51 CERN WP5 of Council Whitepaper Theme 3 R&D TOTEM and KLOE groups working on GEM detectors MC-PAD WP5 - MPGD TPC readout
Gas Detector lab infrastructure Lab infrastructure: Clean room 4 test stations assembly space Electronics assembly Gas system: Upgrade to flammable gas mixtures (2009) 2 X-Ray generators
Beam facility for RD51 - SPS H4 RD51 WG7 : collection of requirements and resources trigger (evaluation, selection) tracker (construction of tracking chambers) infrastructure (2009) 400 µm Photonis XP2040B PMT 80 µm 350 µm 400 µm
RD51 Collaboration Alessandria, Italy, Dipartimento di Scienze e Technologie Avanzate, Universita del Piemonte Orientale and INFN sezione Torino Amsterdam, Netherlands,Nikhef Annecy-le-Vieux, France, Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) Argonne, USA, High Energy Physics Division, Argonne National Laboratory Arlington, USA, Department of Physics, University of Texas Athens, Greece, Department of Nuclear and Elementary Particle Physics, University of Athens Athens, Greece, Institute of Nuclear Physics, National Centre for Science Research Demokritos Athens, Greece, Physics Department, National Technical University of Athens Aveiro, Portugal, Departamento de Física, Universidade de Aveiro Barcelona, Spain, Institut de Fisica i d Altes Energies (IFAE), Universtitat i Autònoma de Barcelona Bari, Italy, Dipartimento Interateneo di Fisica del Universtà and sezione INFN Bonn, Germany, Physikalisches Institut, Rheinische Friedrich-Wilhelms Universität Braunschweig, Germany, Physikalisch Technische Bundesanstalt Budapest, Hungary, Institute of Physics, Eötvös Loránd University Budapest, Hungary, KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences Bursa, Turkey, Institute for Natural and Applied Sciences, Uludag University Cagliari, Italy, Dipartimento di Fisica dell Universtà and sezione INFN Coimbra, Portugal, Departemento de Fisica, Universidade de Coimbra Coimbra, Portugal, Laboratorio de Instrumentacao e Fisica Experimental de Particulas Columbia, USA, Department of Physics and Astronomy, University of South Carolina Frascati, Italy, Laboratori Nazionale di Frascati, INFN Freiburg, Germany, Physikalisches Institut, Albert-Ludwigs Universität Geneva, Switzerland, CERN Geneva, Switzerland, Département de Physique Nucléaire et Corpusculaire, Universite de Genève Grenoble, France, Laboratoire de Physique Subatomique et de Cosmologie (LPSC) Hefei, China, University of Science and Technology of China Helsinki, Finland, Hesinki Institute of Physics Kolkata, India, Saha Institute of Nuclear Physics Lanzhou, China, School of Nuclear Science and Technology, Lanzhou University Melbourne, USA, Department of Physics and Space Science, Florida Institute of Technology Mexico City, Mexico, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico Montreal, Canada, Département de physique, Université de Montréal Mumbai, India, Tata Institute of Fundamental Research, Department of Astronomy & Astrophysics Műnchen, Germany, Physik Department, Technische Universität Műnchen, Germany, Max Planck Institut fűr Physik Naples, Italy, Dipartimento di Scienze Fisiche dell Universtà and sezione INFN New Haven, USA, Department of Physics, Yale University i Novara, Italy, TERA Foundation Novosibirsk, Russia, Budker Institute of Nuclear Physics Ottawa, Canada, Department of Physics, Carleton University Rehevot, Israel, Radiation Detection Physics Laboratory, The Weizmann Institute of Sciences Rome, Italy, INFN Sezione di Roma, gruppo Sanità and Istituto Superiore di Sanità Saclay, France, Institut de recherche sur les lois fondamentales de l'univers, CEA Sheffield, Great Britain, Physics Department, University of Sheffield Siena, Italy, Dipartimento di Fisica dell Università and INFN Sezione di Pisa St Etienne, France, Ecole Nationale Superieure des Mines St Petersburg, Russia, St Petersburg Nuclear Physics Institute Thessaloniki, Greece, Physics Department Aristotle University of Thessaloniki Trieste, Italy, Dipartimento di Fisica dell Università and Sezione INFN Tucson, USA, Department of Physics, University of Arizona Tunis, Tunisia, Centre Nationale des Sciences et Technologies Nucléaire Upton, USA, Brookhaven National Laboratory Valencia, Spain, Instituto de Fisica Corpuscular Valencia, Spain, Universidad Politécnica Zaragoza, Spain, Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza 314 authors from 58 Institutes from 20 countries and 4 continents
RD51 Collaboration Working Groups
Example: WG1 - Development of large-area area MPGDs (as of October 15) Bulk Micromegas Single mask GEM THGEM Ions 40 % 60 % Electrons