Electroweak Processes in Few-Nucleon Systems



Similar documents
Basic Concepts in Nuclear Physics

Theoretical nuclear physics

arxiv:hep-lat/ v1 16 Aug 2004

Masses in Atomic Units

Basic Concepts in Nuclear Physics. Paolo Finelli


Nuclear Physics. Nuclear Physics comprises the study of:

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Recent developments in Electromagnetic Hadron Form Factors

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

Basic Nuclear Concepts

PION SCALAR FORM FACTORS FROM

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

Electric Dipole moments as probes of physics beyond the Standard Model

Concepts in Theoretical Physics

Perfect Fluids: From Nano to Tera

Feynman diagrams. 1 Aim of the game 2

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

0.33 d down c charm s strange t top b bottom 1 3

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

Standard Model of Particle Physics

Bounding the Higgs width at the LHC

Perfect Fluidity in Cold Atomic Gases?

Nuclear Physics and Radioactivity

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL

Quark Model. Quark Model

Part II: Heavy Quark Expansion

Cross section, Flux, Luminosity, Scattering Rates

Lecture 5 Motion of a charged particle in a magnetic field

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM

Topic 3. Evidence for the Big Bang

Weak Interactions: towards the Standard Model of Physics

2, 8, 20, 28, 50, 82, 126.

Radiative corrections to anti-neutrino proton scattering

EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp,

Monday 11 June 2012 Afternoon

Basic Equations, Boundary Conditions and Dimensionless Parameters

Free Electron Fermi Gas (Kittel Ch. 6)

Brief remarks. m 2hyp,i + p2π,i + 2π + p 2π,i = m 2 hyp,i + p2 π,i + E π,i (2) m K + m A =

Ω I (JP ) = 0( ) Status:

UNIVERSITETET I OSLO

Gauge theories and the standard model of elementary particle physics

ASCII CODES WITH GREEK CHARACTERS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

PoS(Baldin ISHEPP XXII)026

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall

Atomic and Nuclear Physics Laboratory (Physics 4780)

The Standard Model of Particle Physics - II

Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia

arxiv:nucl-th/ v2 16 Oct 2006

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1

Group Theory and Chemistry

arxiv: v2 [hep-ph] 20 Jun 2013

Physics 1104 Midterm 2 Review: Solutions

Special Theory of Relativity

Lepton Flavour LHC?

Meson spectroscopy and pion cloud effect on baryon masses

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Radioactivity III: Measurement of Half Life.

Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope)

Høgskolen i Narvik Sivilingeniørutdanningen

arxiv:hep-ph/ v2 2 Nov 2004

Lecture 8. Generating a non-uniform probability distribution

Big Bang Cosmology. Big Bang vs. Steady State

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Gravity and running coupling constants

Transcription:

Electroweak Processes in Few-Nucleon Systems M. Viviani INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy) Electron Nucleon Scattering XI, June 25-29, 212, Marciana Marina, Isola d Elba M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 1 / 31

Outline 1 EFT approach 2 EM Processes 3 Compton scattering 4 Weak interactions 5 Outlook Collaborators F. Spadoni Graduate student, Pisa R. Schiavilla Jefferson Lab. & ODU, Norfolk (VA, USA) S. Pastore ANL (USA) L. Girlanda University of Salento & INFN-Lecce, Lecce (Italy) A. Kievsky & L.E. Marcucci - INFN-Pisa & Pisa University, Pisa (Italy) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 2 / 31

Chiral symmetry - QCD with u and d quarks only u q = d «q R/L = (1 ± «γ5 ) ur/l q = 2 d R/L q R = Rq R = exp i θ R τ/2 q R q L = Lq L = exp i θ L τ/2 q L θ R = θ L = θ V : isospin transformation θ R = θ L = θ A : axial transformation L QCD (almost) invariant under the L, R transformations since m u, m d small also for locals transformations introducing external currents L = L QCD + q L γµ`l µ(x) + 1 3 v(s) µ(x) q L + q R γ µ`r µ(x) + 1 3 v(s) µ(x) q R q R (x)`s(x) + ip(x) q L (x) q L (x)`s(x) ip(x) q R (x) r µ(x) r µ (x) = R(x)rµ(x)R (x) + ir(x) µr (x), etc The external current are related to A µ(x) and W µ ± (x) to reproduce the EM and weak interactions of the quarks Example r µ(x) = l µ(x) = e τz Aµ(x) v(s) µ (x) = e 2 2 Aµ(x) 2 L em = ea µ 3 uγµ u 1 «3 dγµ d M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 3 / 31

Chiral Symmetry - Hadrons Non-linear realization of the chiral symmetry for hadrons [Weinberg, 1968, 199],[CCWZ, 1969],[Gasser & Leutwyler, 1984],... Compensator field h u = exp(i π τ/2f π) u = Luh = hur h h(l, R, π) N = hn Nucleons However ( µn) does not transform covariantly u µ = i[u ( µ ir µ)u u( µ il µ)u ] D µ = µ + 1 2 [u ( µ ir µ)u + u( µ il µ)u ] iv (s) µ Transformations: u µ = hu µh (D µn) = hd µn Lagrangian L πn = N `iγ µ D µ m N + g A 2 γ µ γ 5 u µ N + + CS NNNN + it contains an infinite number of LECs Contributions organized as an expansion over (Q/Λ χ) ν [Λ χ 1 GeV] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 4 / 31

NN, 3N,..., potentials from the EFT NN Potential V Two methods: S-matrix: for a given process NN NN define V so that (on-shell) NN T EFT NN NN T V NN Unitary transformation: find U in order to decouple NN Hilbert space from NNπ, etc. Realization thanks to the chiral counting: all terms can be organized as powers of Q/Λ χ, Q small momenta or the pion mass Alternatively: Lattice χeft [Lee et al., 21] Example T EFT = T V V + VG V + G = (E H + iǫ) 1 T EFT T () EFT + T (1) EFT + T (2) EFT... V V() + V (1) + V (2)... T (n) EFT, V(n) Q n p 1 p 2 V(n ) G V (n) p 1 p 2 = X p 1 p 2 p 1 p 2 V(n ) p 1 p 2 Then V () = T () EFT V (1) = T (1) EFT V() G V (), etc p 1 p 2 V(n) p 1 p 2 Q n+n +1 E p1 + E p2 E p 1 E p 2 + iǫ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 5 / 31

NN, 3N,..., potentials from the EFT NN Potential V Two methods: S-matrix: for a given process NN NN define V so that (on-shell) NN T EFT NN NN T V NN Unitary transformation: find U in order to decouple NN Hilbert space from NNπ, etc. Realization thanks to the chiral counting: all terms can be organized as powers of Q/Λ χ, Q small momenta or the pion mass Alternatively: Lattice χeft [Lee et al., 21] Example T EFT = T V V + VG V + G = (E H + iǫ) 1 T EFT T () EFT + T (1) EFT + T (2) EFT... V V() + V (1) + V (2)... T (n) EFT, V(n) Q n p 1 p 2 V(n ) G V (n) p 1 p 2 = X p 1 p 2 p 1 p 2 V(n ) p 1 p 2 Then V () = T () EFT V (1) = T (1) EFT V() G V (), etc p 1 p 2 V(n) p 1 p 2 Q n+n +1 E p1 + E p2 E p 1 E p 2 + iǫ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 5 / 31

NN & 3N interaction For more information see for example [Epelbaum et al., NPA 714, 535 (23)] NN interaction J-N3LO [Epelbaum and Coll, 1998-26] I-N3LO [Entem & Machleidt, 23] Part of the LEC s fitted to the NN database or πn database 3N interaction J-N2LO [Epelbaum et al, 22] N-N2LO [Navratil, 27] 3N force at N3LO [see Kreb s talk] At N2LO there are two LECS c D and c E : fitted to some 3N data (see later) At N3LO no new parameters At N4LO 1 new LECs [Girlanda et al., 211] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 6 / 31

EM current Basic problem: transition α + γ β β H e.m. α; qλ = Ψ β K 1 Ψ α K 1 = e Z 2ωΩ dx e iq x bǫ qλ Ĵ(x) K 1 acts only on the nucleons d.o.f. α, β initial & final nuclear states, Ψ α, Ψ β corresponding w.f. q, ω, ˆǫ qλ = momentum, energy, polarization of the emitted photon for virtual photons, one needs also the m.e. of ˆq bj and ρ Z J µ (q) = dx e iq x b J µ (x) µ =, 1, 2, 3 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 7 / 31

Meson exchange currents bj(x) = P i b j i (x) + 2B + 3B +... Current conservation Ĵ(x) = i[h, ρ(x)] Strict interplay between H, b J and bρ bρ(x) = AX i=1 1 + τ z(i) δ(r i x) 2 [Buchmann et al, 1985] [Riska, 1989], [Schiavilla et al, 199] EFT approach: H and J µ derived from the same Lagrangian. M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 8 / 31

Current at N3LO [Park et al, 1993], [Kolling et al, 29], [Pastore et al, 29] N3LO (Q 1 ) terms LO (Q 2 ) NLO (Q 1 ) NNLO (Q ) black square= (Q/M N ) 2 relativistic correction to the NNγ vertex Note: NNγ vertex = (e N /2M N )(p+p )+i(e N +κ N )µ N (σ q) it takes into account the Pauli term + pion loop corrections 2 new LECs black dot= three (Q/Λ χ) 2 vertices 3 new LECs Most of the LECs enter also the NN potential. There are 5 uncostrained LECs ( µ d, µ 3 H, µ3 He, etc.) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 9 / 31

Wave functions HH variational method: A. Kievsky, S. Rosati, MV, L.E. Marcucci, and L. Girlanda J. Phys. G, 35, 6311 (28) A benchmark for A = 4 AGS: Deltuva & Fonseca, PRL 98 16252 (27) FY: Lazauskas & Carbonell, PRC 7, 442 (24) n 3 H & p 3 He elastic scattering E c.m. B 3 B 2 5.5 MeV NN interaction models: AV18 [Wiringa, Stoks & Schiavilla (1995)] I-N3LO [Entem & Machleidt (23)] V low q [Bogner, Kuo & Schwenk, (23)] (derived from the CD-Bonn potential [Machleidt (21)]) Results reported in [MV et al., 211] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 1 / 31

n 3 H scattering (I-N3LO pot.) dσ/dω [mb/sr] 5 4 3 2 1 1 MeV AGS 2 MeV 3.5 MeV 6 MeV 18,4 A y,2,2 18 A y,1 -,1 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 11 / 31

n 3 H scattering (I-N3LO pot.) dσ/dω [mb/sr] 5 4 3 2 1 1 MeV AGS HH 2 MeV 3.5 MeV 6 MeV 18,4 A y,2,2 18 A y,1 -,1 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 11 / 31

n 3 H scattering (I-N3LO pot.) dσ/dω [mb/sr] 5 4 3 2 1 1 MeV AGS HH FY 2 MeV 3.5 MeV 6 MeV 18,4 A y,2,2 18 A y,1 -,1 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 11 / 31

p 3 He scattering (I-N3LO pot.) dσ/dω [mb/sr] 5 4 3 2 1 2.25 MeV Famularo 1954 Fisher 26 4.5 MeV Mcdonald 1964 Fisher 26 5.54 MeV Mcdonald 1964 18 A y,4,2 Fisher 26 George 21 Fisher 26 Alley 1993 A y,2,1 Daniels 21 Daniels 21 18 Alley 1993 Daniels 21 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 12 / 31

Predictions by different potentials dσ/dω [mb/sr] 5 4 3 2 1 2.25 MeV Famularo 1954 Fisher 26 I-N3LO AV18 low-k 4.5 MeV Mcdonald 1964 Fisher 26 5.54 MeV Mcdonald 1964 18,4 Fisher 26 George 21 Fisher 26 Alley 1993 A y,2 A y,2,1 Daniels 21 Daniels 21 18 Alley 1993 Daniels 21 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 13 / 31

,4 2.25MeV 4.5MeV 5.54 MeV,2 Daniels 21 Daniels 21 Daniels 21 Alley 1993 A yy -,2 -,4 -,6 5 1 15 3 6 9 12 15 3 6 9 12 15 18,2 Daniels 21 Daniels 21 Alley 1993 A xx,1 -,1 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 18,4,3,2,1 -,1 -,2 A xz Alley 1993 5.54 MeV A zx 5.54 MeV Alley 1993 A zz Alley 1993 3 6 9 12 15 θ [c.m.] 3 6 9 12 15 θ [c.m.] 3 6 9 12 15 18 θ [c.m.] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 14 / 31

Results for A = 3, 4 (1) 4 p-d scattering @ E c.m. = 2. MeV 4 p- 3 He scattering @ E c.m. =4.15 MeV 3 AV18 AV18/UIX I-N3LO I-N3LO/N-N2LO 3 I-N3LO AV18 AV18/UIX I-N3LO/N-N2LO dσ/dω [mb/sr] 2 dσ/dω [mb/sr] 2 1 1 3 6 9 12 15 18 3 6 9 12 15 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 15 / 31

Results for A = 3, 4 (2),6 A y p-d scattering @ E c.m. =2 MeV A y p- 3 He scattering @ E c.m. =4.15 MeV,5,4,5,4 Alley 1993a Alley 1993b AV18 I-N3LO I-N3LO/N-N2LO A y,3,3,2,1 AV18 AV18/UIX I-N3LO I-N3LO/N-N2LO,2,1 3 6 9 12 15 18 3 6 9 12 15 18 Study of the 3N force in A = 4 scattering in progress M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 16 / 31

Fit of the LECS Fit of the LECs Current at N3LO (O(Q)) NN potential at NLO (O(Q 2 )) q bj(q) = [H, ρ(q)] We have constructed a NN potential at NLO and fitted the corresponding LECs to the NN database: [Pastore et al., 29] In J there are 5 additional LECs: fitted to the A = 2, 3 magnetic moments & n p capture cross section at thermal energies using the I-N3LO NN potential The model depends on a cutoff Λ (Λ = 5 6 MeV) the dependence on Λ is used to test the convergence [Girlanda et al., 21] n.m..9 µ d exp LO NLO N 2 LO N 3 LO(S-L) σ γ np 36 34 32 mb.85 3.45-2. n.m. n.m. µ S ( 3 He/ 3 H) µ V ( 3 He/ 3 H).4-2.4 5 6 7 Λ (MeV) 5 6 7 Λ(MeV) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 17 / 31

Deuteron-photodisintegration Wave functions calculated using I-N3LO for Λ = 5 & 6 MeV Observable dominated by the E1 transitions.28 Deuteron photo-disintegration total cross section (mb).24.2 EXP I-N3LO5 JEFT1(FULL) I-N3LO5 JEFT1(E1) σ dis (fm 2 ).16.12.8 2 H(γ,n) 1 H.4. 5 1 15 2 25 3 35 E Lab (MeV) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 18 / 31

n d & n 3 He radiative captures at thermal energies n d capture from the 2 S 1/2 & 4 S 3/2 waves n 3 He capture from the 3 S 1 wave Scattering lenghts Case I-N3LO/N-N2LO Expt. a nd doublet.675.645(1) a nd quartet 6.342 6.35(2) a n 3 He doublet 3.37 3.278(53) n d & n 3 He capture cross sections Order σ n d [mb] σ n 3 He [µb] LO.235 1.6 +NLO.361 5.9 +N2LO.334.9 +N3LO (loops).276 1.4 +N3LO (LECs).478 48.4 Expt.58(15) 52(4) mb.6.4.2.2 -.2 -.4 σ γ nd R c 5 6 7 Λ (MeV) σ γ n 3 He 5 6 7 Λ (MeV) exp LO NLO N 2 LO N 3 LO(S-L) N 3 LO(LECs) SNPA SNPA* 8 6 4 2 µb M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 19 / 31

Compton scattering (1) Nucleon Polarizabilities Induced dipoles by an EM field: d = αe µ = βb» H eff = 2π αe 2 + βb 2 + γ E1E1 σ E E «+ t Experimental status [Griesshammer et al., 212] proton: from γp γp experiments (MAMI [de Lèon et al., 21],...) α p = (1.7 ±.3(stat) ±.2(Baldin) ±.8(theory)) 1 4 fm 3 β p = (3.1 ±.3(stat) ±.2(Baldin) ±.8(theory)) 1 4 fm 3 neutron: from γd γd experiments or with other methods Data sparse and not accurate [Illinois (1994), SAL (2), Lund (23)] α n = (11.1 ± 1.8(stat) ±.4(Baldin) ±.8(theory)) 1 4 fm 3 β n = (4.1 1.8(stat) ±.4(Baldin) ±.8(theory)) 1 4 fm 3 Theory input needed to separate: 1) structure effects 2) MEC effects New experiments on d, 3 He, 6 Li planned/in progress at TUNL/HγGS, MaxLab (Lund), S-DALINAC (Darmstaad) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 2 / 31

Compton scattering (2) Status of the calculations First applications to γn: [Bernard et al, 1992] Recent applications to γd: [Beane et al, 24]: NNLO, no rescattering [Griesshammer & Shukla, 29]: NLO, rescattering calculated with AV18 Review: [Griesshammer et al., 212] Only a few applications to γ 3 He Aims of the new calculation NNγ NN transition operators derived from the EFT at N3LO [Pastore et al., 29] NN interaction derived from the same EFT (at present we have used the I-N3LO potential by Entem & Machleidt) Future: applications to 3 He and 6 Li M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 21 / 31

General framework K 1 K1 K 1 K1 + V V K2 + + +... K1 K 1 K1 K 1 } {{ } termini dispersivi d f γ f T d i γ i = Ψ d f K 2 + K 1 GK 1 + K 1 GK 1 Ψd i {z } Dispersive part The Green function G = (E H + iǫ) 1 describes the rescattering of the NN pair between the two EM vertices NN interaction from [Entem & Machleidt, 23] The irriducible kernel K 2 derived from the EFT at NLO ( Q 2 ) (PRELIMNARY) In literature K 2 is derived up to NNLO [Griesshammer et al, 212] inclusion of d.o.f. [Hildebrandt Ph.D. Thesis, München, 25] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 22 / 31

Diagrams (1) Diagrams (a): contribution to K 2 seagull (SG) & spin-orbit (SO) P =q q K (SG) 2 = X j e j 2M ǫ i ǫ f ei(q q ) r j, e j = 1 + τ j z 2 P= (b2) (b1) (a) (b3) (b4) (b5) Note: the SG can be derived from H NR = (1/2M)(p ea) 2 SG: order Q 3, SO=corrections to the SG Q 2 Diagrams (b): contribution to K 2 from the polarization of the nucleon They can be used to estimate α and β [Bernard et al, 1992] We ll consider α and β as free parameters (α j = α p(1 + τz)/2 j + α n(1 τz)/2) j K (αβ) = X h 2πα 2 j ǫ i ǫ f qq j 2πβ j (q ǫ i ) (q ǫ f ) ie i(q q ) r j M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 23 / 31

Diagrams (2) Diagrams (c-f): Contributions taken into account by the dispersive part Φ f d K 1 GK 1 + K 1 GK 1 Φi d (d1) (c2) (c1) V (e1) (e2) (f1) V V V (f2) (g1) (g2) (c1), (f1) Q 3, (e1), (f2) Q 4 Exact resummation [Ishikawa et al., 1998] Ψ 1 = GK 1 Φ i d Ψ 2 = GK 1 Φi d (E H + iǫ) Ψ 1 = K 1 Φ i d (E = q B d > ) (E H + iǫ) Ψ 2 = K 1 Φi d (E = q B d < ) Diagrams (g): contribution taken into account by the fact that Φ d are solution of the Schroedinger equation Diagrams (h): Contribution to K 2 (h1) (h2) (h3) (h4) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 24 / 31

Test Photodisintegration I[ Φ f d K 1 GK 1 Φ i d σ γ+d n+p In our calculation [ Φ f d K 1 GK 1 Φ i d = Φf d K 1 Ψ 1 At E γ = 2 MeV σ γ+d n+p = 54.7 µb: we find 541.1 µb (I-N3LO + JEFT Λ = 5 MeV) Thomson limit For E γ, the calculation should reproduce the Thomson limit Compton amplitude M (TL) = e 2 /M d (note: M (SG) = e 2 /M 2M (TL) ) True if V, K 1, and K 2 are consistent (current conservation) 35 3 25 I-N3LO6 JEFT2 SG SG+Dh SG+Dh+DS(NLO) SG+Dh+DS(N3LO) limite di Thomson dσ/dω[nb/sr] 2 15 1 5 18 θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 25 / 31

Results (1) 4 49 MeV -- I-N3LO + JEFT (Λ=5 MeV) 35 dσ/dω [nb/sr] 3 25 2 15 Illinois Data SG +SO +DS +Dh +αβ 1 5 (α p +α n )/2=11.5 (β p +β n )/2=3.5 3 6 9 12 15 18 θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 26 / 31

Results (2) 4 66 MeV -- I-N3LO + JEFT (Λ=5 MeV) 35 dσ/dω [nb/sr] 3 25 2 15 Lundin (2) SG +SO +DS (N3LO) +Dh +Pol. (standard) 1 5 3 6 9 12 15 18 θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 27 / 31

Sensitivity to α n & β n 4 49 MeV -- I-N3LO + JEFT (Λ=5 MeV) 35 3 Illinois Data α n =2, β n =2 dσ/dω [nb/sr] 25 2 15 1 5 (α p +α n )/2=11.5 (β p +β n )/2=3.5 3 6 9 12 15 18 θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 28 / 31

β-decay and the 3N force e [Gardestig & Phillips, 26], [Gazit et al., 29] c D c E d R d R = Mn Λ χg A c D + 1 3 M N(c 3 + 2c 4 ) New fit of c D and c E using 3 H binding energy and tritium β-decay lifetime New versions of the 3N at N2LO: first application for µ-capture on d and 3 He [Marcucci et al., 212] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 29 / 31

pp capture at astrophysical energies Aim: new calculation of the astrophysical factor S 11 of the p + p 2 H + e + ν e reaction S 11 (E) = S 11 + S 11 E + 1 2 S 11 E2 + Preliminary Results units 1 25 MeV b I-N3LO NN interaction + weak transition operator derived from EFT S 11 S 11 /S 11 [MeV 1 ] S 11 11 [MeV 2 ] LO Λ = 5 3.98 11.7 27 LO Λ = 6 3.96 11.7 27 Full Λ = 5 4.5 11.7 27 Full Λ = 6 4.3 11.7 27 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 3 / 31

Outlook Motivations of this work consistent calculations for a variety of processes using potential/current/wave functions derived from the same EFT Applications Main interest: test of 3N interaction in A = 3, 4 systems, study of reactions of astrophysical interest p d & d d captures, form factors of light nuclei, ldots) Compton scattering on 3 He & 6 Li (in the near future new data at HIγS & Lund) weak transitions (pp capture, µ-capture, parity-violation in nuclei,...) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, 212 31 / 31