Method Statement FOR. Soil Investigation



Similar documents
KWANG SING ENGINEERING PTE LTD

Geotechnical Investigation Test Report

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

FINAL REPORT ON SOIL INVESTIGATION

c. Borehole Shear Test (BST): BST is performed according to the instructions published by Handy Geotechnical Instruments, Inc.

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil

CIVL451. Soil Exploration and Characterization

Site Investigation. Some unsung heroes of Civil Engineering. buried right under your feet. 4. Need good knowledge of the soil conditions

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

How To Design A Foundation

SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT

Geotechnical Testing Methods II

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY

Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 3, 2013

An Automatic Kunzelstab Penetration Test

LABORATORY CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

Geotechnical Investigation using Standard Penetration Test (SPT) in Rangamati, Bandarban and Khagrachari Towns

King Saud University College of Engineering Civil Engineering Department DEFORMATION OF PARTIALLY SATURATED SAND. Sultan Musaed Al-Ghamdi

Chittagong Hill Tract Development Facilities (CHTDF) United Nations Development Programme

Soil Classification Through Penetration Tests

APPENDIX F GEOTECHNICAL REPORT

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 4 : In-situ tests [ Section 4.1: Penetrometer Tests ] Objectives

ENCE 4610 Foundation Analysis and Design

1 Mobilisation and demobilisation 1 Deep boring sum 2 Cone penetration tests sum 3 Miscellenous tests sum

TECHNICAL REPORT ON SCALA DYNAMIC CONE PENETROMETER IRREGULARITY

SOIL INVESTIGATION REPORT

How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska

Pavements should be well drained both during and upon completion of construction. Water should not be allowed to pond on or near pavement surfaces.

TECHNICAL Summary. TRB Subject Code:62-7 Soil Foundation Subgrades February 2003 Publication No.: FHWA/IN/JTRP-2002/30, SPR-2362

Testing Procedures. Note: Please refer to Table 2 for a list of completed borings.

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

Soil Mechanics. Soil Mechanics

HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

Standard penetration test (SPT)

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

SNC-Lavalin Inc. Montcalm Wastewater Pumping Station Upgrades - Geotechnical Report. October 2011

1.0 INTRODUCTION SCOPE OF WORK EXECUTION OF FIELD WORK LABORATORY TESTS FINDINGS OF THE GEOTECHNICAL INVESTIGATION 9

NOTES on the CONE PENETROMETER TEST

CEEN Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

Evaluation of Properties of Soil Subgrade Using Dynamic Cone Penetration Index A Case Study

GUIDELINES FOR GEOTECHNICAL INVESTIGATION OF BRIDGE STRUCTURES. Materials Engineering Report No M (Supersedes Report No.

CE 366 SETTLEMENT (Problems & Solutions)

COMPENDIUM OF INDIAN STANDARDS ON SOIL ENGINEERING PART 2

Anirudhan I.V. Geotechnical Solutions, Chennai

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST

ALLOWABLE LOADS ON A SINGLE PILE

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS

Soil behaviour type from the CPT: an update

Using Combination of SPT, DMT and CPT to Estimate Geotechnical Model for a Special Project in Turkey

Work Type Definition and Submittal Requirements

GUJARAT NARMADA VALLEY FERTILIZER CO. LTD. (GNFC Ltd) TECHNICAL REPORT GEOTECHNICAL INVESTIGATION FOR PROPOSED TDI PLANT AT VILLAGE RAHIYAD, DAHEJ

NOTES on the STANDARD PENETRATION TEST

PILE FOUNDATIONS FM 5-134

Cone Penetration Testing (CPT) Michael Bailey, P.G. U.S. Army Corps of Engineers, Savannah District

Numerical Analysis of Texas Cone Penetration Test

Standard Test Procedures Manual

SOIL MECHANICS Assignment #4: Soil Permeability.

Figure CPT Equipment

GUIDELINE FOR HAND HELD SHEAR VANE TEST

EVALUATING THE IMPROVEMENT FROM IMPACT ROLLING ON SAND

Chapter 4 SUBSURFACE INVESTIGATION GUIDELINES

Module 1 : Site Exploration and Geotechnical Investigation. Lecture 5 : Geophysical Exploration [ Section 5.1 : Methods of Geophysical Exploration ]

Strength Determination of "Tooth-Paste" Like Sand and Gravel Washing Fines Using DMT

2009 Japan-Russia Energy and Environment Dialogue in Niigata S2-6 TANAKA ERINA

Determination of Thermal Conductivity of Coarse and Fine Sand Soils

Caltrans Geotechnical Manual

EXPERIMENT 10 CONSTANT HEAD METHOD

CHAPTER: 6 FLOW OF WATER THROUGH SOILS

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand

Cone Penetration Testing in Geotechnical Practice. Tom Lunne Peter K. Robertson John J.M. Powell

Table of Contents 10.1 GENERAL

PHYSICAL AND PLASTICITY CHARACTERISTICS

HAULBOWLINE, CORK STATIC CONE PENETRATION TESTS FACTUAL REPORT

FACTUAL GROUND INVESTIGATION

DYNAMIC CONE PENETRATION TEST INSTRUCTIONAL MANUAL GEOTECHANICAL

TECHNICAL SPECIFICATION FOR GEOTECHNICAL INVESTIGATION

USE OF CONE PENETRATION TEST IN PILE DESIGN

Standard Test Procedures Manual

THE COMPETENT PERSON & SOIL TESTING. This easy-to-use Leader s Guide is provided to assist in conducting a successful presentation.

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method.

TECHNICAL NOTE: SI 01 SPECIFIC REQUIREMENTS FOR THE ACCREDITATION OF INSPECTION BODIES FOR SITE INVESTIGATION

Fundamentals of CONE PENETROMETER TEST (CPT) SOUNDINGS. J. David Rogers, Ph.D., P.E., R.G.

JOHNSON STREET BRIDGE REPLACEMENT PROJECT

Appendix D.1. Testing Requirements for Infiltration, Bioretention and Sand Filter Subsoils

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

REPORT. Earthquake Commission. Christchurch Earthquake Recovery Geotechnical Factual Report Merivale

Program COLANY Stone Columns Settlement Analysis. User Manual

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO

Standard Test Method for Mechanical Cone Penetration Tests of Soil 1

TECHNICAL SPECIFICATIONS CEMENT-BENTONITE SLURRY TRENCH CUTOFF WALL

Drained and Undrained Conditions. Undrained and Drained Shear Strength

CHAPTER 1 INTRODUCTION

Chapter 7 Analysis of Soil Borings for Liquefaction Resistance

Cone Penetration Test (CPT)

VOLUME III GEOLOGY, HYDROGEOLOGY & GEOTECHNICAL REPORT CAPITAL REGION RESOURCE RECOVERY CENTRE

FUNDAMENTALS OF CONSOLIDATION

Transcription:

Method Statement FOR Soil Investigation PREPARED BY JUNE 2010

Infratech ASTM CO., LTD. TABLE OF CONTENTS Chapter Title Page Table of Contents..1 List of Appendix... 2 List of Table... 2 List of Figures... 2 1.0 INTRODUCTION AND BACK GROUND OF THE PROJECT... 3 2.0 SCOPE OF WORK... 3 3.0 FIELD INVESTIGATION AND BOUNDARY SURVEY.. 3 3.1 General... 3 3.2 Boring and Sampling. 4 3.4 Groundwater Measurement......4 3.5 Field permeability Test..4 3.6 Soil Resistivity Test...5 3.7 Test Pit.5 3.8 Down Hole Seismic Test.5 3.9 Dutch Cone Penetration Test.....5 3.10 Site Boundary Survey 4.0 LABORATORY TEST..6 4.1 Unconfined Compression test. 6 4.2 Atterberg Limits. 6 4.3 Particle Size Analysis... 6 4.4 Unit Weight and Water Content Determination. 7 4.5 Oedometer test..7 4.6 Compaction Test and CBR Test 7 4.7 Water Analysis.7 5.0 REPORT...8 Figures Appendix Tables 1

Infratech ASTM CO., LTD. List of Appendix Appendix A Appendix B Appendix C Appendix D Appendix E Sample of Soil Boring Log data sheet Sample of Summary of general laboratory test data sheet Sample of Pile calculation data sheet Sample of Shallow Foundation Bearing Capacity Analysis Sample of Prediction of long term settlement calculation List of Table Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Sample of Unconfined Compression Test data sheet Sample of Atterberg Limit Test data sheet Sample of Sieve Analysis Test data sheet Sample of Unit Weight data sheet Sample of Water content Test data sheet Sample of Consolidation Test data sheet Sample of Field Permeability test data sheet Sample of soil resistivity test data sheet Sample of down hole seismic test data sheet Sample of Dutch cone penetration test data sheet Sample of compaction and CBR test data sheet Sample water analysis test data sheet 2

Infratech ASTM CO., LTD. 1.0 INTRODUCTION AND BACK GROUND OF THE PROJECT This method statement will summarizes the procedure on the subsoil investigation works and boundary survey to be conducted by Infratech ASTM Company Limited for the construction.. 2.0 SCOPE OF WORK The scope of work for the geotechnical consultancy services of the project are summarized as follows: Soil boring, field testing and carrying out sufficient in-situ testing and sampling. Laboratory testing of obtained samples to determine the properties of the subsoil. Determination of geotechnical parameters required for foundation analyses. Carrying out engineering analyses for foundation design. 3.0 FIELD INVESTIGATION 3.1 General The investigation program included drilling boreholes and collecting soil samples at desired intervals for subsequent observation and laboratory testing. The investigation program will consist of soil boring and sampling at desired intervals for subsequent observation and laboratory testing to determine the capacity of pile foundation economically and safely. 3.2 Boring and Sampling The boreholes will be made by the rotary drilling machine. Undisturbed sample will be taken in the soft and medium clay at 1.0, 1.5, 2.0 and 3.0 m depths and at 1.5 m intervals thereafter using a thin-walled sampler with dimensions conforming to standard sampling tubes specification (ASTM D 1587). Disturbed samples for very stiff clay to hard clay layer will be collected during Standard Penetration Testing at 1.5 m intervals. (ASTM D 1586) The borings shall be drilled vertically through soil approximately 30 meters deep or stop in firm layer when SPT N-value is greater than 50 blows/ft. Accuracy of bore hole position will be not more than 2.0 m. in horizontal direction and 0.20 in vertical direction. 3.3 Standard Penetration Testing Standard Penetration Tests (SPT) will be carried out to provide an indication of the density and/or consistency of the ground and to obtain disturbed samples for visual inspection and laboratory testing and classification. The results of the tests will be given on the boring logs in Appendix A and will 3

Infratech ASTM CO., LTD. be expressed as an N value. The N value is defined as the blow-count for 12 (300mm) penetration recorded after the seating drive of 15 cm. In the case of premature refusal conditions, the number of blows for a recorded penetration (including the seating drive) is noted. In SPT testing, the rope-and-pulley (R-P) method will be used. This consisted of a hollow cylindrical mass sliding over a steel rod. It is operated by lifting the mass with a rope over a cat head. At the instant the mass reached the required height (760 mm), the mass will be released manually driving the split spoon into the soil. Disturbed samples collected from the split-spoon sampler during Standard Penetration Test will be visually inspected before storing in a polyethylene bag for laboratory testing. A graphical representation of the changes in the soil strata, water levels and SPT N values will be given in the boring logs. 3.4 Groundwater Measurement Groundwater is one element that affects in the stability and foundation analyses. The groundwater level was measured 24 hours after completion of the borehole. However, the low permeability of the soil will mean that the water level in the borehole is controlled more by drilling fluid rather than by the ground water itself. Significant fluctuations in the location of ground water table should be anticipated throughout the year, depending upon the amount of precipitation, evaporation and surface runoff. 3.5 Field Permeability Test Permeability test of soil in the field will be performed at the depth of 2,4,6,8 and 10 m. by constant head method. 3.6 Soil Resistity Test (Provisional) The purpose of this test is to investigate for the need of cathode protection and to have data necessary for the design of an adequate grounding system. The soil Resistivity measurement shall be carried out in accordance with IEEE 81 standard Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Ground System. The measurement shall be done using Wenner Four Points Method with equal test rods spacing. The area to be measured shall be the power block area of power plant, terminal substation and switchyard. Before carrying out the measurement, the rectangular grid shall be drawn for the testing areas with mesh spacing at approximately 5-10 m. The measurement shall be made at every intersection point of grid lines. The measurement at any point shall be done for two directions, one from the measured point along the direction from east to west and another shall be from the measured point along the direction from north to south. The measurement at any point shall consist of the measured data at the varying space between test rods for the following distance; 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 m. For each area of measurement, the results of measurement shall be shown in the table for each point of measurement for each direction and every designated space of measurement. The measured resistivity data shall be averaged for each of the same spacing of measured data. The overall averaged resistivity of each area shall also be reported. 3.7 Test Pit (Provisional) Test pit shall be preformed 3 points of 1x1m size 3 m deep, by mean of hand excavation. Bulk sample taken from the test pits of not less than 50 kg each shall be sent to test at laboratory for compaction and CBR test. 4

Infratech ASTM CO., LTD. 3.8 Seismic down hole test (Provisional) The down hole Test is a method which determines soil stiffness properties by analyzing direct compression and shear waves along a borehole. Seismic down hole test shall be performed at 1.0 meter intervals to the depth of 30.0 m. or to the same depth of soil bore hole (where SPT N-value is greater than 50 blows/ft) The test shall be intended to collect shear wave velocity information that will be used in dynamic analysis. The testing location shall be located in the power block area and close to expected location of Steam Turbine foundation. 3.9 Dutch Cone Penetration Test (Provisional) Dutch cone penetration test shall be preformed depth 30m. or to the depth when the total resistant of the cone penetrometer reach 4.0 tons. The test shall be carried out in accordance with the ASTM D 3441. The cone penetration test shall be consists of pushing into the soil, at a sufficiently slow rate, a series of cylindrical rods with a conical tip at the base for measuring the cone resistance and friction resistance every 20 cm intervals. 4.0 LABORATORY TESTING Geotechnical laboratory tests will be performed on the soil samples to classify soil and to determine their engineering characteristics. All laboratory tests will be conducted in accordance with ASTM Standards. The soils will be also classified based on the Unified Soil Classification System (USCS). 4.1 Unconfined Compression Tests Unconfined compression test will be conducted in accordance with ASTM D2166. The tests will be performed by compressing cylindrical samples to failure. Failure generally occurs when the greatest ratio of shear stress to shear strength occurs. The cohesion (c) of the sample is taken as half the unconfined compressive strength. Sample of test results and data sheet has been shown in Table 1 4.2 Atterberg Limits Atterberg limits will be determined (ASTM D 4318) on representative soil samples of cohesive soils. The Atterberg limits refer to arbitrarily defined boundaries between the liquid and plastic states, and between the plastic and brittle states of grained soils, expressed as water content, in percentage. The liquid limit is the water content at which a part of soil placed in a standard cup, cut by a standard grooving tool, will flow together at the base of the groove when the cup is subjected to 25 standard shocks. The one-point liquid limit test is usually carried out and distilled water may be added during soil mixing to achieve a desired consistency. Sample of test results and data sheet has been shown in Table 2 5

Infratech ASTM CO., LTD. 4.3 Particle Size Analysis Particle size analysis will be performed by means of sieving (ASTM D 422). For oven-dry materials, sieving is carried out for particles that are being retained on a 0.063 mm sieve. In sieve analysis, the mass of soil retained on each sieve is determined and expressed as a percentage of the total mass of the sample. The particle size is plotted on a logarithmic scale so that two soils having the same degree of uniformity are represented by curves of the distribution plot. In Hydrometer analysis is based on the principle of sedimentation of soil grains in water. When a soil specimen is dispersed in water, the particles settle at different velocities, depending on their shape, size, and weight. For simplicity, it is assumed that soil particles are spheres and the velocity of soil particles can be express by Stokes law. Sample of test results and data sheet has been shown in Table 3 4.4 Unit Weight and Water Content Determination As a routine laboratory test, unit weights of soils will be determined based on the mass of soil in a standard volume steel cylinder with cutting edge. The unit weight refers to the unit weight of the soil at the sampled water content. The dry unit weight is determined from the mass and the water content of the specimen. Water content (ASTM D 2216)is determined by oven-drying a moist/wet soil at a constant temperature of 105 C for 18-24 hours. The difference in mass before and after drying is used as the mass of water in the specimen, while the mass of remaining material is used as the mass of solid particles. The ratio between the mass of water and the mass of solid particles is the water content of the soil material Sample of test results and data sheet has been shown in Table 4 and Table 5 4.5 Oedometer Test /Consolidation test (Provisional) In case of soft clay layer has been encountered, 1 undisturbed sample will be collected from mid layer of soft clay for Oedometer test. Oedometer tests will be conducted (ASTM D 2435) to determine the rate and magnitude of consolidation of a laterally restrained soil specimen which is axially loaded in increments of constant stress until the excess pore water pressures have dissipated for each increment. Each load increment is maintained for at least 24 hours. The test is generally carried out on undisturbed cohesive specimens. Sample of test results and data sheet has been shown in Table 6 4.6 Compaction Test and CBR Test (Provisional) Bulk sample taken from the test pits of not less than 20 kg each shall be sent to test at laboratory for compaction and CBR test conformed to ASTM D1883. 4.7 Ground Water Analysis The bored hole shall be drilled at depth approximate 3 m. without bentonite and leave it 7 days for collecting underground water to do water analysis test. The test parameters are listed below: 6

Infratech ASTM CO., LTD. 5.0 REPORT Confirmed Preliminary Report findings along with the remainder of test results to be Submitted in a Final Report. The Final Report shall include but not limited to: Results of all of the above mentioned tests. Result of graph to show Cumulative Ultimate Skin Friction & Ultimate End Bearing Capacity & Depth for driven pile for each borehole. Recommendations for : 1. Bearing capacity for shallow foundation. 2. Pile capacity resistance to compression and tension. 3. Settlement for shallow foundation. Underground water level and borehole elevation. Licensed engineer sign up responsible for the report 7

APPENDIX A SOIL BORING LOG Sample Sheet

ASTM ASTM TESTING CO., LTD. BORING LOG Borehole No. BH-08 BH-0 PROJECT: SIAM ENERGY POWER PLANT Page 1 of 1 24 LOCATION: BANGKLA CHACHOENGSAO Depth (m) Graphic Log Method Sample No. Recovery 0 Borehole Elevation = 1.99 m. SOIL DESCRIPTION Atterberg Limits 40 80 SPT-N (Blow/30cm.) 20 40 60 80 100 γ t (t/m3) Su (t/m2) 1.0 2.0 2 4 6 8 10 0.80 m. Top soil ST 1 2.00 m. 1.49 1.01 ST 2 Brown, moist to saturated, medium plasticity, very soft to soft, Sandy Clay. 5 ST 3 (CL) 1.6 1.69 1.3 2.14 ST 4 6.50 m. 1.7 0.54 10 SS 1 Brown, moist, high plasticity, stiff, Sandy Clay. (CH) SS 2 9.45 m. 1.81 9 10 SS 3 Brown, moist, medium plasticity, very stiff to hard, Sandy Clay. (CL) SS 4 12.45 m. 1.96 1.85 22 31 SS 5 1.89 14 15 SS 6 Brown, moist, high plasticity, stiff to very stiff, Sandy Clay. SS 7 (CH) trace gravel. 1.96 16 15 SS 8 17 20 SS 9 19.95 m. 22 SS 10 Brown, moist, medium plasticity, hard, Sandy Clay. SS 11 (CL) 58 76 SS 12 24.45 m. End of Boring = 24.45 m. 1.93 Start date: 8-ม.ย.-09 Finished date: 8-ม.ย.-09 Su (UC) PL W n LL Borehole Depth: 24.45 m. Su (FV) Observed GWL. -1.50 m. Total Unit Weight Su (PP) Drilling Foreman: Thawatchai SPT, N ABBREVIATIONS: (Blow/30 cm.) ST = Undisturbed Sample LL = Liquid Limit gt = Total Unit Weight SS = Split Spoon Sample PL = Plastic Limit SPT = Standard Penetration Test

APPENDIX B SUMMARY OF GENERAL LABORATORY TEST Sample sheet

ASTM TESTING CO.,LTD. SUMMARY OF TEST RESULTS PROJECT: BORE HOLE NO. BH - 8 LOCATION: Water Level : -1.50 M. Depth. (m.) USCS Wn,at UC Test γ wet, Atterberg Limits Gradation % Passing N spt Sample No From To Soil Received group (%) S U gm./cc. LL PL PI # 4 # 10 # 40 # 200 (Blow / Soil Description (T / m 2 ) (%) (%) (%) Foot) - 0.00 1.50 Top Soil ST - 1 1.50 2.00 88.34 1.01 1.49 97.74 93.07 86.41 75.43 ST - 2 3.00 3.50 61.41 1.30 1.60 ST - 3 4.50 5.00 CL 55.20 2.14 1.69 40.05 24.33 15.72 100.00 99.77 98.51 94.33 ST - 4 6.00 6.50 54.24 0.54 1.70 Sandy Clay (CL,CH). SS - 1 7.50 7.95 CH 31.07 1.81 56.08 23.51 32.56 99.04 98.92 98.11 91.63 9 SS - 2 9.00 9.45 10 SS - 3 10.50 10.95 CL 22.04 1.96 48.11 21.29 26.82 100.00 99.85 99.29 95.86 22 SS - 4 12.00 12.45 1.85 31 SS - 5 13.50 13.95 1.89 14 SS - 6 15.00 15.45 1.96 16 SS - 7 16.50 16.95 CH 32.88 60.30 28.53 31.77 93.45 91.79 89.23 85.09 15 Sandy Clay (CH) SS - 8 18.00 18.45 17 trace gravel. SS - 9 19.50 19.95 22 SS - 10 21.00 21.45 58 SS - 11 22.50 22.95 CL 17.82 41.11 18.58 22.54 99.70 99.30 96.57 82.52 76 Sandy Clay (CL). SS - 12 24.00 24.45 1.93 89 END OF BORING AT 24.45 M.

Appendix C Pile Calculation Sample sheet

Appendix B 1 - BH-1 สร ปการค านวณก าล งร บน าหน กของด น (Estimation of Soil Bearing Capacity) Saraburi A Cogeneration Co.,ltd. Saraburi BH-1

PROJECT : LOCATION : BOREHOLE NO.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 0 0 10 20 30 40 50 60 70 80 90 100 1 2 Depth (m) 3 4 5 Ultimate End Bearing(t/sq.m.) SOIL BEARING CAPACITY VS DEPTH FOR SHALLOW FOUNDATION

SHALLOW FOUNDATION SOIL BEARING CAPACITY Project: Saraburi A Cogeneration Co.,ltd. Location: Borehole No.: Saraburi BH-1 Factor of safety : 3.00 Allowable settlement, S e 25.0 mm. Depth of water = 1.53 m below ground level Depth Soil Description Unit weight SPT (N-value) σ vo,base σ' vo,base Cohesion, Su φ FDN Dimension NET SOIL BEARING CAPACITY SUMMARY USCS S=Sand Field Correct Design B L CLAY SAND Depth q all D f C=Clay t/m 2 kn/m 2 N F N cor. N design t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 o m. m. q u (kpa) q all (kpa) q all (t/m 2 ) F d q all (kpa) q all (t/m 2 ) (m) (t/m 2 ) 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 - - - - - - - - - - - - - 1.0 CL C 2.0 19.6 9 20 13 2.00 2.00 19.62 7.89 77.39 1.0 1.0 572.8 190.9 19.5 1.0 19.5 2.0 CL C 2.0 19.6 12 20 15 4.00 3.53 34.63 9.15 89.80 1.0 1.0 775.4 258.5 26.3 2.0 26.3 3.0 CL C 2.0 19.6 15 22 17 6.00 4.53 44.44 10.83 106.28 1.0 1.0 1048.8 349.6 35.6 3.0 35.6 4.0 CL C 2.1 20.2 20 26 22 8.06 5.59 54.84 13.83 135.72 1.0 1.0 1506.8 502.3 51.2 4.0 51.2 Remark: 1) q all = Net allowable soil bearing capacity 2) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), After Liao and Whitman (1986) 3) The net ultimate bearing capacity for clayey soil (φ = 0 condition), q net(u) = 5.14c u (1+0.2D f /B)(1+0.2B/L), After Skempton (1951) 4) The net ultimate bearing capacity for sand, After Bowles (1977) q net(u) = 19.16N cor F d (S e /25.4) (for B < 1.22 m.) q net(u) = 11.98N cor [(3.28B+1)/3.28B] 2 F d (S e /25.4) (for B > 1.22 m.)

Appendix B 2 - BH-1 สร ปการค านวณก าล งร บน าหน กปลอดภ ยของเสาเข มและความยาว (Recommendation for Pile Capacity and length) Saraburi A Cogeneration Co.,ltd. Saraburi BH-1

RECOMMENDED PILE LENGTH AND CAPACITY FOR FOR SINGLE PILE Project: Saraburi A Cogeneration Co.,ltd. Location: Saraburi Borehole No.: BH-1 Soil Capacity F.S. =2.5(Tons) Pile Structural Pile Type Pile Size Length(m.) Compression Tension Lateral Capacity(Tons) REMARK Driven Pile 0.25x0.25 12.0 39 32 0.2 40 Can not be installed when SPT>=Limit Driven Pile 0.30x0.30 12.0 48 38 0.3 55 Can not be installed when SPT>=Limit Driven Pile 0.35x0.35 12.0 58 45 0.5 70 Can not be installed when SPT>=Limit Driven Pile 0.40x0.40 12.0 68 51 0.6 80 Can not be installed when SPT>=Limit Bored Pile Dia.0.35 10.0 44 35 0.3 48 Bored Pile Dia.0.40 11.5 61 49 0.4 63 Bored Pile Dia.0.50 13.0 94 74 0.5 98 Bored Pile Dia.0.60 14.5 140 105 0.7 141 Driven Pile may not be installed pass through depth where SPT limit >= 50

RECOMMENDED ALLOWABLE LOAD FOR SINGLE SQUARE DRIVEN PILE Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Factor of safety : 2.50 Depth of water : 1.53 m. below ground level Depth (meters) Cumm.Skin Friction 25 x 25 cm. Square Driven Pile 30 x 30 cm. Square Driven Pile 35 x 35 cm. Square Driven Pile 40 x 40 cm. Square Driven Pile End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) 4.0 19.4 8.3 0.5 10.9 23.3 11.9 0.6 13.8 27.2 16.2 0.9 17.0 31.1 21.2 1.2 20.4 5.0 25.5 10.0 0.6 14.0 30.6 14.5 0.9 17.7 35.8 19.7 1.2 21.7 40.9 25.7 1.5 26.0 7.5 42.0 11.6 1.0 21.1 50.4 16.7 1.4 26.3 58.9 22.7 1.9 31.9 67.3 29.6 2.5 37.8 9.0 54.5 16.3 1.2 27.9 65.5 23.5 1.7 34.9 76.4 32.0 2.4 42.4 87.3 41.8 3.1 50.4 10.5 66.7 15.9 1.4 32.4 80.0 22.9 2.1 40.3 93.4 31.1 2.8 48.7 106.7 40.6 3.6 57.5 12.0 79.9 18.1 1.7 38.6 95.9 26.1 2.4 47.9 111.9 35.6 3.2 57.7 127.9 46.4 4.2 68.0 13.5 94.9 21.4 1.9 45.8 113.9 30.8 2.7 56.8 132.9 41.9 3.7 68.4 151.9 54.7 4.8 80.7 15.0 112.2 24.5 2.1 53.8 134.6 35.3 3.0 66.7 157.0 48.1 4.1 80.4 179.4 62.8 5.4 94.7 REMARK : 1. Negative skin friction is not consider in the calculation 2. Pile cut-off elevation -1.00 m. below ground level

RECOMMENDED ALLOWABLE LOAD FOR SINGLE BORED PILE Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Factor of safety : 2.50 Depth of water : 1.53 m. below ground level Depth (meters) Cumm.Skin Friction 35 cm. Dia. Bored Pile 40 cm. Dia. Bored Pile 50 cm. Dia. Bored Pile 60 cm. Dia. Bored Pile End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) 4.0 31.2 12.8 0.7 17.3 35.7 16.7 0.9 20.6 44.6 26.0 1.4 27.7 53.6 37.5 2.0 35.6 5.0 41.1 15.5 0.9 22.3 47.0 20.2 1.2 26.4 58.7 31.5 1.9 35.4 70.5 45.4 2.7 45.3 7.5 67.7 17.8 1.5 33.6 77.3 23.3 2.0 39.5 96.7 36.4 3.1 52.0 116.0 52.4 4.4 65.6 9.0 87.8 25.1 1.8 44.4 100.4 32.8 2.4 52.3 125.5 51.3 3.8 69.2 150.5 73.9 5.4 87.6 10.5 107.4 24.4 2.2 51.8 122.7 31.9 2.9 60.7 153.4 49.9 4.5 79.5 184.0 71.8 6.4 99.8 12.0 128.7 27.9 2.5 61.6 147.1 36.5 3.3 72.1 183.8 57.0 5.2 94.3 220.6 82.1 7.5 118.1 13.5 152.8 32.9 2.9 73.1 174.6 43.0 3.8 85.5 218.3 67.1 5.9 111.8 261.9 96.7 8.5 140.1 15.0 180.6 37.8 3.2 86.0 206.4 49.3 4.2 100.6 257.9 77.1 6.6 131.4 309.5 111.0 9.5 164.4 REMARK : 1. Negative skin friction is not consider in the calculation 2. Pile cut-off elevation -1.00 m. below ground level

Appendix B 3 - BH-1 Graph แสดงความส มพ นธ ระหว างความล กและก าล งต านของด น (Cumulative Ultimate Skin Friction & Ultimate End Bearing Capacity & Depth) Saraburi A Cogeneration Co.,ltd. BH-1

PROJECT : LOCATION : BOREHOLE NO.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 0 0 50 100 150 200 0 0 200 400 600 800 1,000 2 2 4 4 6 6 Depth (m) 8 Depth (m) 8 10 10 12 12 14 14 16 Ultinate Skin Friction(t/m.Perimeter) 16 Ultimate End Bearing(t/sq.m.) CUMMULATIVE ULTIMATE SKIN FRICTION AND ULTIMATE END BEARING CAPACITY VS DEPTH OF DRIVEN PILE

PROJECT : LOCATION : BOREHOLE NO.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 0 0 50 100 150 200 0 0 200 400 600 800 1,000 2 2 4 4 6 6 Depth (m) 8 Depth (m) 8 10 10 12 12 14 14 16 Ultinate Skin Friction(t/m.Perimeter) 16 Ultimate End Bearing(t/sq.m.) CUMMULATIVE ULTIMATE SKIN FRICTION AND ULTIMATE END BEARING CAPACITY VS DEPTH OF BORED PILE

Appendix B 4 รายการค านวณขนาดและความยาวเสาเข มตอก ( Driven Pile Calculation) Saraburi A Cogeneration Co.,ltd. Saraburi BH-1

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile size : 0.25 x 0.25 m. Area: 0.063 m 2 Perimeter : 1.000 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 4.4 4.6 4.4 4.4 4.4 0.0 8.9 3.6 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 4.5 5.4 4.5 8.9 8.9 0.2 9.8 5.7 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 4.9 6.5 4.9 13.9 13.9 0.3 11.1 8.0 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 5.6 8.3 5.6 19.4 19.4 0.5 13.4 10.9 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 6.1 10.0 6.1 25.5 25.5 0.6 15.6 14.0 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 6.6 11.6 16.5 42.0 42.0 1.0 27.1 21.1 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 8.3 16.3 12.5 54.5 54.5 1.2 27.6 27.9 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 8.1 15.9 12.1 66.7 66.7 1.4 26.6 32.4 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 8.8 18.1 13.2 79.9 79.9 1.7 29.7 38.6 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 10.0 21.4 15.0 94.9 94.9 1.9 34.5 45.8 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 11.5 24.5 17.2 112.2 112.2 2.1 39.7 53.8 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile size : 0.30 x 0.30 m. Area: 0.090 m 2 Perimeter : 1.200 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 4.4 6.6 5.2 5.2 4.4 0.0 11.8 4.7 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 4.5 7.8 5.5 10.7 8.9 0.2 13.0 7.3 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 4.9 9.3 5.9 16.6 13.9 0.4 14.8 10.2 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 5.6 11.9 6.7 23.3 19.4 0.6 17.9 13.8 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 6.1 14.5 7.4 30.6 25.5 0.9 20.9 17.7 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 6.6 16.7 19.8 50.4 42.0 1.4 35.1 26.3 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 8.3 23.5 15.0 65.5 54.5 1.7 36.8 34.9 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 8.1 22.9 14.6 80.0 66.7 2.1 35.4 40.3 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 8.8 26.1 15.9 95.9 79.9 2.4 39.6 47.9 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 10.0 30.8 18.0 113.9 94.9 2.7 46.0 56.8 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 11.5 35.3 20.7 134.6 112.2 3.0 53.0 66.7 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile size : 0.35 x 0.35 m. Area: 0.123 m 2 Perimeter : 1.400 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 4.4 8.9 6.1 6.1 4.4 0.0 15.1 6.0 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 4.5 10.6 6.4 12.5 8.9 0.3 16.7 9.1 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 4.9 12.7 6.9 19.4 13.9 0.6 19.0 12.6 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 5.6 16.2 7.8 27.2 19.4 0.9 23.1 17.0 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 6.1 19.7 8.6 35.8 25.5 1.2 27.1 21.7 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 6.6 22.7 23.1 58.9 42.0 1.9 43.9 31.9 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 8.3 32.0 17.5 76.4 54.5 2.4 47.1 42.4 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 8.1 31.1 17.0 93.4 66.7 2.8 45.3 48.7 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 8.8 35.6 18.5 111.9 79.9 3.2 50.9 57.7 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 10.0 41.9 21.0 132.9 94.9 3.7 59.2 68.4 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 11.5 48.1 24.1 157.0 112.2 4.1 68.1 80.4 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile size : 0.40 x 0.40 m. Area: 0.160 m 2 Perimeter : 1.600 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 4.4 11.7 7.0 7.0 4.4 0.0 18.7 7.5 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 4.5 13.8 7.3 14.3 8.9 0.4 20.7 11.1 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 4.9 16.6 7.9 22.2 13.9 0.8 23.7 15.2 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 5.6 21.2 8.9 31.1 19.4 1.2 28.9 20.4 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 6.1 25.7 9.8 40.9 25.5 1.5 34.0 26.0 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 6.6 29.6 26.4 67.3 42.0 2.5 53.5 37.8 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 8.3 41.8 20.0 87.3 54.5 3.1 58.7 50.4 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 8.1 40.6 19.4 106.7 66.7 3.6 56.4 57.5 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 8.8 46.4 21.2 127.9 79.9 4.2 63.4 68.0 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 10.0 54.7 24.0 151.9 94.9 4.8 73.9 80.7 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 11.5 62.8 27.6 179.4 112.2 5.4 85.0 94.7 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 392.3 112.2 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

Appendix B 5 รายการค านวณขนาดและความยาวเสาเข มเจาะ ( Bored Pile Calculation) Saraburi A Cogeneration Co.,ltd. Saraburi BH-1

SINGLE BORED PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile Dia.(m.) : 0.35 Area: 0.096 m 2 Perimeter : 1.400 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 5.0 7.0 7.0 7.0 5.0 0.0 14.1 5.6 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 5.2 8.3 7.3 14.4 10.3 0.2 15.4 9.0 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 5.7 10.0 8.0 22.3 15.9 0.5 17.5 12.7 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 6.4 12.8 8.9 31.2 22.3 0.7 21.0 17.3 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 7.0 15.5 9.9 41.1 29.4 0.9 24.4 22.3 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 7.6 17.8 26.6 67.7 48.3 1.5 42.9 33.6 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 9.6 25.1 20.1 87.8 62.7 1.8 43.4 44.4 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 9.3 24.4 19.5 107.4 76.7 2.2 41.8 51.8 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 10.2 27.9 21.3 128.7 91.9 2.5 46.7 61.6 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 11.5 32.9 24.1 152.8 109.1 2.9 54.1 73.1 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 13.2 37.8 27.8 180.6 129.0 3.2 62.3 86.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 400 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE BORED PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile Dia.(m.) : 0.40 Area: 0.126 m 2 Perimeter : 1.600 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 5.0 9.2 8.0 8.0 5.0 0.0 17.2 6.9 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 5.2 10.9 8.4 16.4 10.3 0.3 18.9 10.8 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 5.7 13.0 9.1 25.5 15.9 0.6 21.5 15.2 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 6.4 16.7 10.2 35.7 22.3 0.9 26.0 20.6 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 7.0 20.2 11.3 47.0 29.4 1.2 30.3 26.4 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 7.6 23.3 30.4 77.3 48.3 2.0 51.7 39.5 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 9.6 32.8 23.0 100.4 62.7 2.4 53.4 52.3 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 9.3 31.9 22.3 122.7 76.7 2.9 51.4 60.7 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 10.2 36.5 24.4 147.1 91.9 3.3 57.5 72.1 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 11.5 43.0 27.6 174.6 109.1 3.8 66.8 85.5 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 13.2 49.3 31.7 206.4 129.0 4.2 76.8 100.6 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 400 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE BORED PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile Dia.(m.) : 0.50 Area: 0.196 m 2 Perimeter : 2.000 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 5.0 14.3 10.1 10.1 5.0 0.0 24.4 9.8 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 5.2 17.0 10.5 20.5 10.3 0.5 27.0 14.8 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 5.7 20.3 11.4 31.9 15.9 0.9 30.7 20.5 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 6.4 26.0 12.8 44.6 22.3 1.4 37.4 27.7 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 7.0 31.5 14.1 58.7 29.4 1.9 43.8 35.4 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 7.6 36.4 37.9 96.7 48.3 3.1 71.3 52.0 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 9.6 51.3 28.8 125.5 62.7 3.8 76.3 69.2 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 9.3 49.9 27.9 153.4 76.7 4.5 73.3 79.5 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 10.2 57.0 30.5 183.8 91.9 5.2 82.3 94.3 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 11.5 67.1 34.5 218.3 109.1 5.9 95.7 111.8 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 13.2 77.1 39.7 257.9 129.0 6.6 110.1 131.4 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 400 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE BORED PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Saraburi A Cogeneration Co.,ltd. Saraburi BH-1 Pile Dia.(m.) : 0.60 Area: 0.283 m 2 Perimeter : 2.400 m Factor of safety : 2.50 Depth of water = 1.53 m from ground level Depth Soil Description Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa To USCS S=Sand Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay t/m 2 kn/m 2 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons 0.0 - - 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 CL C 2.0 19.62 9 20 13 2.00 2.00 19.62 1.00 9.81 7.89 - - - - 0.55 73.0 5.0 20.6 12.1 12.1 5.0 0.0 32.7 13.1 2.0 CL C 2.0 19.62 12 20 15 4.00 3.53 34.63 2.77 27.12 9.15 - - - - 0.50 86.4 5.2 24.4 12.6 24.6 10.3 0.7 36.3 19.3 3.0 CL C 2.0 19.62 15 22 17 6.00 4.53 44.44 4.03 39.53 10.83 - - - - 0.46 103.5 5.7 29.3 13.6 38.2 15.9 1.4 41.5 26.5 4.0 CL C 2.1 20.21 20 26 22 8.06 5.59 54.84 5.06 49.64 13.83 - - - - 0.40 132.6 6.4 37.5 15.3 53.6 22.3 2.0 50.8 35.6 5.0 CL C 2.1 20.21 25 30 27 10.12 6.65 65.24 6.12 60.04 16.72 - - - - 0.37 160.6 7.0 45.4 16.9 70.5 29.4 2.7 59.6 45.3 7.5 CL C 2.1 20.40 30 31 30 15.32 9.35 91.72 8.00 78.48 18.88 - - - - 0.35 185.2 7.6 52.4 45.5 116.0 48.3 4.4 93.5 65.6 9.0 SC C 2.1 20.60 44 41 43 18.47 11.00 107.91 10.18 99.82 26.96 - - - - 0.31 261.1 9.6 73.9 34.5 150.5 62.7 5.4 103.0 87.6 10.5 SC C 2.0 19.62 43 38 41 21.47 12.50 122.63 11.75 115.27 25.83 - - - - 0.31 253.9 9.3 71.8 33.5 184.0 76.7 6.4 98.9 99.8 12.0 SC C 2.0 19.42 50 42 47 24.44 13.97 137.05 13.24 129.84 29.53 - - - - 0.30 290.2 10.2 82.1 36.6 220.6 91.9 7.5 111.2 118.1 13.5 CL C 2.0 19.42 60 48 56 27.41 15.44 151.47 14.71 144.26 34.93 - - - - 0.29 341.8 11.5 96.7 41.3 261.9 109.1 8.5 129.5 140.1 15.0 SG C 2.1 20.11 70 53 64 30.49 17.02 166.92 16.23 159.19 40.20 - - - - 0.29 392.3 13.2 111.0 47.6 309.5 129.0 9.5 149.1 164.4 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 392.3 129.0 15.0 15.0 15.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 400 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

Appendix C Pile Calculation Sample sheet

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Nong Saeng Power Plant - Saraburi Factory Area BH-2 Pile size : 0.25 x 0.25 m. Area: 0.063 m 2 Perimeter : 1.000 m Factor of safety : 2.50 Depth of water = -0.80 m from ground level Soil Description Depth Avg. Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa USCS S=Sand To Depth Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay m t/m^3 kn/m^3 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons - - 0.0 0.00 0.00 0.00 0 0 1.00 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH C 3.0 1.50 2.12 20.80 9 15 0.59 6.36 3.36 32.96 1.68 16.48 2.25 - - - - 1.00 183.9 2.3 11.5 6.8 6.8 6.8 0.0 18.2 7.3 CH C 7.0 3.50 2.12 20.80 15 17 0.90 14.84 7.84 76.91 5.60 54.94 3.75 - - - - 0.95 200.7 3.6 12.5 14.2 21.0 21.0 0.6 32.9 13.2 CL C 13.5 6.75 2.12 20.80 24 19 1.25 28.62 15.12 148.33 11.48 112.62 6.00 - - - - 0.64 231.2 3.8 14.5 25.0 45.9 45.9 1.6 58.8 23.5 SM S 16.0 8.00 2.13 20.90 51 38 1.36 33.95 17.95 176.04 16.53 162.18 12.75 28 8 0.50 22-451.0 6.8 28.2 17.0 63.0 63.0 2.0 89.2 35.7 SP S 17.5 8.75 2.13 20.90 80 56 1.42 37.14 19.64 192.67 18.79 184.35 20.00 42 80 0.50 34-676.2 12.5 42.3 18.7 81.7 81.7 2.2 121.8 48.7 SP-SM S 18.5 9.25 2.13 20.90 100 68 1.46 39.27 20.77 203.75 20.21 198.21 25.00 51 108 0.50 41-822.0 17.4 51.4 17.4 99.1 99.1 2.3 148.2 59.3 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Nong Saeng Power Plant - Saraburi Factory Area BH-2 Pile size : 0.30 x 0.30 m. Area: 0.090 m 2 Perimeter : 1.200 m Factor of safety : 2.50 Depth of water = -0.80 m from ground level Soil Description Depth Avg. Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa USCS S=Sand To Depth Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay m t/m^3 kn/m^3 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons - - 0.0 0.00 0.00 0.00 0 0 1.00 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH C 3.0 1.50 2.12 20.80 9 15 0.59 6.36 3.36 32.96 1.68 16.48 2.25 - - - - 1.00 183.9 2.3 16.6 8.1 8.1 6.8 0.0 24.7 9.9 CH C 7.0 3.50 2.12 20.80 15 17 0.90 14.84 7.84 76.91 5.60 54.94 3.75 - - - - 0.95 200.7 3.6 18.1 17.1 25.2 21.0 0.9 42.4 16.9 CL C 13.5 6.75 2.12 20.80 24 19 1.25 28.62 15.12 148.33 11.48 112.62 6.00 - - - - 0.64 231.2 3.8 20.8 30.0 55.1 45.9 2.3 73.7 29.5 SM S 16.0 8.00 2.13 20.90 51 38 1.36 33.95 17.95 176.04 16.53 162.18 12.75 28 8 0.50 22-451.0 6.8 40.6 20.4 75.6 63.0 2.8 113.3 45.3 SP S 17.5 8.75 2.13 20.90 80 56 1.42 37.14 19.64 192.67 18.79 184.35 20.00 42 80 0.50 34-676.2 12.5 60.9 22.5 98.0 81.7 3.1 155.8 62.3 SP-SM S 18.5 9.25 2.13 20.90 100 68 1.46 39.27 20.77 203.75 20.21 198.21 25.00 51 108 0.50 41-822.0 17.4 74.0 20.9 119.0 99.1 3.3 189.6 75.8 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Nong Saeng Power Plant - Saraburi Factory Area BH-2 Pile size : 0.35 x 0.35 m. Area: 0.123 m 2 Perimeter : 1.400 m Factor of safety : 2.50 Depth of water = -0.80 m from ground level Soil Description Depth Avg. Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa USCS S=Sand To Depth Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay m t/m^3 kn/m^3 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons - - 0.0 0.00 0.00 0.00 0 0 1.00 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH C 3.0 1.50 2.12 20.80 9 15 0.59 6.36 3.36 32.96 1.68 16.48 2.25 - - - - 1.00 183.9 2.3 22.5 9.5 9.5 6.8 0.0 32.0 12.8 CH C 7.0 3.50 2.12 20.80 15 17 0.90 14.84 7.84 76.91 5.60 54.94 3.75 - - - - 0.95 200.7 3.6 24.6 19.9 29.3 21.0 1.2 52.8 21.1 CL C 13.5 6.75 2.12 20.80 24 19 1.25 28.62 15.12 148.33 11.48 112.62 6.00 - - - - 0.64 231.2 3.8 28.3 35.0 64.3 45.9 3.1 89.5 35.8 SM S 16.0 8.00 2.13 20.90 51 38 1.36 33.95 17.95 176.04 16.53 162.18 12.75 28 8 0.50 22-451.0 6.8 55.2 23.8 88.2 63.0 3.8 139.6 55.8 SP S 17.5 8.75 2.13 20.90 80 56 1.42 37.14 19.64 192.67 18.79 184.35 20.00 42 80 0.50 34-676.2 12.5 82.8 26.2 114.4 81.7 4.3 193.0 77.2 SP-SM S 18.5 9.25 2.13 20.90 100 68 1.46 39.27 20.77 203.75 20.21 198.21 25.00 51 108 0.50 41-822.0 17.4 100.7 24.4 138.8 99.1 4.6 234.9 94.0 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

SINGLE SQUARE DRIVEN PILE CAPACITY CALCULATION-STATIC FORMULA Project: Location: Borehole No.: Nong Saeng Power Plant - Saraburi Factory Area BH-2 Pile size : 0.40 x 0.40 m. Area: 0.160 m 2 Perimeter : 1.600 m Factor of safety : 2.50 Depth of water = -0.80 m from ground level Soil Description Depth Avg. Unit Unit SPT (N-value) σ vo σ' tip σ' tip σ' ave σ' ave Su φ Nq Ks δ Adh. qb qs Qb Qs Qs Qs Wp Qu Qa USCS S=Sand To Depth Weight Weight Field Liao Corr. Factor Cumm. Cumm. C=Clay m t/m^3 kn/m^3 t/m 2 t/m 2 kn/m 2 t/m 2 kn/m 2 t/m 2 o 0.80φ α t/m 2 t/m 2 tons tons tons t/m. peri tons tons tons - - 0.0 0.00 0.00 0.00 0 0 1.00 0.00 0.00 0.00 0.00 0.00 - - - - - - 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH C 3.0 1.50 2.12 20.80 9 15 0.59 6.36 3.36 32.96 1.68 16.48 2.25 - - - - 1.00 183.9 2.3 29.4 10.8 10.8 6.8 0.0 40.2 16.1 CH C 7.0 3.50 2.12 20.80 15 17 0.90 14.84 7.84 76.91 5.60 54.94 3.75 - - - - 0.95 200.7 3.6 32.1 22.7 33.5 21.0 1.5 64.1 25.6 CL C 13.5 6.75 2.12 20.80 24 19 1.25 28.62 15.12 148.33 11.48 112.62 6.00 - - - - 0.64 231.2 3.8 37.0 40.0 73.5 45.9 4.0 106.5 42.6 SM S 16.0 8.00 2.13 20.90 51 38 1.36 33.95 17.95 176.04 16.53 162.18 12.75 28 8 0.50 22-451.0 6.8 72.2 27.3 100.8 63.0 5.0 167.9 67.2 SP S 17.5 8.75 2.13 20.90 80 56 1.42 37.14 19.64 192.67 18.79 184.35 20.00 42 80 0.50 34-676.2 12.5 108.2 30.0 130.7 81.7 5.6 233.3 93.3 SP-SM S 18.5 9.25 2.13 20.90 100 68 1.46 39.27 20.77 203.75 20.21 198.21 25.00 51 108 0.50 41-822.0 17.4 131.5 27.9 158.6 99.1 6.0 284.2 113.7 Remark: 1) Negative skin friction is not consider in the calculation 2) Pile cut-off level is at - 1.00 m. below ground level 3) Limited maximum end bearing, q b = 1000 t/sq.m. for sand (Reese and O' Neill, 1989) 4) Corected Standard Penetration, N correct = N F *sqrt(95.6/σ' v ), (Liao and Whitman, 1986)

RECOMMENDED ALLOWABLE LOAD FOR SINGLE SQUARE DRIVEN PILE Project: Location: Borehole No.: Nong Saeng Power Plant - Saraburi Factory Area BH-2 Factor of safety : 2.50 Depth of water : -0.80 m. below ground level Depth (meters) Cumm.Skin Friction 25 x 25 cm. Square Driven Pile 30x30 cm. square Driven Pile 35x35 cm. square Driven Pile 40x40 cm. square Driven Pile End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load Cumm.Skin Friction End Bearing Pile Weight Allowable Load (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) (tons) 13.5 46 14 2 24 55 21 2 29 64 28 3 36 73 37 4 43 16.0 63 28 2 36 76 41 3 45 88 55 4 56 101 72 5 67 17.5 82 42 2 49 98 61 3 62 114 83 4 77 131 108 6 93 18.5 99 51 2 59 119 74 3 76 139 101 5 94 159 132 6 114 REMARK : 1. Negative skin friction is not consider in the calculation 2. Pile cut-off elevation -1.00 m. below ground level

PROJECT : LOCATION : BOREHOLE NO.: Nong Saeng Power Plant - Saraburi Factory Area BH-2 Cumm. Ultimate Skin Friction (t/m of Perimeter) Ultimate End Bearing (t/sq.m) 0 20 40 60 80 100 120 0 200 400 600 800 1,000 0 0 2 2 4 4 6 6 8 8 Depth (m) 10 Depth (m) 10 12 12 14 14 16 16 18 18 20 20 CUMMULATIVE ULTIMATE SKIN FRICTION AND ULTIMATE END BEARING CAPACITY VS DEPTH OF SINGLE SQUARE DRIVEN PILE

Appendix D Bearing Capacity and Shallow Foundation Sample sheet data

SPT Correlation Program - NovoSPT(Pro) 1.8.0.51 Novo Tech Software Ltd. www.novotechsoftware.com Developed by : Alireza Afkhami-Aghda This copy of program is licensed to : Poosit Sunlakaviset all calculations are done for SPT blow count N60=15 at depth 7.92 m; Corrected SPT N1(60)~13 after Liao and Whitman 1986 Table i : Input data and assumptions. Input Parameter Value Footing B (m) 1 Footing L (m) 1 Footing Df (m) 0.9 Footing P (kpa) 100 Safety factor FS 3 Apply ground water No Ground ti water level - ( Pile ) length (m) 5 Pile diameter (m) 0.4 Table ii : Soil layers from existing ground. Thickness Unit ( 3 ) W16.5i ht 4.3 18.7 5 17.5 Table iii : In-situ SPT test results. Depth (m) SPT N60 0.3 34 Bl C 32 0.61 12 11 0.91 18 17 1.22 26 25 1.52 23 22 1.83 25 24 2.13 43 41 2.44 22 21 2.74 21 20 3.05 17 16 3.35 18 17 3.66 20 19 3.96 19 18 4.27 25 24 4.57 23 22 4.88 24 23 5.18 25 24 5.49 22 21 5.79 24 23 6.1 24 23 6.4 26 25 6.71 28 26 7.01 18 17 7.32 20 19 7.62 24 23 7.92 16 15

Table 16 : Young's Modulus (Es). Source Young's Modulus Es Comments Ref# Var. (kpa) Schultze and Muhs, 1967 36409 Sand 41 N1(60) D'Appolonia et al., 1970 35772 Sand (normally consolidated) 41 N1(60) Tan et al., 1991 15000 Sand (normally consolidated) N60 Bowles, 1996 and Denver, 1982 27111 Sand (normally consolidated) 25 N60 Bowles, 1996 90000 Sand (normally consolidated) 25 N60 Bowles, 1996 50099 Sand (normally consolidated) 25 N60 Bowles, 1996 7500 Sand (saturated) 25 N60 Bowles, 1996 41250 Sands (all normally consolidated): average value 25 N60 Bowles, 1996 55750 Sand (over consolidated) OCR=1 25 N60 Bowles, 1996 25200 Gravelly sand 25 N60 Kulhawy and Mayne, 1990 7500 Sands with fines N60 Kulhawy and Mayne, 1990 15000 Clean sands (normally consolidated) N60 Kulhawy and Mayne, 1990 22500 Clean sands (over consolidated) N60 Tan et al., 1991 12600 Gravelly sand N60 Tan et al., 1991 9600 Clayey sand N60 Tan et al., 1991 6300 Silts, sandy silt, or clayey silt N60 Ghahramani and Behpoor, 1989 2550 Saturated clays, N60<25 7 N60 Skempton, 1986 23550 N60 Papadopoulos, 1992 19500 25 N60 Mezenbach, 1961 10150 Fine sand (above water level) 25 N60 Mezenbach, 1961 14450 Fine sand (below water level) 25 N60 Mezenbach, 1961 10650 Sand (medium) 25 N60 Mezenbach, 1961 19550 Coarse sand 25 N60 Mezenbach, 1961 22000 Sand and gravel 25 N60 Mezenbach, 1961 10350 Silty sand 25 N60 Mezenbach, 1961 9900 Silt 25 N60 Stroud, 1988 ~ 7500 to 30000 Weak rocks 47 N60

Table 17 : Undrained Shear Strength (Su) of Clays. Source Undrained shear Comments Ref# Var. strength Su (kpa) Terzaghi and Peck, 1967 98 N60 Meyerhof, 1956 150 N60 Peck et al., 1974 75 N1(60) Ghahramani and Behpoor, 1989 112 based on over 100 data in Iran, N60<25 7 N60 Decourt, 1989 158 from triaxial UU tests 47 N60 Stroud, 1974 68 Insensitive overconsolidated clays 47 N60 Stroud, 1989 68 PI=15% N60 Stroud, 1989 82 PI=50% N60 Stroud, 1989 75 In-sensitive weak rock with N60<200 N60 Sowers, 1979 ~ 38 to 69 Clayey sands (SC) and Silts (ML) N60 Sowers, 1979 ~ 69 to 150 Lean clays (CL) N60 Sowers, 1979 ~ 150 to 259 Fat clays (CH) N60 Stroud and Butler, 1975 ~ 60 to 90 valid for N60>5 N60 Japanese Road Association - valid for N60<5 N60 Reese, Touma and O'Neill, 1976 105 N60 Kulhawy and Mayne, 1990 90 30 N60 Hara et al., 1974 204 30 N60 Ajayi and Balogun, 1988 95 39 N60 Hatef and Keshavarz, 2004 104 based on 482 SPT and unconfined compression tests in Shiraz 39 N60 city (Iran) Tavares, 1988 105 for clays in Brazil 39 N60 Table 18 : Other Correction Factors. Source Correction Factor Comments Ref# Var. Skempton, 1986 1 Borehole Diameter Factor, Cb N60 Skempton, 1986 1 Sampling Method Factor, Cs N60 Skempton, 1986 0.94 Rod Length Factor, Cr N60 Skempton, 1986 1 Energy Ratio Factor, Ce N60

Table 19 : Depth Correction Factor (Cn). Source Depth Correction Comments Ref# Var. Factor Cn Gibbs and Holtz, 1957 1.64 equation by Teng, 1962 N60 Samson et al., 1986 0.82 N60 Peck and Bazaraa, 1969 0.85 N60 Peck, Hanson and Thornburn, 1974 0.88 N60 Seed, 1976 0.8 N60 Tokimatsu and Yoshimi, 1983 0.8 N60 Liao and Whitman, 1986 0.83 N60 Skempton, 1986 0.82 N60 Canadian Foundation Engineering Manual, 2006 0.87 4th Edition N60 Table 20 : Relative Density (Dr) of Sands. Source Relative Density (%) Comments Ref# Var. Gibbs and Holtz, 1957 59.8 Linear Interpolation N60 Meyerhof, 1957 54 Yoshida et al., 1988 48 with Co=25, C1=0.12, C2=0.46 1 N60 Idriss and Boulanger, 2003 52.2 19 N1(60) Skempton, 1986 47.7 Fine sands 42 N1(60) Skempton, 1986 43.9 Coarse sands 42 N1(60) Cubrinovski and Ishihara, 1999 56.7 All sands 42 N1(60) Cubrinovski and Ishihara, 1999 49.5 Clean sands 42 N1(60) Cubrinovski and Ishihara, 1999 69.4 Silty sands 42 N1(60)

Table 21 : Bearing Capacity of Footings on Sands (qa). Source Allowable Bearing Comments Ref# Var. Capacity qa (kpa) Burland and Burbidge, 1985 662.77 T=2.23, based on 25 mm allowable settlement 2 N60(ave) Terzaghi 247.57 Ng from Brinch and Hansen 1970, Nq from Bowles 1996, Fi from Hatanaka and Uchida, 1996 Meyerhof, 1976 390 Parry, 1977 490.91 in cohesionless soils (valid for Df<B) Peck et al., 1974 132.71 in cohesionless soils Table 22 : Settlement of Footing on Sands (S). Source Settlement (cm) Comments Ref# Var. modified Meyerhof, 1965 0.36 revised method after Meyerhof, 1956 N60ave modified Meyerhof (based on - for sands, B>1.2 m N60ave Terzaghi and Peck) Terzaghi and Peck, 1967 0.61 N60ave Peck and Bazaraa, 1969 0.2 N60ave Peck, Hanson and Thornburn, 1974 2.34 valid for B>0.9 m N60ave Burland and Burbidge, 1985 0.28 for normally consolidates sands N60ave Burland and Burbidge, 1985 0.03 for over consolidates sands N60ave Duncan and Buchignani, 1976 0.65 modified from Meyerhof 1965, for 1 year time effect N60ave Alpan, 1964 1.53 N1(60) Anagnostropoulos et al., 1991 0.28 database of 150 cases N60ave

Table 23 : Becker Hammer Test (BPT). Source Equivalent BPT Comments Ref# Var. (Nb30) Harder and Seed, 1986 15 does not consider friction of casing 15 N60 Alex Sy and Campanella, 1994 36 Rs = 0 kn 15,18 N60 Alex Sy and Campanella, 1994 20 Rs = 45 kn 15,18 N60 Alex Sy and Campanella, 1994 12 Rs = 90 kn 15,18 N60 Alex Sy and Campanella, 1994 6 Rs = 135 kn 15,18 N60 Alex Sy and Campanella, 1994 4 Rs = 180 kn 15,18 N60 Alex Sy and Campanella, 1994 2 Rs = 225 kn 15,18 N60 Alex Sy and Campanella, 1994 2 Rs = 270 kn 15,18 N60 Alex Sy and Campanella, 1994 1 Rs = 315 kn 15,18 N60 Alex Sy and Campanella, 1994 1 Rs = 360 kn 15,18 N60 Table 24 : Liquefaction (CRR). Source Cyclic Stress Ratio Comments Ref# Var. (CSR) University of California, Davis 0.14 based on on-going works 19 N1(60) Chinese Code 0.2 uses 0.833*N1(60) N1(60) Kokusho 0.23 uses 0.833*N1(60) N1(60) Seed 0.24 uses 0.833*N1(60) N1(60) Shibata 0.25 uses 0.833*N1(60) N1(60) Tokimatsu 0.22 uses 0.833*N1(60) N1(60) NCEER 1997 Workshop 0.14 for clean sand N1(60) Table 25 : Consistency. Source Consistency Comments Ref# Var. Meyerhof, 1965 Stiff for fine-grained soils N60 Meyerhof, 1965 Medium for coarse-grained soils N60

Table 26 : Friction Angle of Sands. Source Internal Friction Comments Ref# Var. Angle (deg) Peck et al., 1953 29.1 4 N60 Terzaghi, Peck and Mesri, 1996 35 Fine-grained sands 23,27 N60 Terzaghi, Peck and Mesri, 1996 31.8 Coarse-grained sands 23,27 N60 Hatanaka and Uchida, 1996 34.7 for Sands 2 N1(60) Hatanaka and Uchida, 1996 35.8 30 N1(60) Ohsaki et al., 1959 32.3 4 N60 JRA, 1990 30 for N60>5, Fi<=45 4 N60 Dunham, 1954 38.4 Angular and well-graded soils 4 N60 Dunham, 1954 33.4 Round and well-graded OR Angular and uniform-graded soils 4 N60 Dunham, 1954 28.4 Round and uniform-garded soils 4 N60 Shioi and Fukui, 1954 25.8 in general 1 N70 Shioi and Fukui, 1954 30.2 for roads and bridges 1 N70 Shioi and Fukui, 1954 31.6 for buildings 1 N70 Meyerhof, 1959 35.2 Dr from Yoshida, 1988 N60 Peck, Hanson and Thornburn, 1974 31.7 is not recommended for shallow depths (less than 1 to 2 metres) 12 N1(60) Kampengsen 36.7 24 N60 Kampengsen 38.3 24 N1(60) Chonburi 35.4 24 N60 Chonburi 35.7 24 N1(60) Ayuthaya 36.2 24 N60 Ayuthaya 34.7 24 N1(60) Wolff, 1989 30.8 an approximation based on Peck et al., 1974 30 N1(60) Kulhawy and Mayne, 1990 35.4 N60 Moh, Chin, Lin and Woo, 1989 32.7 granular soils in Taipei 33 N1(60) Halanakar and Uchida, 1996 32.8 25 N1(60) Duncan, 2004 45 Gravel, Cu>4 45 Dr Duncan, 2004 38.6 Sand, Cu<6 45 Dr Duncan, 2004 43.6 Sand, Cu>6 45 Dr

Table 27 : Shear Wave Velocity (Vs). Source Vs (m/s) Comments Ref# Var. Kanai et al., 1966 96 for all soils N60 Imai et al., 1975 227 for all soils N60 Imai, 1977 212 Holocene clay N1(60) Imai, 1977 187 Holocene sand N1(60) Imai, 1977 237 Pleistocene clay N1(60) Imai, 1977 218 Pleistocene sand N1(60) Imai and Yoshimura, 1970 186 for all soils N60 Imai and Yoshimura, 1975 224 from 192 samples N60 Imai and Tonouchi, 1982 176 for gravelly soils N60 Imai and Tonouchi, 1982 207 for all soils N60 Ohta et al., 1972 231 for sands N60 Ohta and Goto, 1978 85 for Holocene clays 34 N60 Ohta and Goto, 1978 91 for Holocene sands 34 N60 Ohta and Goto, 1978 97 for Holocene sands and gravels 34 N60 Ohta and Goto, 1978 123 for Holocene gravels 34 N60 Ohta and Goto, 1978 110 for Pleistocene clays 34 N60 Ohta and Goto, 1978 118 for Pleistocene sands 34 N60 Ohta and Goto, 1978 127 for Pleistocene sands and gravels 34 N60 Ohta and Goto, 1978 160 for Pleistocene gravels 34 N60 JRA, 1980 247 for clays 40 N60 JRA, 1980 197 for sands 40 N60 Ohba and Toriuma, 1970 186 N1(60) Iyisan 208 13 N60 Tomio Inazaki, 2006 254 Public Works Research Institute of Japan 36 N60 Baziar, Fallah, Razeghi and 413 for all soils in Iran (function of depth) N1(60) Khorasani Okamota et 1998 al., 1989 267 Pleistocene sand N1(60) Tamura and Yamazaki, 2002 246 function of depth N1(60) Ulugergerli and Uyanik, 2004 ~ 63 to 469 Clay, slit and gravel in western Turkey 31 N60 Jafari, Shafiee and Razmkhak, 195 Clayey soils in Tehran (uses N60) 35 N60 2002 Jafari, Shafiee and Razmkhak, 177 Silty soils in Tehran (uses N60) 35 N60 2002 Jafari, Shafiee and Razmkhak, 190 Fine-grained soils in Tehran (uses N60) 35 N60 2002 Jafari et al., 1997 220 for all soils N60 Yokota et al., 1991 251 for all soils N60 Lee, 1990 333 for clays N60 Lee, 1990 252 for silts N60 Lee, 1990 215 for sands N60 Sykora and Stokoe, 1983 219 for coarse-grained soils N60 Seed et al., 1983 217 for sands N60 Seed and Idriss, 1981 236 for all soils N60 Shibata, 1970 124 for sands N60 Ohsaki and Iwazaki, 1973 211 for coarse-grained soils N60 Ohsaki and Iwazaki, 1973 236 for all soils N60 Anbazhagan and Sitharam, 2008 214 based on 58 sites in Banglore 43 N1(60)

Table 28 : Shear Modulus (Gmax). Reference Shear Modulus Comments Ref# Var. Gmax (MPa) Imai and Tonouchi, 1982 173 37 N1(60) Seed, Idriss and Arango, 1983 98 N60 Anbazhagan, Sitharam and Diryac, 66 data gathered from Turkey 37 N1(60) 2007 Wroth et al., 1979 105 based on Ohsaki and Iwasaki, 1973 44 N60 Ohsaki and Iwasaki, 1973 97 38 N60 Seed et al., 1986 124 using Japanese data 38 N1(60) Seed et al., 1986 103 46 N60 Randolph, 1981 15 is conservative 44 N60 Table 29 : Bearing Capacity of Piles. Source Unit Ultimate Bearing Comments Ref# Var. of Pile (kpa) GEO, 1996 and Yau 2000 16 fs for bored piles in saprolites 10 N60 Meyerhof, 1976 22 fs for small displacement piles (bored) 28 N60 Meyerhof, 1976 45 fs for large displacement piles (driven) 28 N60 Yves Robert, 1997 28 fs in granular soil 28 N60 Quiros and Reese, 1977 56 fs for drilled piles 46 N60 Reese and Wright, 1977 42 fs for drilled piles 46 N60 Reese and O'Neill, 1988 192 fs for drilled piles (beta method, function of depth) 46 - Hassan and O'Neill, 1994 192 fs for drilled piles (modified beta method, function of depth) 46 N60 Meyerhof, 1976 1502 qp for small displacement piles (bored) with upper limit cut-off 28 N1(60) Meyerhof, 1976 5008 qp for large displacement piles (driven) with upper limit cut-off 28 N1(60) Yves Robert, 1997 1440 qp for bored piles in granular soil 28 N1(60) Yves Robert, 1997 2379 qp for driven piles in granular soil 28 N1(60) Reese and O'Neill, 1988 900 qp with upper limit of 4300 KPa in drilled shafts 46 N60 Detta et al., 1980 ~ 2625 to 8750 qp in calcareous sands 39 N60 Reese and Wright, 1977 958 qp for drilled piles 46 N60

Table 30 : Misc.. Source Value Parameter Ref# Var. Meyerhof, 1965 6 CPT tip resistance (qc), in MPa N60 J. Fred Triggs and Paul D. 25 Wildcat Dynamic Penetrometer blow counts /10cm N60 Simpson, 1990 Stroud, 1989 ~ 133.12 E-6 mv for PI=15%, in 1/kPa N1(60) Stroud, 1989 ~ 199.68 E-6 mv for PI=50%, in 1/kPa N1(60) Ohya, 1982 5424 Pressuremeter horizontal modulus (E_PMT) in sands, in kpa N60 Kulhawy and Mayne, 1990 17.3 Saturated unit weight for Sands, in kn/m3 N60 Kulhawy and Mayne, 1990 18.9 Saturated unit weight for Clays, in kn/m3 N60 Ulugergerli and Uyanik, 2004 ~ 16.6 to 19.4 Unit weight for clay, slit and gravel in western Turkey (using N60 average Vs), in kn/m3 Ziaie Moayed and Naeini, 2006 106.1 Modulus of subgrade reaction Ks30 in gravely soils, in MN/m3 29 N1(60) Mayne and Kemper, 1984 6.2 Over Consolidation Ratio (OCR) for clays N60 Muayed Ismail, 2008 ~ 1.3 E-3 D10 for granular soil near Baghdad N60<35, in mm 32 N60 Schnaid et al., 2004 ~ 55.2 to 124.3 initial stiffness modulus (Go) for un-cemented soils, in MPa 47 N60 Schnaid et al., 2004 ~ 124.3 to 331.5 initial stiffness modulus (Go) for cemented soils, in MPa 47 N60 Sandorni, 1991 20.6 operational stiffness modulus (E) for cemented soils, in MPa 47 N60

APPENDIX E Sample Sheet for Long Term Settlement Calculation

Input View 1 2 VEHICLE LOAD EMBANKMENT LOAD 1 Stiff Clay Very Stiff Clay Sand 0.000 100.000 Materials Stiff Clay Very Stiff Clay Sand MSettle 7.3 : RoadWidth12.0m.sli P.O. Box 69 2600 AB Delft Phone +31 15 269 35 00 Fax +31 15 261 08 21 date 30/10/2009 PGS Power Plant Nongsaeng Road width 12.0 m.. Settlement Prediction Height 5.0 m. Annex

Time-History 105.921730 105.921725 105.921720 0.000000 0.200000 0.400000 0.600000 0.800000 Settlement [m] Loading [kpa] 105.921715 1 10 100 1000 10000 Time [days] 1.000000 1 10 100 1000 10000 Vertical 2 (X = 50.000 m; Z = 0.000 m) Method = Isotache with Terzaghi (Natural strain) Depth = 0.000 (-) [m] Settlement after 10000 days = 1.082 [m] P.O. Box 69 2600 AB Delft Phone +31 15 269 35 00 Fax +31 15 261 08 21 MSettle 7.3 : RoadWidth12.0m.sli date 30/10/2009 PGS Power Plant Nongsaeng Road width 12.0 m.. Settlement Prediction Height 5.0 m. Annex

Time-History 2.633325 2.633320 2.633315 0.000000 0.100000 0.200000 0.300000 Settlement [m] Loading [kpa] 2.633310 1 10 100 1000 10000 Time [days] 0.400000 1 10 100 1000 10000 Vertical 1 (X = 34.000 m; Z = 0.000 m) Method = Isotache with Terzaghi (Natural strain) Depth = 0.000 (-) [m] Settlement after 10000 days = 0.453 [m] P.O. Box 69 2600 AB Delft Phone +31 15 269 35 00 Fax +31 15 261 08 21 MSettle 7.3 : RoadWidth12.0m.sli date 30/10/2009 PGS Power Plant Nongsaeng Road width 12.0 m.. Settlement Prediction Height 5.0 m. Annex

Date of report: 30/10/2009 Time of report: 12:58:40 Report for MSettle 7.3 Settlement Calculations Developed by GeoDelft Date of calculation: 30/10/2009 Time of calculation: 12:36:06 Filename: D:\..\00-IPP-PhaseII\01-Soil-Report\SettlementAnalysis\RoadWidth12.0m Project identification: PGS Power Plant Nongsaeng Road width 12.0 m.. Settlement Prediction Height 5.0 m.

1 Echo of the Input 1.1 Layer Boundaries Boundary number Co-ordinates [m] 3 - X - 0.000 100.000 3 - Y - 0.000 0.000 2 - X - 0.000 100.000 2 - Y - -6.000-6.000 1 - X - 0.000 100.000 1 - Y - -16.000-16.000 0 - X - 0.000 100.000 0 - Y - -18.600-18.600 MSettle 7.3 1.2 Soil Profiles Layer Material name PL-line PL-line number top bottom 3 Stiff Clay 1 1 2 Very Stiff Clay 1 1 1 Sand 1 1 1.3 Soil Properties Layer Drained Unit weight Vert. consolid. number Unsaturated Saturated coefficient Cv [kn/m³] [kn/m³] [m2/s] 3 No 21.00 21.00 7.31E-08 2 No 22.00 22.00 7.31E-08 1 Yes 21.00 21.00 1.00E-01 Layer POP OCR number [kn/m²] [-] 3 1.30 2 1.30 1 1.30 Layer Direct Secular Secular number comp. index comp. index comp. rate a [-] b [-] c [-] 3 1.000E-02 1.000E-01 5.000E-03 2 1.000E-02 1.000E-01 5.000E-03 1 1.000E-02 1.000E-01 5.000E-03 1.4 Verticals Vertical number X co-ordinates [m] 1-3 0.000 34.000 50.000 Calculation cross section at Z = 0.000 m 30/10/2009 D:\..\SettlementAnalysis\RoadWidth12.0m Page 2

2 Results per Vertical 2.1 Results for Vertical 1 (X = 34.00 m; Z = 0.00 m) Depth Initial stress Final stress S-total S-water S-eff. S-total S-water S-eff. [m] [kn/m²] [kn/m²] [kn/m²] [kn/m²] [kn/m²] [kn/m²] Layer 3 0.00 0.000 0.000 0.000 2.633 0.000 2.633-0.10 2.100 0.000 2.100 4.733 0.000 4.733-0.20 4.200 0.000 4.200 6.837 0.000 6.837-0.30 6.300 0.000 6.300 8.949 0.000 8.949-0.40 8.400 0.000 8.400 11.078 0.000 11.078-0.50 10.500 0.000 10.500 13.229 0.000 13.229-0.60 12.600 0.981 11.619 15.406 0.981 14.425-0.70 14.700 1.962 12.738 17.611 1.962 15.649-0.80 16.800 2.943 13.857 19.841 2.943 16.898-0.90 18.900 3.924 14.976 22.094 3.924 18.170-1.00 21.000 4.905 16.095 24.366 4.905 19.461-2.00 42.000 14.715 27.285 47.597 14.715 32.882-3.00 63.000 24.525 38.475 71.074 24.525 46.549-4.00 84.000 34.335 49.665 94.550 34.335 60.215-5.00 105.000 44.145 60.855 117.955 44.145 73.810-6.00 126.000 53.955 72.045 141.248 53.955 87.293 Layer 2-6.00 126.000 53.955 72.045 141.248 53.955 87.293-7.00 148.000 63.765 84.235 165.402 63.765 101.637-8.00 170.000 73.575 96.425 189.400 73.575 115.825-9.00 192.000 83.385 108.615 213.232 83.385 129.847-10.00 214.000 93.195 120.805 236.897 93.195 143.702-11.00 236.000 103.005 132.995 260.396 103.005 157.391-12.00 258.000 112.815 145.185 283.735 112.815 170.920-13.00 280.000 122.625 157.375 306.922 122.625 184.297-14.00 302.000 132.435 169.565 329.965 132.435 197.530-15.00 324.000 142.245 181.755 352.875 142.245 210.630-16.00 346.000 152.055 193.945 375.660 152.055 223.605 Layer 1-16.00 346.000 152.055 193.945 375.660 152.055 223.605-16.70 360.700 158.922 201.778 390.840 158.922 231.918-17.30 373.300 164.808 208.492 403.810 164.808 239.002-17.90 385.900 170.694 215.206 416.742 170.694 246.048-18.60 400.600 177.561 223.039 431.786 177.561 254.225 MSettle 7.3 Layers Type of drainage Time Degree of consolidation [%] [days] 1 10 100 1000 10000 3-2 undrained, single drainage 81066 0.57 1.78 5.61 17.72 55.86 1-1 drained 100.00 100.00 100.00 100.00 100.00 30/10/2009 D:\..\SettlementAnalysis\RoadWidth12.0m Page 3

3 Settlements 3.1 Settlements Vertical X co-ordinate Surface level Settlement number [m] [m] [m] 1 34.00 0.00 0.453 2 50.00 0.00 1.082 End of Report MSettle 7.3 30/10/2009 D:\..\SettlementAnalysis\RoadWidth12.0m Page 4

TABLE 1 UNCONFINED COMPRESSION TEST Sample Sheet

ASTM TESTING CO.,LTD. UNCONFINED COMPRESSION TEST Project : Location. SIAM ENERGY POWER PLANT BANGKLA CHACHOENGSAO Depth, m. : 3.00-3.50 Init. Area : 25.04 sq.cm. Boring No. BH-1 Dia.(D), cm. : 5.65 Wet Dens.: 1.538 gm/cc Sample No. 1 Height(H), cm. : 11.83 Dry Dens. : 1.408 gm/cc Testing Date : 13/06/52 Soil Weight, gm. : 455.43 Sample Description: PR constant : 0.2262 kg./div. Water Cont, % 9.24 Strain Rate : 0.05 mm./min. Cap +PR Load, kg. : 0.208 SAMPLE AFTER TEST Deform Reading : 2.54E-05 mm./div. Tested by VERAPOL Deform. Load Strain Cor. Axial Dev. Tangent Secant Summary of 0.000 Rdg. % Area Load Stress Modulus Modulus Strength mm. (div.) sq.cm N kpa MPa MPa Properties 0 0.0 0.000 25.04 0.0 0.0 H/D ratio= 2.09 20 4.0 0.000 25.04 11 4.4 0.00 cor.factor = 0.990 40 5.8 0.001 25.04 15 6.0 371.21 692.88 60 7.8 0.001 25.04 19 7.7 412.45 599.40 qu = 46.0 kpa 80 9.4 0.002 25.04 23 9.1 329.96 532.04 cor. qu = 46.4 kpa 100 10.9 0.002 25.04 26 10.5 309.33 487.50 c = qu/2 = 23.0 kpa 120 12.3 0.003 25.04 29 11.7 288.71 454.37 cor. c = 2.37 T/m 2 140 13.9 0.003 25.04 33 13.1 329.95 436.59 160 15.3 0.003 25.04 36 14.4 288.70 418.11 Tangent Modulus at 50 % qu 180 16.9 0.004 25.04 40 15.8 329.94 408.31 = 230.95 MPa 200 18.4 0.004 25.04 43 17.1 309.32 398.41 Secant Modulus at 50 % qu 250 21.2 0.005 25.04 49 19.6 230.95 364.92 = 364.92 MPa 300 25.7 0.006 25.04 59 23.6 371.17 365.96 350 29.5 0.008 25.04 67 26.9 313.42 358.46 400 32.9 0.009 25.04 75 30.0 280.42 348.70 450 36.5 0.010 25.04 83 33.1 296.91 342.95 500 40.0 0.011 25.04 91 36.2 288.66 337.52 550 43.0 0.012 25.05 97 38.90 247.41 329.33 600 45.0 0.013 25.05 102 40.67 164.92 315.63 650 47.0 0.014 25.05 106 42.44 164.92 304.03 700 48.7 0.015 25.05 110 43.95 140.17 292.33 750 50.0 0.016 25.05 113 45.10 107.18 279.99 800 51.0 0.017 25.05 115 45.98 82.43 267.64 850 51.0 0.018 25.05 115 45.98-0.05 251.89 900 51.0 0.019 25.05 115 45.98-0.05 237.90 950 50.0 0.020 25.05 113 45.10-82.52 221.03 1000 49.0 0.021 25.05 111 44.21-82.52 205.85 DEVIATER STRESS, kpa 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0 0.005 0.01 0.015 0.02 0.025 STRAIN, %

ASTM TESTING CO.,LTD. UNCONFINED COMPRESSION TEST Project : Location. SIAM ENERGY POWER PLANT BANGKLA CHACHOENGSAO Depth, m. : 6.00-6.50 Init. Area : 22.99 sq.cm. Boring No. BH-1 Dia.(D), cm. : 5.41 Wet Dens.: 1.635 gm/cc Sample No. 1 Height(H), cm. : 12.06 Dry Dens. : 1.486 gm/cc Testing Date : 13/06/52 Soil Weight, gm. : 453.36 Sample Description: PR constant : 0.2262 kg./div. Water Cont, % 10.04 Strain Rate : 0.05 mm./min. Cap +PR Load, kg. : 0.208 SAMPLE AFTER TEST Deform Reading : 2.54E-05 mm./div. Tested by VERAPOL Deform. Load Strain Cor. Axial Dev. Tangent Secant Summary of 0.000 Rdg. % Area Load Stress Modulus Modulus Strength mm. (div.) sq.cm N kpa MPa MPa Properties 0 0.0 0.000 22.99 0.0 0.0 H/D ratio= 2.23 20 3.6 0.000 22.99 10 4.4 0.00 cor.factor = 0.976 40 5.5 0.001 22.99 14 6.2 435.41 735.56 60 7.2 0.001 22.99 18 7.8 389.57 620.23 qu = 23.1 kpa 80 8.7 0.002 22.99 21 9.3 343.73 551.11 cor. qu = 23.6 kpa 100 10.1 0.002 22.99 24 10.6 320.82 505.05 c = qu/2 = 11.5 kpa 120 11.2 0.003 22.99 27 11.7 252.06 462.88 cor. c = 1.21 T/m2 140 12.0 0.003 22.99 29 12.5 183.31 422.95 160 13.2 0.003 22.99 31 13.6 274.98 404.45 Tangent Modulus at 50 % qu 180 14.0 0.004 22.99 33 14.4 183.31 379.88 = 320.82 MPa 200 14.9 0.004 22.99 35 15.3 206.23 362.51 Secant Modulus at 50 % qu 250 15.9 0.005 22.99 37 16.2 91.65 308.34 = 505.05 MPa 300 17.0 0.006 22.99 40 17.3 100.81 273.75 350 17.9 0.007 22.99 42 18.2 82.48 246.43 400 18.7 0.008 22.99 44 18.9 73.31 224.79 450 19.0 0.009 22.99 44 19.2 27.48 202.86 500 19.9 0.011 22.99 46 20.1 82.47 190.82 550 20.5 0.012 22.99 48 20.67 54.97 178.47 600 20.9 0.013 22.99 48 21.05 36.64 166.65 650 21.7 0.014 22.99 50 21.83 73.30 159.47 700 22.5 0.015 22.99 52 22.60 73.30 153.32 750 22.9 0.016 22.99 53 22.98 36.64 145.54 800 23.0 0.017 22.99 53 23.08 9.14 137.01 850 23.0 0.018 22.99 53 23.08-0.02 128.95 900 22.7 0.019 22.99 52 22.79-27.52 120.26 950 22.0 0.020 22.99 51 22.11-64.18 110.55 1000 21.0 0.021 22.99 49 21.15-91.67 100.44 DEVIATER STRESS, kpa 25.0 20.0 15.0 10.0 5.0 0.0 0 0.005 0.01 0.015 0.02 0.025 STRAIN, %

ASTM TESTING CO.,LTD. UNCONFINED COMPRESSION TEST Project : Location. SIAM ENERGY POWER PLANT BANGKLA CHACHOENGSAO Depth, m. : 7.50-8.00 Init. Area : 29.00 sq.cm. Boring No. BH-1 Dia.(D), cm. : 6.08 Wet Dens.: 1.935 gm/cc Sample No. 1 Height(H), cm. : 11.81 Dry Dens. : 1.549 gm/cc Testing Date : 13/06/52 Soil Weight, gm. : 663.01 Sample Description: PR constant : 0.2262 kg./div. Water Cont, % 24.97 Strain Rate : 0.05 mm./min. Cap +PR Load, kg. : 0.208 SAMPLE AFTER TEST Deform Reading : 2.54E-05 mm./div. Tested by VERAPOL Deform. Load Strain Cor. Axial Dev. Tangent Secant Summary of 0.000 Rdg. % Area Load Stress Modulus Modulus Strength mm. (div.) sq.cm N kpa MPa MPa Properties 0 0.0 0.000 29.00 0.0 0.0 H/D ratio= 1.94 20 4.0 0.000 29.00 11 3.8 0.00 cor.factor = 1.008 40 6.0 0.001 29.00 15 5.3 355.75 615.40 60 8.5 0.001 29.00 21 7.2 444.68 558.50 qu = 48.1 kpa 80 10.3 0.002 29.00 25 8.6 320.16 498.91 cor. qu = 47.8 kpa 100 12.8 0.002 29.00 30 10.5 444.67 488.06 c = qu/2 = 24.1 kpa 120 14.8 0.003 29.00 35 12.0 355.73 466.01 cor. c = 2.44 T/m 2 140 16.0 0.003 29.00 38 12.9 213.43 429.93 160 17.0 0.003 29.00 40 13.7 177.86 398.42 Tangent Modulus at 50 % qu 180 20.6 0.004 29.00 48 16.5 640.31 425.30 = 341.48 MPa 200 23.2 0.004 29.00 54 18.4 462.44 429.01 Secant Modulus at 50 % qu 250 28.0 0.005 29.00 64 22.1 341.48 411.51 = 411.51 MPa 300 36.0 0.006 29.00 82 28.2 569.14 437.78 350 42.0 0.008 29.00 95 32.8 426.84 436.22 400 48.0 0.009 29.00 109 37.4 426.83 435.04 450 50.0 0.010 29.00 113 38.9 142.25 402.51 500 54.0 0.011 29.00 122 42.0 284.53 390.71 550 58.0 0.012 29.00 131 45.06 284.53 381.06 600 60.0 0.013 29.01 135 46.59 142.24 361.16 650 62.0 0.014 29.01 140 48.12 142.23 344.32 700 62.0 0.015 29.01 140 48.12-0.05 319.72 750 61.0 0.016 29.01 137 47.36-71.19 293.66 800 60.0 0.017 29.01 135 46.59-71.19 270.86 DEVIATER STRESS, kpa 50.0 40.0 30.0 20.0 10.0 0.0 0 0.005 0.01 0.015 0.02 STRAIN, %

TABLE 2 ATTERBERG LIMIT TEST Sample Sheet

ASTM TESTING CO.,LTD. ATTERBERG LIMITS TEST Project. SIAM ENERGY POWER PLANT Location. BANGKLA CHACHOENGSAO Test No. 1 Boring. No. BH - 1 Tested by. LAMPRAI Depth. (m.) 1.50-1.95 Check by. PANYA Date. Water Content Determination Liquid Limit Wl Plasttic Limit Wp 16/6/2552 Container Number B-27 B-28 B-59 B-21 A-67 A-22 A-3 Plasticity index Ip = Wl - Wp Number of Blows 19 24 32 40 Wt. Wet Soil+Container gm. 40.950 38.860 35.530 30.950 21.560 21.540 19.580 Flow Index If = Slope of Flow Curve Wt. Dry Soil+Container gm. 35.540 32.260 29.990 26.830 18.890 18.980 16.820 Wt. Water gm. 5.410 6.600 5.540 4.120 2.670 2.560 2.760 Toughness Index It = Ip / If Wt. Container gm. 24.310 18.360 18.080 17.820 9.350 9.590 6.560 Wt. Dry Siol gm. 11.230 13.900 11.910 9.010 9.540 9.390 10.260 Water Content %. 48.17 47.48 46.52 45.73 27.99 27.26 26.90 Average (%) 47.34 27.38 Activity of Clay A = Ip / (% by wt.<2u) Plasticity Index (lp) = (WL)-(Wp) = 19.95 (%) 49.00 Water Content (%) (Liquid Limit WL) 48.00 47.00 46.00 47.34 45.00 10 Number of Blows. 100

ASTM TESTING CO.,LTD. ATTERBERG LIMITS TEST Project. SIAM ENERGY POWER PLANT Location. BANGKLA CHACHOENGSAO Test No. 2 Boring. No. BH - 1 Tested by. LAMPRAI Depth. (m.) 3.00-8.00 Check by. PANYA Date. Water Content Determination Liquid Limit Wl Plasttic Limit Wp 16/6/2552 Container Number B-61 B-55 B-34 B-73 A-69 A-19 A-24 Plasticity index Ip = Wl - Wp Number of Blows 18 24 32 40 Wt. Wet Soil+Container gm. 46.030 40.900 35.450 32.340 20.980 21.880 21.400 Flow Index If = Slope of Flow Curve Wt. Dry Soil+Container gm. 39.210 35.750 30.190 27.990 18.880 19.520 19.110 Wt. Water gm. 6.820 5.150 5.260 4.350 2.100 2.360 2.290 Toughness Index It = Ip / If Wt. Container gm. 24.210 24.170 18.050 17.710 9.570 9.500 9.450 Wt. Dry Siol gm. 15.000 11.580 12.140 10.280 9.310 10.020 9.660 Water Content %. 45.47 44.47 43.33 42.32 22.56 23.55 23.71 Average (%) 44.27 23.27 Activity of Clay A = Ip / (% by wt.<2u) Plasticity Index (lp) = (WL)-(Wp) = 21.00 (%) 46.00 Water Content (%) (Liquid Limit WL) 45.00 44.00 43.00 44.27 42.00 10 Number of Blows. 100

ASTM TESTING CO.,LTD. ATTERBERG LIMITS TEST Project. SIAM ENERGY POWER PLANT Location. BANGKLA CHACHOENGSAO Test No. 3 Boring. No. BH - 1 Tested by. LAMPRAI Depth. (m.) 8.00-12.45 Check by. PANYA Date. Water Content Determination Liquid Limit Wl Plasttic Limit Wp 16/6/2552 Container Number B-44 B-24 B-17 B-19 A-36 A-46 A-62 Plasticity index Ip = Wl - Wp Number of Blows 18 24 33 40 Wt. Wet Soil+Container gm. 44.750 40.710 35.320 33.040 21.490 18.170 18.280 Flow Index If = Slope of Flow Curve Wt. Dry Soil+Container gm. 38.250 35.520 29.950 28.380 19.450 16.070 16.160 Wt. Water gm. 6.500 5.190 5.370 4.660 2.040 2.100 2.120 Toughness Index It = Ip / If Wt. Container gm. 24.480 24.300 18.030 17.860 9.330 6.500 6.490 Wt. Dry Siol gm. 13.770 11.220 11.920 10.520 10.120 9.570 9.670 Water Content %. 47.20 46.26 45.05 44.30 20.16 21.94 21.92 Average (%) 46.08 21.34 Activity of Clay A = Ip / (% by wt.<2u) Plasticity Index (lp) = (WL)-(Wp) = 24.74 (%) 48.00 Water Content (%) (Liquid Limit WL) 47.00 46.00 45.00 46.08 44.00 10 Number of Blows. 100

ASTM TESTING CO.,LTD. ATTERBERG LIMITS TEST Project. SIAM ENERGY POWER PLANT Location. BANGKLA CHACHOENGSAO Test No. 4 Boring. No. BH - 1 Tested by. LAMPRAI Depth. (m.) 12.45-15.45 Check by. PANYA Date. Water Content Determination Liquid Limit Wl Plasttic Limit Wp 16/6/2552 Container Number B-38 B-42 B-26 B-80 A-54 A-4 A-13 Plasticity index Ip = Wl - Wp Number of Blows 18 24 33 40 Wt. Wet Soil+Container gm. 43.880 39.060 36.550 34.380 19.320 19.180 20.920 Flow Index If = Slope of Flow Curve Wt. Dry Soil+Container gm. 36.740 33.570 30.290 28.590 16.550 16.400 18.350 Wt. Water gm. 7.140 5.490 6.260 5.790 2.770 2.780 2.570 Toughness Index It = Ip / If Wt. Container gm. 24.160 23.680 18.730 17.670 6.510 6.540 9.430 Wt. Dry Siol gm. 12.580 9.890 11.560 10.920 10.040 9.860 8.920 Water Content %. 56.76 55.51 54.15 53.02 27.59 28.19 28.81 Average (%) 55.34 28.20 Activity of Clay A = Ip / (% by wt.<2u) Plasticity Index (lp) = (WL)-(Wp) = 27.14 (%) 57.00 Water Content (%) (Liquid Limit WL) 56.00 55.00 54.00 55.34 53.00 10 Number of Blows. 100

ASTM TESTING CO.,LTD. ATTERBERG LIMITS TEST Project. SIAM ENERGY POWER PLANT Location. BANGKLA CHACHOENGSAO Test No. 5 Boring. No. BH - 1 Tested by. LAMPRAI Depth. (m.) 15.45-21.45 Check by. PANYA Date. Water Content Determination Liquid Limit Wl Plasttic Limit Wp 16/6/2552 Container Number B-52 B-48 B-43 B-25 A-9 A-47 A-74 Plasticity index Ip = Wl - Wp Number of Blows 18 24 33 40 Wt. Wet Soil+Container gm. 40.170 36.050 34.100 33.690 18.630 18.410 19.670 Flow Index If = Slope of Flow Curve Wt. Dry Soil+Container gm. 34.430 29.690 28.470 28.240 16.590 16.280 17.450 Wt. Water gm. 5.740 6.360 5.630 5.450 2.040 2.130 2.220 Toughness Index It = Ip / If Wt. Container gm. 24.110 18.080 17.990 17.940 6.480 6.430 6.450 Wt. Dry Siol gm. 10.320 11.610 10.480 10.300 10.110 9.850 11.000 Water Content %. 55.62 54.78 53.72 52.91 20.18 21.62 20.18 Average (%) 54.61 20.66 Activity of Clay A = Ip / (% by wt.<2u) Plasticity Index (lp) = (WL)-(Wp) = 33.95 (%) 56.00 Water Content (%) (Liquid Limit WL) 55.00 54.00 53.00 54.61 52.00 10 Number of Blows. 100

TABLE 3 SIEVE ANALYSIS Sample Sheet

ASTM TESTING CO.,LTD. SIEVE ANALYSIS (ASTM D-422) Project : SIAM ENERGY POWER PLANT Sample : BH-1 Tested by: Lamprai Sample : BH-1 Tested by: Lamprai Location : Bangkla Chachoengsao Date of Test: 11-6-52 Location : Bangkla Chachoengsao Date of Test: 11-6-52 Depth,m : 1.50-1.95 Water Content,% : Depth,m : 3.00-8.00 Water Content,% : Before Washing(Sieve No.200) After Washed and Oven Dry Before Washing(Sieve No.200) After Washed and Oven Dry Wt.Cont.+Dry Soil,gm 179.98 Wt.Cont.+Dry Soil,gm 68.59 Wt.Cont.+Dry Soil,gm 252.33 Wt.Cont.+Dry Soil,gm 96.57 Wt.Container,gm 64.31 Wt.Container,gm 64.31 Wt.Container,gm 58.11 Wt.Container,gm 58.11 Wt.Dry Soil,gm 115.67 Wt.Dry Soil,gm 4.28 Wt.Dry Soil,gm 194.22 Wt.Dry Soil,gm 38.46 Wt.Dry Soil,gm 115.67 Washing Loss,gm 111.39 Wt.Dry Soil,gm 194.22 Washing Loss,gm 155.76 Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Size Oprning Retain Soil Ret. Retain Soil Ret. Finer Size Opening Retain Soil Ret. Retain Soil Ret. Finer mm. gm gm % % % mm. gm gm % % % 1 in. 25.40 1 in. 25.40 3/4 in. 19.05 3/4 in. 19.05 1/2 in. 12.70 1/2 in. 12.70 3/8 in. 9.53 3/8 in. 9.53 # 4 4.75 # 4 4.75 0.31 0.31 0.16 0.16 99.84 # 10 2.00 # 10 2.00 2.55 2.56 1.32 1.48 98.52 # 20 0.85 0.17 0.17 0.14 0.14 99.86 # 20 0.85 2.97 2.98 1.53 3.01 96.99 # 40 0.42 0.75 0.74 0.64 0.78 99.22 # 40 0.42 2.93 2.94 1.51 4.52 95.48 #100 0.15 2.30 2.27 1.96 2.74 97.26 #100 0.15 21.52 21.57 11.11 15.63 84.37 #200 0.075 1.10 1.08 0.94 3.68 96.32 #200 0.075 7.97 7.99 4.11 19.74 80.26 Pan 0.02 0.02 96.32 100.00 Pan 0.12 0.12 80.26 100.00 Total 4.34 4.28 Weighted Error,% -0.05 Total 38.37 38.46 Weighted Error,% 0.05 Sample : BH-1 Tested by: Lamprai Sample : BH-1 Tested by: Lamprai Location : Bangkla Chachoengsao Date of Test: 11-6-52 Location : Bangkla Chachoengsao Date of Test: 11-6-52 Depth,m : 8.00-12.45 Water Content,% : Depth,m : 12.45-15.45 Water Content,% : Before Washing(Sieve No.200) After Washed and Oven Dry Before Washing(Sieve No.200) After Washed and Oven Dry Wt.Cont.+Dry Soil,gm 445.71 Wt.Cont.+Dry Soil,gm 170.02 Wt.Cont.+Dry Soil,gm 313.06 Wt.Cont.+Dry Soil,gm 79.44 Wt.Container,gm 65.45 Wt.Container,gm 65.45 Wt.Container,gm 67.37 Wt.Container,gm 67.37 Wt.Dry Soil,gm 380.26 Wt.Dry Soil,gm 104.57 Wt.Dry Soil,gm 245.69 Wt.Dry Soil,gm 12.07 Wt.Dry Soil,gm 380.26 Washing Loss,gm 275.69 Wt.Dry Soil,gm 245.69 Washing Loss,gm 233.62 Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Size Opening Retain Soil Ret. Retain Soil Ret. Finer Size Opening Retain Soil Ret. Retain Soil Ret. Finer mm. gm gm % % % mm. gm gm % % % 1 in. 25.40 1 in. 25.40 3/4 in. 19.05 3/4 in. 19.05 1/2 in. 12.70 1/2 in. 12.70 3/8 in. 9.53 3/8 in. 9.53 # 4 4.75 17.87 17.81 4.68 4.68 95.32 # 4 4.75 0.39 0.38 0.15 0.15 99.85 # 10 2.00 25.11 25.02 6.58 11.26 88.74 # 10 2.00 1.46 1.42 0.58 0.73 99.27 # 20 0.85 12.50 12.46 3.28 14.54 85.46 # 20 0.85 3.84 3.75 1.53 2.26 97.74 # 40 0.42 8.16 8.13 2.14 16.68 83.32 # 40 0.42 2.50 2.44 0.99 3.25 96.75 #100 0.15 16.03 15.97 4.20 20.88 79.12 #100 0.15 2.44 2.38 0.97 4.22 95.78 #200 0.075 25.12 25.03 6.58 27.46 72.54 #200 0.075 1.71 1.67 0.68 4.90 95.10 Pan 0.14 0.14 72.54 100.00 Pan 0.02 0.02 95.10 100.00 Total 104.93 104.57 Weighted Error,% -0.09 Total 12.36 12.06 Weighted Error,% -0.12 100 1" 3/4" 1/2"3/8" 4# 10# 20# 40# 100# 200# 90 80 70 % Passing by Weight 60 50 40 30 Sample No.1 Sample No.2 Sample No.3 20 10 Sample No.4 0 100.00 10.00 1.00 0.10 0.01 Diameter in Milimeter GRAIN SIZE DISTRIBUTION CURVE

ASTM TESTING CO.,LTD. SIEVE ANALYSIS (ASTM D-422) Project : SIAM ENERGY POWER PLANT Sample : BH-1 Tested by: Lamprai Sample : Tested by: Location : Bangkla Chachoengsao Date of Test: 11-6-52 Location : Date of Test: Depth,m : 15.45-21.45 Water Content,% : Depth,m : Water Content,% : Before Washing(Sieve No.200) After Washed and Oven Dry Before Washing(Sieve No.200) After Washed and Oven Dry Wt.Cont.+Dry Soil,gm 307.40 Wt.Cont.+Dry Soil,gm 147.04 Wt.Cont.+Dry Soil,gm Wt.Cont.+Dry Soil,gm Wt.Container,gm 68.29 Wt.Container,gm 68.29 Wt.Container,gm Wt.Container,gm Wt.Dry Soil,gm 239.11 Wt.Dry Soil,gm 78.75 Wt.Dry Soil,gm Wt.Dry Soil,gm Wt.Dry Soil,gm 239.11 Washing Loss,gm 160.36 Wt.Dry Soil,gm Washing Loss,gm Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Size Oprning Retain Soil Ret. Retain Soil Ret. Finer Size Opening Retain Soil Ret. Retain Soil Ret. Finer mm. gm gm % % % mm. gm gm % % % 1 in. 25.40 1 in. 25.40 3/4 in. 19.05 3/4 in. 19.05 1/2 in. 12.70 1/2 in. 12.70 3/8 in. 9.53 3/8 in. 9.53 # 4 4.75 6.73 6.73 2.81 2.81 97.19 # 4 4.75 # 10 2.00 18.01 18.01 7.53 10.35 89.65 # 10 2.00 # 20 0.85 18.21 18.21 7.61 17.96 82.04 # 20 0.85 # 40 0.42 10.64 10.64 4.45 22.41 77.59 # 40 0.42 #100 0.15 14.88 14.88 6.22 28.63 71.37 #100 0.15 #200 0.075 10.25 10.25 4.29 32.92 67.08 #200 0.075 Pan 0.04 0.04 67.08 100.00 Pan Total 78.76 78.75 Weighted Error,% 0.00 Total 0.00 0.00 Weighted Error,% #DIV/0! Sample : Tested by: Sample : Tested by: Location : Date of Test: Location : Date of Test: Depth,m : Water Content,% : Depth,m : Water Content,% : Before Washing(Sieve No.200) After Washed and Oven Dry Before Washing(Sieve No.200) After Washed and Oven Dry Wt.Cont.+Dry Soil,gm Wt.Cont.+Dry Soil,gm Wt.Cont.+Dry Soil,gm Wt.Cont.+Dry Soil,gm Wt.Container,gm Wt.Container,gm Wt.Container,gm Wt.Container,gm Wt.Dry Soil,gm Wt.Dry Soil,gm Wt.Dry Soil,gm Wt.Dry Soil,gm Wt.Dry Soil,gm Washing Loss,gm Wt.Dry Soil,gm Washing Loss,gm Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Sieve Sieve Wt.Soil Adj.Wt. Wt.Soil Cumulative Percent Size Opening Retain Soil Ret. Retain Soil Ret. Finer Size Opening Retain Soil Ret. Retain Soil Ret. Finer mm. gm gm % % % mm. gm gm % % % 1 in. 25.40 1 in. 25.40 3/4 in. 19.05 3/4 in. 19.05 1/2 in. 12.70 1/2 in. 12.70 3/8 in. 9.53 3/8 in. 9.53 # 4 4.75 # 4 4.75 # 10 2.00 # 10 2.00 # 20 0.85 # 20 0.85 # 40 0.42 # 40 0.42 #100 0.15 #100 0.15 #200 0.075 #200 0.075 Pan Pan Total 0.00 0.00 Weighted Error,% #DIV/0! Total 0.00 0.00 Weighted Error,% #DIV/0! 100 1" 3/4" 1/2"3/8" 4# 10# 20# 40# 100# 200# 90 80 70 % Passing by Weight 60 50 40 30 Sample No.1 Sample No.2 Sample No.3 20 10 Sample No.4 0 100.00 10.00 1.00 0.10 0.01 Diameter in Milimeter GRAIN SIZE DISTRIBUTION CURVE

TABLE 4 UNIT WEIGHT TEST Sample Sheet

ASTM TESTING CO.,LTD. UNIT WEIGHT Project : SIAM ENERGY POWER PLANT Job No.: Date: 16 / 06 / 52 Location : BANGKLA CHACHOENGSAO Tested by: SIRIPORN Checked by: Boring No Depth Wt. of soil Height. Diameter φ Volume. Unit Weight (m) (gm) (cm) (cm) (cm 3 ) (gm/cm 3 ) BH. - 1 1.50-1.95 151.56 7.76 3.67 82.10 1.85 3.00-3.50 455.43 11.83 5.65 296.64 1.54 6.00-6.50 453.36 12.06 5.41 277.26 1.64 7.50-8.00 663.01 11.81 6.08 342.93 1.93 9.00-9.45 149.60 7.57 3.56 75.36 1.99 10.50-10.95 169.23 7.68 3.76 85.29 1.98 12.00-12.45 164.78 7.57 3.76 84.07 1.96 13.50-13.95 157.23 7.34 3.77 81.95 1.92 15.00-15.45 157.18 7.45 3.77 83.17 1.89 18.00-18.45 160.85 7.57 3.77 84.51 1.90 BH. - 2 3.00-3.50 515.23 11.92 5.47 280.15 1.84 4.50-5.00 455.03 11.92 5.21 254.15 1.79 6.00-6.50 480.98 11.97 5.51 285.46 1.68 7.50-8.00 439.19 11.97 5.49 283.39 1.55 9.00-9.50 538.22 12.08 5.69 307.21 1.75 10.50-10.95 158.25 7.63 3.64 79.41 1.99 12.00-12.45 160.74 7.83 3.71 84.66 1.90 UNIT WEIGHT = Wt. of soil. Volme. φ

TABLE 5 WATER CONTENT TEST Sample Sheet

ASTM TESTING CO.,LTD. WATER CONTENT PROJECT : SIAM ENERGY POWER PLANT JOB No. DATE : 11/ 06 / 52 TESTED BY : LAMPRAI LOCATION : BANGKLA CHACHOENGSAO CHECKED BY : PANYA Sample Depth. Container Wt. Of Cont. Wt. Of Cont.+ Wt. Of Cont.+ Wt. Of Wt. Water Water No. (m.) No. (gm.) Wet Soil(gm.) Dry Soil(gm) Dry Soil(gm) (gm) Content % BH -1 0.00-1.95 E-8 64.31 215.83 179.98 115.67 35.85 30.99 3.00-3.50 C-32 16.82 100.57 68.57 51.75 32.00 61.84 6.00-6.50 C-15 14.14 106.77 72.02 57.88 34.75 60.04 7.50-8.00 C-7 13.30 175.73 135.19 121.89 40.54 33.26 8.00-12.45 E-9 65.45 517.88 445.71 380.26 72.17 18.98 12.45-15.45 E-13 67.37 377.92 313.06 245.69 64.86 26.40 15.45-21.45 E-17 68.29 355.34 307.40 239.11 47.94 20.05 BH -2 3.00-3.50 C-109 19.54 215.94 160.58 141.04 55.36 39.25 4.50-5.00 C-91 16.49 153.42 100.07 83.58 53.35 63.83 6.00-6.50 C-89 19.00 124.34 86.79 67.79 37.55 55.39 7.50-8.00 C-92 21.75 199.90 132.11 110.36 67.79 61.43 9.00-9.50 C-80 18.82 166.73 124.38 105.56 42.35 40.12 9.50-12.45 E-1 68.66 390.28 327.99 259.33 62.29 24.02 12.45-16.95 E-11 64.50 441.10 376.88 312.38 64.22 20.56 BH -3 3.00-3.50 C-18 13.73 254.37 156.88 143.15 97.49 68.10 4.50-5.00 C-61 19.17 323.13 217.20 198.03 105.93 53.49 6.00-6.50 C-68 18.52 317.72 208.84 190.32 108.88 57.21 7.50-8.00 C-105 20.38 268.74 193.34 172.96 75.40 43.59 8.00-10.95 E-7 70.35 379.00 326.87 256.52 52.13 20.32 10.95-18.45 E-19 70.48 675.65 556.63 486.15 119.02 24.48 WATER CONTENT = Wt, of Weter 100 Wt.of Dry Soil

TABLE 6 Consolidation Test Sample Sheet

CONSOLIDATION TEST (ASTM D 2435) ASTM TESTING CO., LTD. PROJECT : POWER GENERATION SUPPLY BORING NO. : BH-2R SAMPLE NO. : LOCATION : NONGSAENG SARABURI DEPTH (m) : 01.50-02.00 TESTED BY : RAWAT K. DATE : 29/09-02/10/2009 SOIL DESCRIPTION : STIFF CLAY MADE BY : M. SUKMOL Applied Scale Final Cumulative Initial Water Content, W ni 27.62 % Pressure Load Dial Reading Dial Change Final Water Content, W nf 22.80 % (t/m ² ) 0.00 (kg) 0.000 (0.0001") 0 h, (cm) 0.0000 Initial Void Ratio, e 0 Initial Total Unit Weight, ti 0.807 1.92 t/m³ 2.50 0.650 40 0.0102 Final Total Unit Weight, tf 2.05 t/m³ 5.00 10.00 1.300 2.600 100 235 0.0254 0.0597 Specific Gravity, G s Liquid Limit, LL 2.689 - % 20.00 5.201 440 0.1118 Plasticity Index, PI - % 40.00 10.401 688 0.1748 Sample Height, H 0 2.52 80.00 20.803 995 0.2527 Sample Area, A 21.401 160.00 41.606 1480 0.3759 Wt.of Dry Sample, W s 80.25 40.00 10.401 1360 0.3454 Height of Solid, H s 1.395 10.00 2.600 1178 0.2992 Effective Overburden Pressure, ' vo 3.36 2.50 0.650 1072 0.2723 Preconsolidation Pressure, ' vm 33.00 Over Consolidation Ratio, OCR 9.821 Applied Sample Pressure Height (t/m 2 ) H, (cm) 0.00 2.5200 2.50 2.5098 5.00 2.4946 10.00 2.4603 20.00 2.4082 Void Void Ratio Ave. Sample Fitting Time C v (0.0001 cm²/sec) Height Hv, (cm) e = Hv/Hs Height Ha, (cm) t90 (sec) t50 (sec) 1.1255 0.8071 1.1153 0.7998 2.5149 1109 420 1.1001 0.7889 2.5022 1815 702 1.0658 0.7643 2.4775 1622 558 1.0137 0.7269 2.4343 821 348 0.848 x Ha² 0.197 x Ha² 4 x t90 4 x t50 12.086 7.417 7.313 4.393 8.020 5.417 15.294 8.386 33.00 80.00 2.3452 2.2673 0.9507 0.8728 0.6818 0.6258 2.3767 2.3063 1325 2018 414 780 9.036 5.587 6.720 3.358 160.00 40.00 2.1441 2.1746 0.7496 0.7800 0.5375 0.5594 2.2057 2.1593 1270 426 8.124 5.624 10.00 2.2208 0.8263 0.5925 2.1977 2.50 2.2477 0.8532 0.6118 2.2343 Notes : 1) H s = Ws / G w.a 2) C v = 0.848 Ha² / 4t 90 3) k = (C v. e. w ) / (1+e 0 ) = 0.197 Ha² / 4t 50 cm cm² gm cm t/m² t/m² Coef. of Permea k x 10-8 (cm/sec) t90 t50 1.949 1.196 1.769 1.063 2.183 1.474 3.160 1.733 1.737 1.292 0.368 0.221 0.496 0.344 Void Ratio, e Coef. of Consolidation, cv x 10-4 (cm 2 /sec) Coef. of Permeability, k x 10-8 (cm/sec) 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 100 10 1 10 1 Cr = 0.058 Cc = 0.292 Cs = 0.041 0.1 1 10 100 1000 Pressure (t/m 2 ) 'vm t90 t90 t50 t50 FM-GE-05-13 R00 30/05/2005 \\labtest\conso\lab ConsoBH-2

CONSOLIDATION TEST (ASTM D 2435) ASTM TESTING CO., LTD. PROJECT : POWER GENERATION SUPPLY BORING NO. : BH-2R TESTED BY : SAMPLE NO. : DATE : LOCATION : NONGSAENG SARABURI DEPTH (m) : 01.50-02.00 CHECKED BY : SOIL TYPE : STIFF CLAY DATE : MADE BY : RAWAT K. 29/09-02/10/2009 SOMPOL I. 05/10/2009 M. SUKMOL WATER CONTENT BEGIN END UNIT WEIGHT BEGIN END APPARATUS CONTAINER NO. R-5 R-32 A-29 Wt. OF SOIL + RING (gm) 1111.98 COSOLIDOMETER NO. Wt. OF CONTAINER (gm) 10.57 10.48 24.80 Wt. OF RING (gm) 1008.50 LEVER ARM RATIO Wt. OF WET SOIL + CONTAINER (gm) 45.32 54.05 123.35 Wt. OF SOIL (gm) 103.48 98.55 RING NO. Wt. OF DRY SOIL + CONTAINER (gm) 37.75 44.68 105.05 VOLUME OF SOIL (cm 3 ) 53.93 48.10 DIAMETER, D (cm) Wt OF WATER (gm) 7.57 9.37 18.30 TOTAL UNIT Wt., t (t/m 3 ) 1.919 2.049 SAMPLE AREA, A (cm 2 ) Wt. OF DRY SOIL, Ws (gm) 27.18 34.20 80.25 AVE. WATER CONTENT (%) 27.62 22.80 SAMPLE HEIGHT, H 0 (cm) WATER CONTENT, Wn (%) 27.85 27.40 22.80 DRY UNIT Wt., d (t/m 3 ) 1.503 1.668 VOLUME, V (cm 3 ) R-2 8.23 R-2 5.22 21.401 2.52 53.930 LIQUID LIMIT, LL = - % SPECIFIC GRAVITY, Gs = 2.689 SOLID HEIGHT, Hs = W s / (G s. W. A) PLASTICITY INDEX, PI = - % = 1.395 cm. APPLIED SCALE FINAL DIAL CUM. DIAL SAMPLE HEIGHT VOID HEIGHT VOID RATIO AVERAGE FITTING TIME COEF. OF CONSLIDATION PRESSURE (t/m 2 ) LOAD (kg) READING (0.0001 in) CHANGE h, (cm) H=H 0 -h (cm) Hv = H-Hs (cm) e = Hv/ Hs SAMPLE HEIGHT Hav, (cm) t 90 (min) t 50 C V, (0.0001 cm 2 /sec) 0.848 x Ha 2 0.197 x Ha 2 4 x t90 4 x t50 0.00 0.000 0 0.0000 2.5200 1.1255 0.8071 2.50 0.650 40 0.0102 2.5098 1.1153 0.7998 2.5149 18.49 7.00 12.086 7.417 5.00 1.300 100 0.0254 2.4946 1.1001 0.7889 2.5022 30.25 11.70 7.313 4.393 10.00 2.600 235 0.0597 2.4603 1.0658 0.7643 2.4775 27.04 9.30 8.020 5.417 20.00 5.201 440 0.1118 2.4082 1.0137 0.7269 2.4343 13.69 5.80 15.294 8.386 40.00 10.401 688 0.1748 2.3452 0.9507 0.6818 2.3767 22.09 6.90 9.036 6.720 80.00 20.803 995 0.2527 2.2673 0.8728 0.6258 2.3063 33.64 13.00 5.587 3.358 160.00 41.606 1480 0.3759 2.1441 0.7496 0.5375 2.2057 21.16 7.10 8.124 5.624 40.00 10.401 1360 0.3454 2.1746 0.7800 0.5594 2.1593 10.00 2.600 1178 0.2992 2.2208 0.8263 0.5925 2.1977 2.50 0.650 1072 0.2723 2.2477 0.8532 0.6118 2.2343 datamain\labtest\conso\lab ConsoBH-2

TABLE 7 Field permeability test Sample Sheet

PROJECT: SIAM ENERGY POWER PLANT DATE :09 June 2009 Location : Bangkla Chacherngsao Field Permeability Test (Constant Head) Hole Diameter : 10 cm. Height of Casing Above Ground : 0.50 m. Hole Depth Casing Length G.W.L Elapsed Water Permebility No. of Test Depth of Test Time Flow Coefficient Sample Shee (m.) (m.) (m.) (m.) (sec) (cc) (cm/sec.) BH-1 10.00 2.00 8.00 1.10 300 110 2.31 E - 06 10.00 2.00 8.00 1.10 300 70 1.47 E - 06 10.00 2.00 8.00 1.10 300 60 1.26 E - 06 BH-2 10.00 2.00 8.00 2.00 300 190 2.56 E - 06 10.00 2.00 8.00 2.00 300 110 1.48 E - 06 10.00 2.00 8.00 2.00 300 90 1.21 E - 06 BH-3 10.00 2.00 8.00 1.50 300 160 2.69 E - 06 10.00 2.00 8.00 1.50 300 100 1.68 E - 06 10.00 2.00 8.00 1.50 300 80 1.34 E - 06 BH-4 10.00 2.00 8.00 1.50 300 180 3.03 E - 06 10.00 2.00 8.00 1.50 300 90 1.51 E - 06 10.00 2.00 8.00 1.50 300 80 1.35 E - 06 BH-5 10.00 2.00 8.00 0.96 300 120 2.77 E - 06 10.00 2.00 8.00 0.96 300 80 1.84 E - 06 10.00 2.00 8.00 0.96 300 50 1.15 E - 06 BH-6 10.00 2.00 8.00 0.96 300 110 2.54 E - 06 10.00 2.00 8.00 0.96 300 70 1.61 E - 06 10.00 2.00 8.00 0.96 300 70 1.61 E - 06 BH-7 10.00 2.00 8.00 1.50 300 285 4.80 E - 06 10.00 2.00 8.00 1.50 300 190 3.20 E - 06 10.00 2.00 8.00 1.50 300 110 1.85 E - 06 BH-8 10.00 2.00 8.00 0.96 300 130 3.00 E - 06 10.00 2.00 8.00 0.96 300 80 1.84 E - 06 10.00 2.00 8.00 0.96 300 70 1.61 E - 06 BH-17 10.00 2.00 8.00 2.00 300 200 4.04 E - 06 10.00 2.00 8.00 2.00 300 110 1.48 E - 06 10.00 2.00 8.00 2.00 300 80 1.08 E - 06 Average 2.09 E- 06

Table 8 Soil Resistivity Test Data Sample sheet

ASTM TESTING CO.,LTD. SOIL RESISTIVITY TEST TEST NO: R-1 Project: Saraburi B Cogeneration Company Limited Position: N E Location: Nong kae Industrial Estate Saraburi Province Ground Ele.: Ground Condition: FLAT Date: 11/2/53 Test by: Phisit Machine: Megger DET4TD2 S/N No.1038 Distance (m) Measured Resistance ( ) Ground Resistivity ( -m) E - W N - S E - W N - S Average 0.50 60.00 38.20 188.496 120.009 154.252 1.00 14.00 9.00 87.965 56.549 72.257 2.00 5.00 5.00 62.832 62.832 62.832 3.00 4.00 0.45 75.398 8.482 41.940 4.00 4.00 0.34 100.531 8.545 54.538 5.00 3.00 0.30 94.248 9.425 51.836 Average Resistivity 101.578 44.307 72.943 0 1 Distance (m) 2 3 4 E-W N-S 5 6 0 20 40 60 80 100 120 140 160 180 200 Average Ground Resistivity ( -m) N R-1 E Note: The apparent soil resistivity is then given by =2 ar ( -m) N where:- = ground resistivity in -m = 3.1415927 a = electrode spacing in metres R = measured resistance in at spacing 'a' Inspector: Satit Project Engineer: Suchat Project Manager: Weraphol Project Owner: i-astm

Table 9 Down Hole Seismic Test Data Sample sheet

Summary of Seismic waves travel time and velocityof the site Saraburi B CoGeneration Depth (m) Ts Tp Shear wave(vs) Comp. wave(vp) (Milli Sec.) (Milli Sec.) Velocity(m/s)*1000 Velocity(m/s)*1000 1.0 3.23 1.82 0.31 0.55 2.0 5.41 2.99 0.37 0.67 3.0 7.89 3.95 0.38 0.76 4.0 9.52 4.60 0.42 0.87 5.0 11.36 5.62 0.44 0.89 6.0 10.34 5.56 0.58 1.08 7.0 12.07 5.69 0.58 1.23 8.0 10.81 5.37 0.74 1.49 9.0 11.69 5.81 0.77 1.55 10.0 11.90 6.29 0.84 1.59 11.0 13.92 7.59 0.79 1.45 12.0 13.48 6.82 0.89 1.76 13.0 15.48 7.88 0.84 1.65 14.0 15.91 7.91 0.88 1.77 15.0 14.29 7.50 1.05 2.00 16.0 18.60 9.20 0.86 1.74 17.0 17.71 8.42 0.96 2.02 18.0 18.75 9.23 0.96 1.95 19.0 17.76 9.18 1.07 2.07 19.4 20.00 10.26 0.97 1.89

2,500 2,000 1,500 1,000 500 0 Saraburi B CoGeneration Down Hole Seismic Results - BH-3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Depth(m.) Shear Wave Compression Wave Velocity(m./sec.)

Dynamic Elastic Moduli (BH-03) : SBC G = Shear modulus, MPa v = Poisson's ratio E = Young modulus, MPa K = Bulk modulus, MPa Depth (m) G = Vs 2 g v = (0.5-VR^2)/(1-VR^2) E = 2G.(1+v) K = Vp 2 g 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.4 190 0.27 480.85 59.72 270 0.28 692.25 88.63 303 0.33 808.26 121.24 367 0.35 988.39 157.30 402 0.34 1076.88 164.62 626 0.30 1623.52 216.95 668 0.36 1812.06 300.27 1161 0.34 3102.32 470.61 1257 0.34 3358.68 509.28 1422 0.31 3716.51 509.63 1252 0.29 3226.50 421.65 1589 0.33 4219.86 621.22 1408 0.33 3730.73 543.16 1569 0.34 4192.20 634.81 2406 0.31 6302.00 872.85 1614 0.34 4320.02 660.66 2011 0.35 5446.42 890.40 2011 0.34 5389.83 829.76 2451 0.32 6458.94 935.02 2053 0.32 5425.31 779.48

Table 10 Dutch Cone penetration Test Data Sample sheet

ASTM TESTING CO.,LTD. DUTCH CONE TEST NO. DC-1 (SBC) Project : Saraburi B Cogeneration Company Limited Coordinate N E... Place & location : Nong Kae Industrial Estate Ground ele.,m.. Ground condition : Flat Area Total depth,m. 15.00 Equipment max. load 5.0 tons : (G)Gauge no. Pressure correction,ksc. Cone Diameter : 3.70 Sleeve diam. cm., : 3.70 A :(0-16 ksc.) 1.03*(Reading,div. - 0.65) Cone project area,cm2 10.75 Sleeve height,cm.: 13.50 B :(0-80 ksc.) 0.88*(Reading,div.) +1.75 Cone weight,kg. : 1.60 Sleeve area,cm2. : 156.92 C :(0-250 ksc.) 0.96*(Reading,div. -2.0) Rod weight, kg./rod 1.57 Piston area,cm2 : 11.28 D :(0-400 ksc.) 1.04*(Reading,div.) Rod (G) Depth Reading,div. Qc Qs Qs/Qc Qf Qb Rod (G) Depth Reading,div. Qc Qs Qs/Qc Qf Qb no. m. a b t/m2 t/m2 % t/m t/m2 no. m. a b t/m2 t/m2 % t/m t/m2 1 B 0.0 10 18 112.2 5.1 4.5 0.9 37.4 11 C 10.0 65 90 650.7 17.3 2.7 133.5 216.9 1 B 0.2 10 18 112.2 5.1 4.5 1.8 37.4 11 C 10.2 55 100 550.0 31.1 5.6 139.1 183.3 1 B 0.4 12 22 130.6 6.3 4.8 3.0 43.5 11 C 10.4 55 110 550.0 38.0 6.9 145.9 183.3 1 B 0.6 12 22 130.6 6.3 4.8 4.1 43.5 11 C 10.6 60 120 600.3 41.4 6.9 153.3 200.1 2 B 0.8 12 20 132.1 5.1 3.8 5.0 44.0 12 C 10.8 75 125 752.9 34.5 4.6 159.6 251.0 2 B 1.0 10 22 113.6 7.6 6.7 6.4 37.9 12 C 11.0 80 115 803.2 24.2 3.0 163.9 267.7 2 B 1.2 10 20 113.6 6.3 5.6 7.5 37.9 12 C 11.2 75 115 752.9 27.6 3.7 168.9 251.0 2 B 1.4 10 20 113.6 6.3 5.6 8.7 37.9 12 C 11.4 75 115 752.9 27.6 3.7 173.8 251.0 2 B 1.6 6 20 76.7 8.9 11.5 10.2 25.6 12 C 11.6 70 120 702.5 34.5 4.9 180.0 234.2 3 B 1.8 14 30 152.0 10.1 6.7 12.1 50.7 13 C 11.8 70 120 704.0 34.5 4.9 186.3 234.7 3 B 2.0 12 26 133.6 8.9 6.6 13.7 44.5 13 C 12.0 70 115 704.0 31.1 4.4 191.9 234.7 3 B 2.2 14 32 152.0 11.4 7.5 15.7 50.7 13 C 12.2 85 105 855.1 13.8 1.6 194.3 285.0 3 B 2.4 10 24 115.1 8.9 7.7 17.3 38.4 13 C 12.4 70 100 704.0 20.7 2.9 198.1 234.7 3 B 2.6 10 28 115.1 11.4 9.9 19.4 38.4 13 C 12.6 70 100 704.0 20.7 2.9 201.8 234.7 4 B 2.8 10 22 116.5 7.6 6.5 20.7 38.8 14 C 12.8 60 95 604.7 24.2 4.0 206.1 201.6 4 B 3.0 10 20 116.5 6.3 5.4 21.9 38.8 14 C 13.0 60 100 604.7 27.6 4.6 211.1 201.6 4 B 3.2 16 30 171.9 8.9 5.2 23.5 57.3 14 C 13.2 60 105 604.7 31.1 5.1 216.7 201.6 4 B 3.4 22 44 227.3 13.9 6.1 26.0 75.8 14 C 13.4 60 110 604.7 34.5 5.7 222.9 201.6 4 B 3.6 30 50 301.2 12.7 4.2 28.2 100.4 14 C 13.6 75 100 755.8 17.3 2.3 226.0 251.9 5 B 3.8 32 56 321.1 15.2 4.7 31.0 107.0 15 C 13.8 70 105 706.9 24.2 3.4 230.4 235.6 5 B 4.0 34 64 339.6 19.0 5.6 34.4 113.2 15 C 14.0 75 105 757.3 20.7 2.7 234.1 252.4 5 B 4.2 32 64 321.1 20.2 6.3 38.0 107.0 15 C 14.2 70 100 706.9 20.7 2.9 237.8 235.6 5 B 4.4 32 66 321.1 21.5 6.7 41.9 107.0 15 C 14.4 75 95 757.3 13.8 1.8 240.3 252.4 5 B 4.6 32 58 321.1 16.4 5.1 44.9 107.0 15 C 14.6 65 100 656.5 24.2 3.7 244.6 218.8 6 B 4.8 38 60 378.0 13.9 3.7 47.4 126.0 16 C 14.8 70 105 708.4 24.2 3.4 249.0 236.1 6 B 5.0 32 62 322.6 19.0 5.9 50.8 107.5 16 C 15.0 70 110 708.4 27.6 3.9 254.0 236.1 6 B 5.2 36 58 359.5 13.9 3.9 53.3 119.8 6 B 5.4 36 60 359.5 15.2 4.2 56.0 119.8 ------------------------------------- 6 B 5.6 34 56 341.1 13.9 4.1 58.5 113.7 Ended of testing at 15.00 meters depth. 7 B 5.8 36 58 361.0 13.9 3.9 61.0 120.3 7 B 6.0 36 60 361.0 15.2 4.2 63.8 120.3 7 B 6.2 42 76 416.4 21.5 5.2 67.6 138.8 7 C 6.4 60 70 594.5 6.9 1.2 68.9 198.2 7 C 6.6 55 90 544.1 24.2 4.4 73.2 181.4 8 C 6.8 60 85 595.9 17.3 2.9 76.3 198.6 8 C 7.0 60 85 595.9 17.3 2.9 79.4 198.6 8 C 7.2 65 105 646.3 27.6 4.3 84.4 215.4 8 C 7.4 70 100 696.7 20.7 3.0 88.1 232.2 8 C 7.6 60 85 595.9 17.3 2.9 91.2 198.6 9 C 7.8 60 90 597.4 20.7 3.5 95.0 199.1 9 C 8.0 70 110 698.1 27.6 4.0 99.9 232.7 9 C 8.2 65 90 647.8 17.3 2.7 103.0 215.9 9 C 8.4 75 105 748.5 20.7 2.8 106.8 249.5 9 C 8.6 75 105 748.5 20.7 2.8 110.5 249.5 10 C 8.8 65 95 649.2 20.7 3.2 114.2 216.4 10 C 9.0 75 100 750.0 17.3 2.3 117.3 250.0 10 C 9.2 60 90 598.9 20.7 3.5 121.0 199.6 10 C 9.4 65 90 649.2 17.3 2.7 124.2 216.4 10 C 9.6 60 85 598.9 17.3 2.9 127.3 199.6 11 C 9.8 65 90 650.7 17.3 2.7 130.4 216.9 11 C 10.0 65 90 650.7 17.3 2.7 133.5 216.9 Test date 17/2/2010 Test by: Pisit Calculated by : Nontasate Checked by : W.Pramot Qf = L*f*Qs ; where : Qb= *Qc ; where Qb = Ultimate pile tip bearing capacity,(t/m2) Qf = Ultimate pile shaft friction,(t/m) = Cone resistance factor, use 1/3 L = Embedded pile length,(m) Qc = Local cone resistance,(t/m2) f = Adhesion factor,use 0.9 for all cases =((a*(gauge correction))+(no.rod)*(rod weight))/(cone project area) Qs = Local cone shaft friction,(t/m2) a= Cone resistance reading,(div.) = (b-a)*(gauge correction)/(sleeve area) b= a+ Friction reading,(div.) Sheet 1..of 1..

ASTM TESTING CO.,LTD. DUTCH CONE PENETRATION TEST PROJECT : Saraburi B Cogeneration Company Limited TEST NO. : DC-1 TESTED BY : Phisit DEPTH (m) : 15.00 DATE : 17/02/2010 LOCATION : Nong Kae Industrial Estate COORD. N : COMPUTED BY : Nontasate Saraburi Province E : DATE : 03/03/2010 STA. : Flat Area ELEV. (m) : 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 DEPTH (m) 10 DEPTH (m) 10 DEPTH (m) 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 0 1 2 3 4 5 20 0 20 40 60 80 100 20 0 5 10 15 20 CONE RESISTANCE LOCAL FRICTION FRICTION RATIO Qc ( x1000 t/m 2 ) Qs (t/m 2 ) Qs/Qc (%)

Table 11 Compaction and CBR Test Data Sample sheet

COMPACTION TEST(ASTM D1140-54) ASTM TESTING CO.,LTD. TEST PIT NO : TESTED BY : PROJECT : MEGA BANGNA SHOPPING CENTER DEPTH (m) : DATE : BANGKOK - THAILAND SOURCE : ด นถม CHECK BY : LOCATION : โรงโม ศ ลาพร จ.ชลบ ร DATE : GROUP LAB 15-05-53 SOMCHAI 17-05-53 MATERIAL : EMBANKMENT (CRUSHED ROCK) TYPE OF TEST STANDARD PROCTOR WEIGHT OF HAMMER (lb.) MOLD DIAMETER (cm) 10.100 DROP HEIGHT (in.) MOLD HEIGHT (cm) 12.105 NUMBER OF LAYER MOLD VOLUME (cm 3 ) 970.224 NUMBER OF BLOWS/LAYER 5.5 12 3 25 A. WET & DRY DENSITY TEST NO. 1 2 3 4 5 MOLD NO. 4 4 4 4 WT. OF MOLD + COMPACTED SOIL (gm) 3767 3905 3926 3868 WT. OF MOLD (gm) 1661 1661 1661 1661 WT. OF COMPACTED SOIL WET DENSITY, WD DRY DENSITY, DD = WD/(1+w/100) (gm) (t/m³) (t/m³) 2106 2.171 2.035 2244 2.313 2.131 2265 2.335 2.115 2207 2.275 2.035 B. WATER CONTENT CONTAINER NO. A-29 A-30 A-26 A-37 WT. OF CONTAINER (gm) 32.40 43.70 26.50 32.00 WT. OF CONTAINER + WET SOIL (gm) 238.10 188.60 209.30 226.80 WT. OF CONTAINER + DRY SOIL WT. OF WATER, W w (gm) (gm) 225.20 177.20 192.10 206.30 12.90 11.40 17.20 20.50 WT. OF DRY SOIL, W d (gm) 192.80 133.50 165.60 174.30 WATER CONTENT, w = (W w /W d )x100 (%) 6.69 8.54 10.39 11.76 C. RESULTS MAX. DRY DENSITY, MDD (t/m³) = 2.137 OPT. MOISTURE CONTENT, OMC (%) = 9.40 2.2 2.1 2.0 Dry Density (t/m³) 1.9 1.8 1.7 1.6 5 6 7 8 9 10 11 12 13 14 15 Water Content (%) TP-1 DATAMAIN\LABTEST\COMPACTION\Compaction-Silaporn-15-05-2010.xls

ASTM D 1883 / AASHTO T 193 / ทล.-ท. 109 (DH-T 109) CALIFORNIA BEARING RATIO (CBR) TEST ASTM TESTING CO.,LTD. PROJECT : MEGA BANGNA SHOPPING CENTER SAMPLE : ห นฝ น TESTED BY : GROUP LAB BANGKOK-THAILAND DEPTH (m) : CRUSHED ROCK DATE : 19/05/2553 LOCATION : โรงโม ศ ลาพร SOURCE : โรงโม INPUT BY : จ.ชลบ ร จ.ชลบ ร DATE : 20/05/2553 TEST CONDITION : SOAKED MATERIAL : CRUSHED ROCK CHECKED BY : 1. COMPACTION DATA (BEFORE SOAKING) COMPACTION TYPE(MODIFIED OR STANDARD) DATE : 21/05/2553 TEST NO. 1 TEST NO. 2 TEST NO. 3 T-99 T-99 T-99 NO. OF LAYER 5 5 5 NO. OF BLOWS / LAYER DIAMETER OF MOLD, D (cm) 12 25 56 15.21 15.13 15.16 HEIGHT OF SAMPLE, H (cm) 17.82 17.81 17.80 WT. OF SAMPLE, W1 (kg) VOLUME OF SAMPLE, V (m³) WET DENSITY, t = W1 / V (t/m³) Optimum Water Content(From Compaction test) (%) DRY DENSITY, үd = үt / (1+ w/100) (t/m³) 2. WATER ABSORPTION (AFTER SOAKING) WATER CONTENT w (%) WT. OF SAMPLE, W2 (kg) 4.429 4.849 5.210 0.0022 0.0022 0.0022 2.013 2.204 2.368 9.40 9.40 9.40 1.840 2.015 2.165 9.82 9.51 9.45 4.540 4.915 5.240 % ABSORPTION, {(W2-W1) / W1} * 100 (%) 2.51 1.36 0.58 3. SWELLING MEASUREMENT DATE TIME ELAPSED TIME GAGE RDG. % SWELL GAGE RDG. % SWELL GAGE RDG. % SWELL (hrs) (div) (div) (div) 15/05/2553 09.40 0 0 0.000 0 0.000 0 0.000 16/05/2553 09.40 24 1 0.009 0 0.004 0 0.001 18/05/2553 09.40 24 1 0.010 0 0.004 0 0.001 19/05/2553 09.40 24 1 0.010 0 0.004 0 0.001 20/05/2553 09.40 24 1 0.010 0 0.004 0 0.001 GAGE ACCURACY (in./div) = 0.001 SURCHARGE (lbs) = 4. PENETRATION TEST PENETRATION LOAD, R PRESSURE LOAD, R PRESSURE 10 LOAD, R PRESSURE (in) 12Blows(div) (psi) 25Blows(div) (psi) 56Blows(div) (psi) 0.000 0 0 0 0.025 120 17.52 390 109.04 450 129.38 0.050 150 27.69 490 142.94 570 170.06 0.075 230 54.81 610 183.62 810 251.41 0.100 310 81.92 680 207.35 1090 346.33 0.200 380 105.65 730 224.30 1570 509.04 0.300 450 129.38 1000 315.82 1990 651.41 0.400 590 176.84 1190 380.23 2300 756.50 0.500 770 237.86 1400 451.41 2900 959.88 PROVING RING NO. = PR-5 PISTON DIA. (in) = 1.967 LOAD (lbs) = 1.0305R - 70.404 (R = Guage Reading in division, 0.0001 in/div) PISTON AREA (sq.in) = 3.040 DATAMAIN\LABTEST\LAB CBR\CBR-Silaporn-19-02-2010.xls

ASTM D 1883 / AASHTO T 193 / ทล.-ท. 109 (DH-T 109) CALIFORNIA BEARING RATIO (CBR) TEST ASTM TESTING CO.,LTD. PROJECT : MEGA BANGNA SHOPPING CENTER SAMPLE : ห นฝ น TESTED BY : GROUP LAB DEPTH (m) : CRUSHED ROCK DATE : 19/05/2553 LOCATION : โรงโม ศ ลาพร SOURCE : โรงโม INPUT BY : จ.ชลบ ร จ.ชลบ ร DATE : 20/05/2553 TEST CONDITION : SOAKED MATERIAL : CRUSHED ROCK CHECKED BY : CRUSHED ROCK DATE : 21/05/2553 % CBR TEST NO. 1 2 3 TEST CONDITION SOAKED SOAKED SOAKED PENETRATION (in) 0.1 0.2 0.1 0.2 0.1 0.2 PISTON PRESSURE, A (psi) 81.92 105.65 207.35 224.30 346.33 509.04 STANDARD UNIT LOAD,B (psi) 1,000 1,500 1,000 1,500 1,000 1,500 % CBR = ( A/B )x100 8.19 7.04 20.73 14.95 34.63 33.94 1000 12 BLOWS/LAYER 900 25 BLOWS/LAYER 56 BLOWS/LAYER 800 700 PISTON PRESSURE (psi) 600 500 400 300 200 100 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 PENETRATION (in) DATAMAIN\LABTEST\LAB CBR\CBR-Silaporn-19-02-2010.xls

ASTM D 1883 / AASHTO T 193 / ทล.-ท. 109 (DH-T 109) CALIFORNIA BEARING RATIO (CBR) TEST ASTM TESTING CO.,LTD. PROJECT : MEGA BANGNA SHOPPING CENTER SAMPLE : ห นฝ น TESTED BY : GROUP LAB DEPTH (m) : CRUSHED ROCK DATE : 19/05/2553 LOCATION : โรงโม ศ ลาพร SOURCE : INPUT BY : DATE : 20/05/2553 TEST CONDITION : SOAKED MATERIAL : CRUSHED ROCK CHECKED BY : DATE : 21/05/2553 TEST NO 1 2 3 DRY DENSITY t/m 3 1.840 2.015 2.165 % CBR (SOAKED) 8.19 20.73 34.63 COMPACTION METHOD T-99 AT 95% MDD, DRY DENSITY 2.030 t/m 3 MAX. DRY DENSITY (MDD) 2.137 t/m 3 CBR 22.30 % 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 DRY DENSITY (t/m³) 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 5.0 15.0 25.0 35.0 45.0 CBR (%) DATAMAIN\LABTEST\LAB CBR\CBR-Silaporn-19-02-2010.xls

Table 12 Water Analysis Test Data Sample sheet

GROUND WATER QUALITY ANALYSIS REPORT Coordination : INFRATECH ASIM CO., LTD. Sampling Source : Saraburi B Cogeneration Co., Ltd. (Saraburi) Monitoring Date : February 25, 2010 Monitored by : Health & Envitech Co., Ltd. Report Date : March 6, 2010 Ref. No. : H.E. 371/2010 STANDARD METHOD OF GROUND WATER SAMPLING AND ANALYSIS PARAMETER ph Calcium (Ca) Magnesium (Mg) Manganese (Mn) Chloride (Cl) Total Hardness (as CaCO 3 ) Iron (Fe) Potassium (K) Sodium (Na) Nitrate (NO 3 ) Sulfate (SO 4 ) Carbon dioxide (CO 2 ) as Carbonate (CO 3 ) Phosphate (PO 4 ) Silica (Si) SAMPLING AND ANALYTICAL METHOD Grab Sampling, ph Meter Grab Sampling, Direct Aspiration, Atomic Absorption Grab Sampling, Direct Aspiration, Atomic Absorption Grab Sampling, Direct Aspiration, Atomic Absorption Grab Sampling, Ion-Selective Electrode Grab Sampling, EDTA Titrimetric Grab Sampling, Direct Aspiration, Atomic Absorption Grab Sampling, Direct Aspiration, Atomic Absorption Grab Sampling, Direct Aspiration, Atomic Absorption Grab Sampling, Nitrate Electrode Method Grab Sampling, Iodometric Grab Sampling, EDTA Titrimetric Grab Sampling, Vanadomolybdophosphoric acid, Colorimetric Grab Sampling, Molybdosilicate Method, Direct Aspiration, Atomic Absorption... (Prasart Chiaplaem) Laboratory No. -152- -3213... (Rung Rittiyan) Laboratory No. -152- -3214

GROUND WATER QUALITY ANALYSIS RESULTS SOURCE PARAMETER UNIT DETECTED VALUE STARDARD Suitable allowance Max. allowable Saraburi B Cogeneation Co., Ltd. ph - 6.7 7.0 8.5 6.5 9.2 Calcium (Ca) mg/l 0.186 - - Magnesium (Mg) mg/l 2.400 - - Manganese (Mn) mg/l *2.234 0.3 0.5 Chloride (Cl) mg/l 42 250 600 Total Hardness (as CaCO 3 ) mg/l 152 300 500 Iron (Fe) mg/l *2.421 0.5 1.0 Potassium (K) mg/l 0.038 - - Sodium (Na) mg/l 1.502 - - Nitrate (NO 3 ) mg/l 0.280 45 45 Sulfate (SO 4 ) mg/l 4.276 200 250 Carbon dioxide (CO 2 ) as Carbonate (CO 3 ) mg/l 253 - - Phosphate (PO 4 ) mg/l 4.276 - - Silica (Si) mg/l 35.783 - - *Over standard limit Remark 1. Standard: Notification of the Ministry of Natural Resources and Environment B.E. 2551 (2008), issued under The Ground Water Act B.E. 2520 (1977), published in the Royal Government Gazette, Vol. 125, Special Part 85. dated May 21, B.E. 2551 (2008). 2. Test results will be applicable only for the brought samples. 3. Do not copy partial of this analysis report without official approval. 4. Definition mg/l : milligrams per liter... (Prasart Chiaplaem) Registered Lab. Controller Laboratory No. -152- -3213... (Rung Rittiyan) Managing Director Health & Envitech Co., Ltd. Registered Lab No. -152