Modelling, simulation and identification of the solid state sintering after ceramic injection moulding



Similar documents
Problem Set 6 Solutions

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS

PERFORMANCE EVALUATION ON THIN-WHITETOPPING

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

Section 7.4: Exponential Growth and Decay

Basis risk. When speaking about forward or futures contracts, basis risk is the market

PREFERRED LIFE INSURANCE NORTH AMERICA

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Marketing System

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

Approximate Counters for Flash Memory

Punching of flat slabs: Design example

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

Transistor is a semiconductor device with fast respond and accuracy. There are two types

Probabilistic maintenance and asset management on moveable storm surge barriers

3. Greatest Common Divisor - Least Common Multiple

E X C H A N G E R U L E S A N D C L E A R I N G R U L E S O F N A S D A Q O M X D E R I V A T I V E S M A R K E T S

Lecture 3: Diffusion: Fick s first law

CHAPTER 4c. ROOTS OF EQUATIONS

CAFA DIVERSITY JURISDICTION

Finite Dimensional Vector Spaces.

Learning & Development

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

Vector Network Analyzer

Why An Event App... Before You Start... Try A Few Apps... Event Management Features... Generate Revenue... Vendors & Questions to Ask...

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Virtual Sensors

AP Calculus AB 2008 Scoring Guidelines

Student: Entering Program:

GROUP MEDICAL INSURANCE PROPOSAL FORM GROUP MEDICAL INSURANCE PROPOSAL FORM

A Note on Approximating. the Normal Distribution Function

Question 3: How do you find the relative extrema of a function?

Traffic Flow Analysis (2)

Category 7: Employee Commuting

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

Introduction to Physical Systems Modelling with Bond Graphs

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Department of Natural Resources

1.3 The pressure of maximum 10 bar, temperature of maximum +120 C, the instructions of the. EC-Declaration of conformity EGKE-DG-K100

Effect of Design Parameter on the Performance of Lithium Ion Battery

Who uses our services? We have a growing customer base. with institutions all around the globe.

CLOUD COMPUTING BUSINESS MODELS

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Factorials! Stirling s formula

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

Entity-Relationship Model

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

S. Tanny MAT 344 Spring be the minimum number of moves required.

New Basis Functions. Section 8. Complex Fourier Series

Put the human back in Human Resources.

union scholars program APPLICATION DEADLINE: FEBRUARY 28 YOU CAN CHANGE THE WORLD... AND EARN MONEY FOR COLLEGE AT THE SAME TIME!

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

Compression Outline. LZ77: Sliding Window Lempel-Ziv. Lempel-Ziv Algorithms. CPS 296.3:Algorithms in the Real World

PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

Temperature Sensors. Thermo-Mechanical Sensors Thermoresistive Sensors Thermocouples Junction-Based Thermal Sensors

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

Chapter 20: Database Programming

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Medicaid Eligibility in Michigan: 40 Ways

CONSOLIDATED FINANCIAL SYSTEMS PRIVACY IMPACT ASSESSMENT EXECUTIVE SUMMARY

WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

Electric power can be transmitted or dis

Free ACA SOLUTION (IRS 1094&1095 Reporting)

81-1-ISD Economic Considerations of Heat Transfer on Sheet Metal Duct

TELL YOUR STORY WITH MYNEWSDESK The world's leading all-in-one brand newsroom and multimedia PR platform

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

(Analytic Formula for the European Normal Black Scholes Formula)

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves

How To Get A Better Price On A Drug

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

From Quantum to Matter 2006

Studio 24 scan control scan control. professional light desk user s manual rel. 1.41

Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

STATEMENT OF INSOLVENCY PRACTICE 3.2

Logo Design/Development 1-on-1

LECTURE 13: Cross-validation

Foreign Exchange Markets and Exchange Rates

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

Dr David Dexter The Parkinson s UK Brain Bank

Term Structure of Interest Rates: The Theories

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

[ ] These are the motor parameters that are needed: Motor voltage constant. J total (lb-in-sec^2)

Soving Recurrence Relations

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Package Information Datasheet for Mature Altera Devices

A Fuzzy Inventory System with Deteriorating Items under Supplier Credits Linked to Ordering Quantity

Outside Cut 1 of fabric Cut 1 of interfacing

Ra atoms and ions: production and spectroscopy Testing the Standard Model in Heavy Nuclei H.W. Wilschut

Transcription:

Mollig imlatio a itificatio of th oli tat itrig aftr cramic ijctio molig Jipg Sog * ** Ghaa Aya * hirry Barrir * Ja-Cla Gli* Baohg Li ** Davi Ralt *** * Fmto-S titt LMA ESMM/CRS 4 Chmi l épitaph 5 Baço Frac jpog@16.com {thirry.barrir ja-cla.gli}@iv-fcomt.fr ** Dpartmt of Appli Mchaic Sothwt Jiaotog Uivrity 611 Chg Sicha P. R. Chia *** O. D. Sim C Chmi palt 5 Baco Frac RÉSUMÉ. U moél coti baé r l voltio loi comportmt vico-platiq t tilié por écrir l procéé ificatio par iffio pha oli por compoat fabriqé par l procéé molag par ijctio por céramiq CM. L moèl a été implémté a co élmt fii vloppé r la platform Matlab. U métho opimiatio t propoé afi itifir l paramétr moél la loi comportmt. La imlatio prothé hach t ralié par c procéé CM t pri comm xmpl poit v mériq t xpérimtal. L réltat mériq ot valié par ai xprimtax. ABSRAC. o crib th itrig proc of oli tat iffio for th compot of cramic powr obtai by th powr ijctio molig a biig a cotim mol ba o th cotittiv law i vicoplatic typ i itroc. hi phyical mol ha b implmt i a Fiit Elmt Softwar vlop o th platform Matlab. h a optimizatio mtho ha b vlop for th itificatio of paramtr i th propo itrig mol. h itificatio by optimizatio oftwar ha b appli o a powr mol compot of th hip implat coit of th almia cramic powr. Ba o th compario btw xprimt a mollig by FE imlatio th itificatio procr giv accrat rlt. MOS-CLÉS : ificatio molag par ijctio por céramiq imlatio mériq itificatio. KEYWORDS: itrig cramic ijctio molig almia cramic mrical imlatio itificatio.

1. troctio Cramic ijctio molig CM i a combiatio of tchologi i particlat matrial ijctio molig a itrig proc. t i crrtly i cramic itri to mafactr i larg qatiti th mall complx a ar-t-hap compot with high prformac. CM th itrig tag i o of th mot importat tp i which th bi gr compot ar trat at th tmpratr blow th mltig poit of th mai cotitt to obtai th ir fial proprti by boig th powr particl togthr. h hrikag btw th gr compot a th itr o i grally i th rag 1-% a th ity of th fial compot i i th rag 9-1% Grma 1997. Bca of th larg hrikag i itrig proc trmiatio of th imioal chag a itortio i cary i itrial proctio to proc th compot i ar-t-hap a high qality. Bi th covtioal trial a rror mtho mrical imlatio of th itrig tag may b a fat a cotffctiv altrativ to olv thi problm. Svral cotittiv mol ba o th cotim mchaic hav b vlop to crib th itrig proc. A prly phomological mol to Olvky m ay to b implmt i mrical imlatio bt i rtrict for th poibiliti to gt accrat rlt Olvky 1998. th xprimtal mol to Bovar Bovar 1996 ata ar irctly obtai from ral matrial bt th ivtigatio o loaig coitio i limit at high tmpratr a th othr tr coitio ar calclat by xtrapolatio. h micromchaical mol to Ril a Kraft Ril t al. 1994 m comprhiv for oli itrig bca it coir majority of th mchaim a factor i th tir itrig proc bt it i cary to ajt th mol paramtr for vario matrial. thi papr a vicoplatic cotittiv mol a th aociat fiit lmt mtho FEM ar to imlat th itrig proc. h mrical itificatio mtho icorporat with ilatomtr xprimt ar to trmi th paramtr i cotittiv mol. Mor accrat imlatio ca b carri ot ba o thi mol bca th cotittiv paramtr ar trmi with th am oftwar that will b for imlatio. h imlatio ar appli o th compot of almia cramic powr obtai by CM a biig. Compar with th xprimtal ata th imlatio rlt ar raoabl.. Sitrig mol.1. Cotittiv itrig mol o t p th rlatiohip btw th macrocopic trai rat tor a th tr tor i itrig a liar vicoplatic crp law i Ril t al. 1994. Sch a cotittiv law i xpr: σ σ ε vp tr σ [1] G 9K

whr σ i th viatoric tr tor trσ i th trac of tr tor i th itity tor of co orr G i th har vicoity mol K i th blk vicoity mol a σ i th itrig tr. o itify th paramtr i th cotittiv law for itrig proc iffrt mol hav b vlop. th prt ty followig xprio ar McMkig t al. 199: r G 1 [] 9Diff r K 1 [] 54Diff 1 8 σ γ [4] r whr r i th iitial rai of phrical powr particl th iitial rlativ ity i rlativ ityγ i th rfac rgy of th particl. D iff i a iffio trm grally writt i th followig form: Qb R Ωδ D Diff b [5] k whr k i th Boltzma cotat Ω th atomic volm δd b i a iffio cofficit at grai itrfac R th pcific ga cotat a Q b i a activatio rgy. h mai limitatio of rlatiohip i [] [] a [4] ar rlat to thir valiity from th iitial ity of th poro mia to th fial tat.. Govrig qatio h momtm corvatio qatio a ma covratio qatio crib th mchaical bhavior of th powr aggrgatio rig th itrig tag Ralt t al. h momt covratio qatio i writt a : σ f ρ [6] t whr σ i th Cachy tr tor f i xtral appli forc i th iplacmt fil a t i th crrt procig tim. Bca th itrig proc i vry low th irtia forc i th right ha of th qatio [6] ar oft glct. h calclatio of rlativ ity i rlat to th ma corvatio qatio xpr a:

4.tr vp ε [7].. FEM oltio procr h copl qatio [1 6 7] ar olv by FEM i th followig form. h vlocity a rlativ ity ar cho a th mai oal variabl: B ε [8] whr ar th matrix of itrpolatio fctio B i trai rat itrpolatio matrix. Galrki mtho i appli to bil th rltig FE qatio xpr a: F K C M [9] h matrix M C K a F ar xpr by th followig rlatiohip: V f V V V Ω Ω Ω Ω tr B F B A B K B C M σ [1] whr ta for th ambly oprator ovr th lmt. A i a tor cribig th vicoplatic cotittiv bhavior: A ε A σ : 4 vp G K G σ [11] whr i th torial proct oprator. For fr itrig f icl oly gravity ffct xpr a:

5 f ρ g th [ 1] [1] whr ρ th i th thortical ity a g i gravity acclratio. Galrki mtho i to bil th FEM procr for oltio of th govrig qatio a cotittiv qatio. A xplicit high orr Rg-Ktta chm i mploy for th tim itgratio vlop o th platform of Matlab.. mrical itificatio.1. tificatio algorithm for itrig phyical paramtr h itificatio algorithm i ig for propr trmiatio of th matrial paramtr i th cotittiv mol which i to b i bqt mrical imlatio. h ilatomtr xprimt ar to ty th ificatio bhavior of th pcifi matrial i which th hrikag crv i obtai for 1D ca. O th othr ha th mrical imlatio ba o th abov itrig mol ar carri ot for 1D part with th giv iitial val for th matrial paramtr. A mrical rpo crv i obtai by ma of th FE imlatio. h optimizatio tratgy i propo to miimiz th iffrc btw both th hrikag crv obtai by ilatomtr xprimt a mrical imlatio rpctivly. h matrial paramtr ar th variabl to b optimiz. So th optimizatio i formlat a a miimizatio problm xpr a mi F x F x f i 1 x [ δdb Q b x i γ r ] f x i [1] whr f x i th hrikag crv rltig from th ilatomtr xprimt f x i th hrikag crv of mrical imlatio Fx i th ma rial qar btw both th two crv whr i1 ar itrig tmpratr x i th t of matrial paramtr... tificatio for almia cramic powr h itificatio mtho i appli to gt th matrial paramtr of ijctio mol almia cramic powr. h ata giv i Opfrma t al. 1998 ar a rfrc for ilatomtr xprimt. h hrikag crv obtai by ig th iitial matrial paramtr i optimiz i orr to approach th crv obtai from ilatomtr xprimt a how i Fig. 1. h iitial val ar cho from th rfrc.

6 Shrikag im mi Fig. 1. Compario btw hrikag crv obtai by xprimt a optimizatio h iitial matrial paramtr of almia cramic powr obtai from th rfrc a th o obtai by itificatio ar lit i abl 1. abl1. tifi matrial paramtr Paramtr itial Rfrc tifi Q b KJ/mol 84 H t al 5 7.5 δd b m / 8.6 1-1 Cao t al 198 7.67 1-1 γ J/m.71 Rh S.K 197.841 r m 7 1-6 H t al 5 5.18 1-6 Ω m 4. 1-9 Chvalir t al 1997 5.4 1-9 4. Valiatio xampl h ijctio mol hip implat part of almia cramic powr ar cho a a xampl to valiat th itrig mol a propo itificatio procr. Fig.. Mh of th hip implat compot

7 h mh of th part i giv i Fig.. h tmpratr cycl for FE imlatio i hatig to 14 C with th rat 5 C/mi. h itifi matrial paramtr giv i abl.1 ar for FE imlatio. With th itifi paramtr th fial rlativ ity obtai by imlatio i th part i giv i Fig.. Fig.. h fial rlativ ity i hip implat compot h avrag hrikag ratio i 11.85%. h fial rlativ ity i abot 84.5%. Sch a rlt i i goo agrmt with th ilatomtr xprimt. Fig. 4 h photo of th itr hip implat For itrig xprimt th gr part of hip implat aftr biig i itr i a frac. h tmpratr cycl i th am a prcrib i imlatio. h

8 photograph o th part of hip implat aftr molig a itrig rpctivly ar how i Figr. xprimt th hrikag i abot 1% a th fial rlativ ity i abot 95%. gral th imlatio rlt agr with th xprimt. Bt th fial rlativ ity obtai by imlatio i l tha th xprimtal o. hi i to th fact that th itrig mol xpr by qatio [-5] i ot totally itabl for th fial itrig tag. 4. Coclio A phomological mol for th itrig by oli tat iffio ha b propo ba o th phyical coiratio a th trmiatio of mai rivig paramtr. h xprimt ig ilatomtr hav b carri ot o almia cramic powr with iffrt tmpratr cycl. h xprimt provi th cary ata for itificatio of th paramtr i th cotittiv mol mploy i imlatio. hi itificatio i rly combi with th of imlatio oftwar a vlop optimizatio tool. hi mtho i jtifi by th compario of xprimtal rlt a th o i by imlatio o a xampl of th itrig of a hip implat compot. Sch a compot i obtai by th ijctio molig a biig of th almia cramic powr. h rlt ar i goo agrmt which valiat th mollig imlatio a th itificatio procr. Ackowlgmt h athor prt thir thak to th pport of Frch Embay i Chia for th altrat octorial catio projct 41859 a th Ecatio Miitry of Chia for th octoral catio f 615. Rfrc Grma R. M. Bo A. jctio molig of mtal a cramic USA MPF 1997. Olvky E. A. hory of itrig : from icrt to cotim Matrial Scic a Egirig R 1998 p. 41-1. Bovar D. mrical imlatio of itrig a imioal chag of complx part Sitrig Cor ot EPMA 1999 p.11-5. Ril H. Kozak V. Svoboa J. Eqilibrim por rfac itrig tr a cotittiv qatio for itrmiat a lat tag of itrig Part : Difioal ificatio a crp Acta Mtall. vol 4 1994 p.455-45. Kraft. Ril H. mbrical imlatio of oli tat itrig mol a applicatio Joral of Erop Cramic Socity vol. 4 4 p. 45-61.

9 McMkig R. M. Kh L.. A iffioal crp law for powr compact Acta Mtall. vol 4 5 199 p. 961-969. Ralt D. Barrir. a Gli J.C. Exprimt a mrical imlatio ba o a micro-macro cal mol for oli tat itrig h 7th itratioal cofrc o mrical mtho i itrial formig proc UMFORM' 1 oyohahi 18-1 J 1 Eitio Mori K. Japa p. 7-. Opfrma J. Blmm. J Emmrich W. D. Simlatio of itrig bhavior of a cramic gr boy ig avac thrmo-kitic aalyi hrmochimica Acta vol 18 1998 p.1-. H Z. Ma. J Cotittiv mollig of almia itrig: grai-iz ffct o omiat ificatio mchaim Comptatioal Matrial Scic vol i Fbrary 5 p.196-. Cao R.M. Rho W.H. Hr A.H. Platic formatio of fi-grai almia AlO: trfac cotroll iffioal crp Joral. of Amrica. Cramic. Socity. vol. 6 198 p.46-5. Rh S.K. Critical rfac rgi of AlO a graphit Joral of Amrica. Cramic. Sociyt. vol.55 197 p. -. Chvalir.J. Olago C. Fatozzi G. Gro H. Crp bhavior of almia zircoia a zircoia-togh almia Joral of th Eropa Cramic Socity Vol 17 6 1997 p.859-864