Crosstalk effects of shielded twisted pairs



Similar documents
Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.

Nexus Technology Review -- Exhibit A

Issues and Solutions for Dealing With a Highly Capacitive Transmission Cable

Data Communications Competence Center

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Pre-Compliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions

Annex 113A Description of cable clamp and test setup. (informative) 113A.1 Overview

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

A wave lab inside a coaxial cable

Minimizing crosstalk in a high-speed cable-connector assembly.

RFID Receiver Antenna Project for Mhz Band

Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements

Balanced vs. Unbalanced Audio Interconnections

CCTV System Troubleshooting Guide

Cable Analysis and Fault Detection using the Bode 100

Understanding Power Impedance Supply for Optimum Decoupling

STRUCTURED CABLING SYSTEMS

Grounding Demystified

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

RX-AM4SF Receiver. Pin-out. Connections

CAN Bus Transceivers Operate from 3.3V or 5V and Withstand ±60V Faults

SICK AG WHITEPAPER. Information for cable manufacturers Note-2_03

SHEET 5 CABLE TELEVISION SYSTEM

Consideration of a high-capacity foil cable:

Subject: Glenair MIL-PRF Conduit Surface Transfer Impedance Test

Simulation électromagnétique 3D et câblage, exemples dans l'automobile et aéronautique :

Application Note. So You Need to Measure Some Inductors?

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

3.3 Calibration standards

Sensor and Simulation Notes. Note 479. October A Dual-Polarity Impulse Radiating Antenna

Cable Impedance and Structural Return Loss Measurement Methodologies

MEASUREMENT SET-UP FOR TRAPS

An Ethernet Cable Discharge Event (CDE) Test and Measurement System

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5

This application note is written for a reader that is familiar with Ethernet hardware design.

Solving Signal Problems Effective shielding is key to enhancing the reliability and performance of broadcast cables.

G019.A (4/99) UNDERSTANDING COMMON MODE NOISE

WHITEPAPER. Cable and Connector for Hiperface dsl motor drive applications

Power Rating Simulation of the new QNS connector generation

What are the Requirements for an Accurate DSL Line Simulator? Paradyne International, France

Eatman Associates 2014 Rockwall TX rev. October 1, Striplines and Microstrips (PCB Transmission Lines)

M-Bus Network Installation Notes

An equivalent circuit of a loop antenna.

Current Probes. User Manual

Extending Rigid-Flex Printed Circuits to RF Frequencies

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

R&S ENY81-CA6 Coupling Network For radio disturbance and immunity measurements

IC-EMC v2 Application Note. A model of the Bulk Current Injection Probe

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)

Subminiature Load Cell Model 8417

GenTech Practice Questions

Connectivity in a Wireless World. Cables Connectors A Special Supplement to

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS

ANN Based Modeling of High Speed IC Interconnects. Q.J. Zhang, Carleton University

Predicting radiated emissions from cables in the RE02/RE102/DO- 160/SAE J test set up, using measured current in NEC and simple TX equations.

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011

Coaxial Cable Entry Panels, Coax and Grounding Connectors. Technical Note

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

Coaxial Cable Products Guide. Connectivity for Business-Critical Continuity

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs

2 Network Media. Copper Core Cable

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. 0.

FN2001-A1 Network module (SAFEDLINK) Mounting Installation

Balun Parameter Definitions & Measurement May 2004

Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note

Upon completing this chapter, you will be able to: Describe the primary types and uses of twisted-pair cables Describe the primary types and uses of

Cable Solutions for Servo and Variable Frequency Drives (VFD)

Current Probes, More Useful Than You Think

Good EMC Design Principles: cable routing

Communication, Signal & Data Cables

Transmission Line Transformers

Understanding Shielded Cable

Telecommunication Line Protectors

RF FRONT END FOR HIGH BANDWIDTH BUNCH ARRIVAL TIME MONITORS IN FREE-ELECTRON LASERS AT DESY

RC NETWORKS SALES GUIDE

SPEAKER CABLE 10/06/2015

Coaxial Cables for Medium-Frequency Applications

Model CFA-24 Transparent Cable Farm Automation Switch

S-Band Low Noise Amplifier Using the ATF Application Note G004

Charged cable event. 1 Goal of the ongoing investigation. 2 Energy sources for the CDE. Content

Common Mode and Differential Mode Noise Filtering

Video Camera Installation Guide

Using Simple Calibration Load Models to Improve Accuracy of Vector Network Analyzer Measurements

On Cables and Connections A discussion by Dr. J. Kramer

Times Microwave Systems Hermetically Sealed Assemblies

ILB, ILBB Ferrite Beads

Características. Starligh SA 9 de julio 1595 Córdoba Argentina /

Connecting Your Receiver to the Antenna

Grounding and Shield Termination. Application Note 51204

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness

Broadband Push-Pull Power Amplifier Design at Microwave Frequencies

Technical Article. EMC filters for medical devices

Network Engineers Everywhere:

with Component Rating A Simple Perspective

Capacitor Self-Resonance

ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software

PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide

A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS

Transcription:

This article deals with the modeling and simulation of shielded twisted pairs with CST CABLE STUDIO. The quality of braided shields is investigated with respect to perfect solid shields. Crosstalk effects are calculated for unshielded twisted pairs, poorly shielded twisted pairs, and twisted pairs with high-quality shields. Explanations are given how to create realistic simulation setups in order to be able to compare them with measurement results. Cable shielding Shielded cables are widely used in industrial applications in order to suppress unwanted crosstalk effects between neighbouring wires. A typical shielded cable is the coaxial cable with an inner wire and a concentric outer screen. Ideal shielding conditions can be achieved by realizing the screen as a solid conductor with a specific thickness. With increasing frequency the penetration depth of the electric field decreases until it is less than one half of the shields thickness. At higher frequencies the current tends to flow mainly on the conductors surfaces (skin effect), thus completely decoupling the inner part of the screen from the outer part. For a solid screen we can state: the higher the frequency the better the screening. Due to cost and engineering reasons the use of solid shields is rather limited. More popular are braided shields since they are easier to manufacture, are lighter in weight, and more flexible than solid shields. There are, however, different quality levels. Braided shields have tiny apertures that are permeable to the electric field. As a consequence, the shielding effectiveness decreases with increasing frequency. Hence the goal is to find the optimum between cost saving and shielding effectiveness. A measure for the shielding effectiveness of shielded cables is the transfer impedance. It describes the frequency dependent transmission of electromagnetic signals from one side of the shield to the other side of the shield. The denser the braid is or the more braid sheets are used, the better the shielding. Figure 1: Transfer impedance of a tubular braid with different number of sheets 2016 CST AG - http://www.cst.com Page 1 of 7

Figure 1 illustrates the transfer impedance of various tubular braids - a single braid (top curve), a double braid (middle curve) and a triple braid (bottom curve). As a comparison, the transfer impedance of a solid shield would strongly monotonically decrease as the frequency increases. The shielding effectiveness of the triple braid shows the best quality since its transfer impedance in the frequency range up to about 50 khz is quite similar in behaviour to that of a solid shield. At 50 khz the transfer impedance reaches a local minimum and rises again with increasing frequency. This means that 50 khz is the threshold frequency above which the shielding diverges from perfect behavior and falls off in quality at higher frequencies. The double and single tubular braids are even less perfect: they have got higher transfer impedances even at low frequencies, and the local minimum is already reached earlier or does not show up at all. The question now is: how does this affect the crosstalk behavior? In order to answer this question it is reasonable to perform three simulations of the same cable configuration but different shielding conditions. Cable configuration and simulation tasks The cable structure of interest can be seen in figure 2. It consists of four shielded twisted pairs in a common outer screen. Twisted pairs are often used since they are easy to manufacture, are inexpensive, and exhibit reasonable crosstalk characteristics. Since twisted pairs are quite susceptible to asymmetric load conditions and might cause certain crosstalk effects they are shielded at times. In the following four S-parameter simulations are carried out. The first simulation demonstrates the crosstalk effect in case of perfect load conditions. The second simulation deals with the non-shielded twisted pairs and, in the subsequent two simulations, different shields are investigated. Figure 2: Cross-sectional view of shielded twisted pair cable 2016 CST AG - http://www.cst.com Page 2 of 7

Perfect load conditions The aim of this investigation is to demonstrate what happens if one simulates a perfect cable configuration with homogeneously twisted pairs and fully symmetric loads. Figure 3 depicts the simulation configuration. Figure 3: Simulation setup for a perfectly symmetric cable configuration The screens of the twisted pairs are grounded to zero potential at both sides. Ports have been defined at the input and output of the four twisted pairs. Figure 4 shows the simulation results. Figure 4: Simulation result of perfectly symmetric cable configuration. Besides the reflection and transmission to the line s end there is no crosstalk effect visible. The numeric value for crosstalk is less than -200 db As expected, there is a certain reflection at the input and quite good transmission to the end of the line, but there is no 2016 CST AG - http://www.cst.com Page 3 of 7

perceptible crosstalk into neighboring lines visible. Actually, the numerical value is less than -200 db and is only limited to this level in order to obtain a reasonable result view. It is important to note that this result is not caused by an insufficiency of the simulation method but because no crosstalk exists: the twisted pairs are arranged symmetrically, are twisted with identical number of twists per meter, and are loaded in exactly the same way. Real measurements, on the other hand, always show perturbations and crosstalk effects. When comparing their results with ideal simulation results, there is often an uncertainty because of the discrepancy. It has to be understood, however, that a measurement setup is never as perfect as a simulation setup. It is necessray to reproduce all potential perturbations of the measurement in the simulation order to find the same results. Since such perturbations are often not known this is rather difficult. In order to overcome this problem tendencies need to be investigated rather than trying to reproduce reality. In the given context it is reasonable to check the crosstalk effect of an unbalanced (asymmetric) termination and to investigate how different shielding conditions contribute to its improvement. Unshielded twisted pairs It is interesting to understand what might be the crosstalk effect in an unshielded twisted pair cable configuration with asymmetric termination. Figure 5 shows the cables cross-section, figure 6 the schematic, and figure 7 the simulation results. The termination is realized by using a 50 Ohm resistor. In order to reproduce production tolerance of about 10% the resistance values have been increased to 55 Ohm and decreased to 45 Ohm, respectively. Figure 5: Twisted pair configuration without shields 2016 CST AG - http://www.cst.com Page 4 of 7

Figure 6: Simulation setup with asymmetric load conditions Figure 7: Crosstalk effect in case of unshielded twisted pairs with asymmetric load conditions. The transmission factor into the neighboring lines lies between -60 db and about -15 db in frequency range up to 1 GHz Shielded twisted pairs low shielding effectiveness When returning to the case of shielded twisted pairs the different qualities of shielding can be investigated. A direct measure for the shielding effectiveness and therefore for the crosstalk is the transfer impedance as discussed at the beginning of this article. The higher the transfer impedance the greater the crosstalk effect since surface currents will induce higher voltages inside the screen. As a consequence, the shielding effectiveness worsens. Figure 8 shows the simulation result of the cable configuration with specific transfer impedance. The chosen values for the simulation are Rt = 0.09 Ohm, Lt = 1e-9 H, and Ct = 1e-14 F. 2016 CST AG - http://www.cst.com Page 5 of 7

Figure 8: Simulation result in case of low shielding effectiveness (high transfer impedance). The transmission factor into the neighboring lines lies between -200 db and about -90 db in frequency range up to 1 GHz Shielded twisted pairs high shielding effectiveness When changing the transfer impedance to a lower value less voltage can be induced, thus yielding higher shielding effectiveness. Figure 9 shows the simulation result of the cable configuration with Rt = 0.001 Ohm, Lt = 1e-10 H, and Ct = 1e- 15 F. As expected, the crosstalk effect has been drastically reduced. Figure 9: Simulation result in case of high shielding effectiveness (low transfer impedance). The transmission factor into the neighboring lines now lies between less than -200 db and about -120 db in frequency range up to 1 GHz a noticeable improvement Summary 2016 CST AG - http://www.cst.com Page 6 of 7

Investigations of (multiple) shielded cables are possible with CST CABLE STUDIO. A measure of the shielding effectiveness is the transfer impedance value that can be determined by means of the three parameter transfer resistance (Rt), transfer inductance (Lt), and transfer capacitance (Ct). Its should be noted, however, that a direct comparison between simulation and measurement is not possible unless one considers exactly the same conditions in both simulation and measurement setup. Since parasitic effects such as production tolerances are generally not entirely known, it is recommended to investigate tendencies during simulation rather than trying to reproduce measurement results. This article describes how such investigations can be done, and it illustrates how simulation helps to understand basic correlations of various parameters in order to find the optimum solution. 2016 CST AG - http://www.cst.com Page 7 of 7