Electrical and Electronic Equipment Non-Thermal Fire Damage



Similar documents
Fire Event Electronic and Mechanical System Damage Mechanisms Is Acid Gas for Real?

Solutions Visits the Magic Kingdom

Guide Specification STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM

TECHNICAL SERVICE DEPARTMENT Technical Service Bulletin Anode Rods, Cathodic Protection and the Porcelain (glass) Lining

CLEANING AND SANITIZING

WHITE PAPER Fire & safety performance standards

Fire Performance Standard

The soot and scale problems

Fire Life Safety ORC Review Guidelines for PPD Experimental Installations

Flammable and Combustible Liquids. Slide 1 (of 23)

Static Electricity. A Health and Safety Guideline for Your Workplace. What Are Some Sources of Static Electricity? What is Static Electricity?

Building and Grounds Maintenance Checklist

DEPARTMENT OF CODES AND BUILDING SAFETY FLOOD RECOVERY INFORMATION

Tankless Water Heater

RTV159. RTV157 and RTV159 High Strength Silicone Adhesive Sealants

Basics of HVAC Cleaning

Mechanical Systems Competency 1.20

Dip Tanks. RS 1030 (9/13) 2013 Nationwide Mutual Insurance Company Page 1 of 9 All Rights Reserved

BUILDING DYNAMICS, LLC

Installation Instructions for Alarm Module Kit A043F059

A. Work on this project shall consist of, but is not limited to, the following:

NADCA GENERAL SPECIFICATIONS FOR THE CLEANING OF COMMERCIAL HEATING, VENTILATING AND AIR CONDITIONING SYSTEMS

During Various Aluminum Fabricating Operations

Page 1 of 2. Dear Occupant:

STANDARD SPECIFICATION. for. Plumbing, Heating, Hot Water, Cold Water & Electrical work. Sussex Lodge London W2 & 16 Stanhope Terrace London W2

ALVERNIA UNIVERSITY OSHA REGULATION: 29 CFR WELDING, CUTTING, AND BRAZING ( HOT WORK ) SECTION: 3600

Sun Vinyl New Construction Windows Homeowner's Warranty

Introducing an All New Line of Cleaning Chemicals

Polygon & Property Damage Restoration

An Informational Pamphlet. 416 South East Street Lebanon, OH 45036

TYPICAL FIRE SAFETY INSPECTION VIOLATIONS

Service Guide. Evaporator Coil Cleaning and Condensate Drain Maintenance Guidelines. ORDER No: UN-SVG001A-EN DATE: October 9, 2007

BUILDING ASSESSMENT QUESTIONNAIRE. B. TENANTS Is there more than one tenant in the building? YES

FIRESTOPPING & SMOKE SEALS

CERTIFICATE NAME OF PRODUCT MANUFACTURER PRODUCT DESCRIPTION CERTIFICATION PROCEDURE. No VTT C Date of issue , Updated July 1, 2011

Rehab Inspection Report Page 1

USER S, MAINTENANCE and SERVICE INFORMATION MANUAL

12. Inspection and Maintenance

Managing Water Infiltration into Buildings. Water Damage Check List

Ontario Fire Code SECTION 5.13 DIP TANKS. Illustrated Commentary. Office of the Ontario Fire Marshal

LPCB Red Book Listed Products and Passive Fire Protection Installer Schemes Answering the needs of the market

Controlling Condensation On CWP Insulation BY ED LIGHT, MEMBER ASHRAE; JAMES BAILEY, P.E., MEMBER ASHRAE; AND ROGER GAY

Asbestos. from the Home. Removing. Read this booklet for:

Restoring Peace of Mind.SM

More inside :: Tackle even the toughest water treatment piping challenges with

Name Of Occupancy Date. Yes No Describe

Limited Combustible: The New Standard for Fire Safety

Terms of Reference Air Handling Unit (HVAC System) Cleaning

SWIMMING POOL HEAT PUMP

CTI TECHNICAL BULLETIN Number 9: A publication of the Cable Tray Institute

How To Use A Power Supply Unit (Upu)

PLAN SUBMITTAL REQUIREMENTS FOR SPRAY BOOTHS AND SPRAYING ROOMS EXTINGUISHING SYSTEMS

17 FREE : A New Class of Halogen-Free Cables

Fire Testing of Recycled Materials for Building Applications

MOLD REMEDIATION KEY STEPS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

Safety data sheet for product

Explosion Prevention

LIFE SAFETY UPDATE. FULL SPRINKLERING OF ALL NURSING FACILITIES ADDITIONAL CLARIFICATIONS Prepared by Eric Rosenbaum, P.E. Hughes Associates, Inc.

The Owners Coated Coil, Cleaning and Maintenance Service Manual.

March Get The Mold Out: Mold Clean-Up Guidance for Residences. Introduction

ISO IEC ( ) INFORMATION SECURITY AUDIT TOOL

PRETREATMENT TECHNICAL DATA SHEET WATER EMULSIFIABLE RUST PREVENTATIVE PRODUCT DESCRIPTION

Bryan Zander - Sales Manager Blackmon Mooring of Austin, Inc.

GNOME PELLET E.I. Pellet Heater Owner's Manual Installation and Operating Instructions. Please read this entire manual before installation.

OASIS-PLUS 120V READ ALL INSTRUCTIONS BEFORE OPERATING READ ALL INSTRUCTIONS BEFORE OPERATING OZONE IS A POWERFUL OXIDIZER AND MUST BE USED WITH CARE

FACILITY FIRE PREVENTION AND EMERGENCY PREPAREDNESS INSPECTION CHECKLIST

Indoor Coil Corrosion Industry Research Report

3 Scotch-Weld TM. Structural Adhesive Films AF 6 AF 10 AF 13. Technical Data July, 2001

FIRE SAFETY SELF-INSPECTION FORM FOR CULTURAL INSTITUTIONS. 1. All Floors (inspect from top floor to basement): Yes No

ACO Cleaning principles for drainage

Office of the Fire Marshal MAINTENANCE OF SMOKE ALARMS OFM-TG July 1998 GUIDELINE

SYSTEM Inverter Air Conditioners

ASBESTOS MANAGEMENT PROGRAM

IS800 Series. Technical Data Sheet IS802, IS803, IS808, IS Description. Key Features and Benefits. Typical Physical Properties

CENTER FOR ENVIRONMENTAL HEALTH Emergency Response/Indoor Air Quality Program

Questions & Answers (Q & A) Regarding Asbestos Treatment with the Fire Suppression and Renovation Project

ZINCROLYTE VS DUPLEX 700

SPECIAL APPLICATIONS

Asbestos Work Permit Procedures

IMMEDIATE MEASURES FOR DETECTION, ANALYSIS AND TREATMENT: CORROSION BY CHLORIDES ONLY? (pg. 3) SPECIAL EDITION: CASE STUDIES

Get The Mold Out: Mold Clean-Up Guidance for Residences. Introduction

Routine and Emergency Boiler Operation

Waste and Cost Reduction Techniques for Small Parts Cleaners

10/10/2011. Reducing Losses by Restoration. BELFOR Worldwide Leader in Restoration. BELFOR Restoration - a brief definition Equipment restoration

Florida Department of Environmental Protection

Material Safety Data Sheet

DUCT CLEANLINESS FOR NEW CONSTRUCTION GUIDELINES

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS

Why is my air conditioner dripping on my customers?

Guidelines for Cleaning Staff on Managing Mould Growth in State Buildings

User s Manual AURORA 1.2K/2.2K

SPREFIX SPRAY INSULATION _ in the marine market.

SPILLS & SPILL KITS. Spills -General Guidelines:

HOT WORK PERMIT PROGRAM TRAINING. John Braun

EARLY WARNING OF FIRE AND HYDROGEN GAS THREATS IN BATTERY SPACES

Safe Storage of Chemicals

Fire Alarm System Accessories

OPTIONAL SLENDER REMOTE CONTROL

Transcription:

Hanover Risk Solutions Electrical and Electronic Equipment Non-Thermal Fire Damage Non-thermal fire damage, excluding water damage, to electrical and electronic equipment is caused by smoke and corrosive products generated from the combustion of materials, particularly plastics. The frequency and severity of losses due to non-thermal fire damage have increased in recent years, due to the increased use of thermoplastics in building materials and furnishing. Further, modern electronic equipment is sensitive to corrosive smoke produced by some thermoplastics. Because of this corrosiveness, telecommunication companies have initiated major research in the prevention and mitigation of non-thermal fire damage. This report examines non-thermal damage and discusses the fundamentals of non thermal damage, restoration technologies, and methods of prevention. Non-Thermal Damage Generally, non-thermal damage can be divided into two types: corrosive damage and noncorrosive damage. Corrosive damage results when the by-products of combustion combine with moisture, condense, and form acidic compounds on the surface of equipment. Electrical circuits and electronic components are at the greatest risk from this type of nonthermal damage. Non-corrosive damage, from soot and smoke, can cause a loss of product, cosmetic repair costs, and damage to electrical components by conductivity (i.e., shorting of circuits). Corrosive Damage The increased use of thermoplastics in the construction industry has brought complications to the fire protection field. Plastics account for a significant percentage (app. 10%) of the total building and construction materials used in the United States per year, with polyvinyl chloride (PVC) accounting for almost half of all the construction plastics used. Depending on the specific occupancy, it is not uncommon to find more than 25 percent of buildings furnishings manufactured from PVC or similar compounds. PVC is a thermoplastic compound that softens when heated. In its solid form, PVC can be difficult to ignite and generally will self-extinguish when the heat source is removed. However, when PVC burns, it releases hydrogen chloride that is both toxic and corrosive. When hydrogen chloride combines with moisture, it can form hydrochloric acid (HCI). There are a number of other materials that when burned produce potentially corrosive gases, including Teflon (TFE). However, these materials typically produce hydrogen fluoride (HF), not HCI. HCI has been found to cause corrosive damage to electrical equipment at relatively low concentrations. HF and other potentially continued

corrosive gases do not corrode electronics until much higher concentrations are reached. The specific concentrations vary based on the relative humidity (RH), type of circuit exposed, and the concentration of corrosive material present. Typically, for corrosion to occur, the relative humidity (RH) must be greater than 30 percent at 68 F (20 C). Corrosive gases (i.e., chlorine ions) require water or another electrolyte at the metal s surface before corrosion can occur. Rapid corrosion occurs at between 70-80 percent RH. Since corrosive hydrochloric gas at lower concentrations does not have a significant smell or optical density, the presence of HCI may not be noticed until after substantial equipment damage has occurred. The amount of these corrosive gases produced and the spread of contamination will be proportional to the volume of plastic-based products present and the intensity of the fire. The greater the volume of plastic materials involved in combustion, the higher the volumetric concentration of corrosive gases produced. Non-Corrosive Damage Non-corrosive damage includes the effects of relatively cool smoke and soot that condense on electronic equipment. The type of smoke and soot produced depends on the type of fire. Smoldering fires are typically lowtemperature fires that produce particles heavily laden with non-conductive organic compounds. These particles, while not corrosive, condense and may cause insulating films that impair the contacts of electrical equipment. High-temperature fires produce particles that include vaporized metals and highly conductive graphitic soot. A continuous film of this soot causes electrical shorting. Restoration Restoration of electronic and electrical equipment typically provides cost savings of 80-85 percent over the replacement of the same equipment. Furthermore, sensitive equipment that may not be available for several months is typically back in service faster with restoration, reducing losses associated with business interruption. Evaluation of Contamination To determine which equipment has been contaminated, two methods may be employed. The quickest method is a chloride strip test. The second method employs wiping the surface of the equipment and dissolving the debris in solution. This solution is then titrated with silver nitrate. Any chloride ions would precipitate out as silver chloride. From the precipitate, the concentration of the contaminants can be determined. Once the concentration of the surface is known, appropriate measures may be taken. Mitigation and General Salvage Once the level of contamination has been determined, the following salvage strategy should be followed. These steps will also help to mitigate current and potential future damage from corrosive causes. Secure Contaminated Equipment as Soon as Possible The corrosion process does not stop when the fire does. Therefore, to stop the corrosion, equipment should be removed from the postfire environment and placed into desiccated storage at a relative humidity less than ten percent. Corrosion is a function of time, and the more time that elapses before the 2

equipment is either restored or secured to a controlled environment, the greater the damage. Prevent the Contamination of Clean Equipment After contaminated equipment has been secured, uncontaminated equipment must be protected. Protection can range from covering the equipment with plastic sheeting during cleanup and rebuilding, to removing the equipment and placing it in storage. Protection of uncontaminated equipment is essential to prevent corrosion problems from equipment that initially tested clear, and then was contaminated during overhaul. Remove All Damaged Construction Parts All building materials affected by the fire should be removed. Even charred materials can diffuse contaminants into the environment for extended periods of time. Clean All Affected Areas A high-pressure water spray can be used to reduce the contaminants present in a postfire condition. Start Rebuilding and Repainting Charred surfaces should be replaced or painted to prevent the small, but continued evolution of corrosive fire gases. Ensure Cleanup of Any Heating Ventilation and Air Conditioning (HvaC) Equipment During a fire, the ventilation system, even if programmed to automatically shut down in alarm conditions, may get contaminated with corrosive compounds. Tests should be performed to ensure no recontamination of cleaned spaces when the HVAC equipment is turned back on. Restoration Techniques Soot composition changes over time. Therefore, the restoration process is as much of an art as it is a science. Before the disassembly of complicated equipment, photographs should be taken to ensure proper reassembly. Cleaning should be in accordance with the manufacturer s instructions. Disassembly should be extensive enough to reach surfaces contaminated by smoke. With computers, this may mean the removal of motherboards to reach the contaminated computer case, as well as the cleaning of fan blades of the power supply. Basic Procedures The most basic procedure for restoration is an eight-step process. 1. Use high-pressure air to blow off dust and soot. 2. Submerge equipment in an alkaline solution, such as methylene chloride, methyl isobutyl ketone, and methyl ethyl ketone, at a raised temperature. This serves to neutralize the corrosive attack, as well as dislodge soot particles. 3. Scrub the equipment and brush contaminants away. 4. Rinse the equipment with tap water. 5. Rinse the equipment with de-ionized water. 6. Perform a final inspection of the equipment for dislodged or damaged parts. 7. Reassemble the equipment as per the pictures and the manufacturer s literature. 8. Refurbish the outer casing of the equipment if required. 3

Modifications to Basic Procedures There are a number of modifications to the basic restoration procedures above, which may be employed, including: As a substitute for using high-pressure air to blow off dust and soot; wiping, vacuuming, or lightly brushing may be used. Instead of submerging equipment in an alkaline solution, cleaning with steam/water blasting and detergents at 2,000 psi (137.9 bar); high-pressure sprays and solvents at 1,000 psi (69.9 bar); low-pressure sprays and solvents at 50 psi (3.4 bar), or detergents at 50 psi (3.4 bar). Vapor degreasing and ultrasonic cleaning may also be used as a substitute for submerging equipment in an alkaline solution. An experiment by the Swedish Institute of Production Engineering compared three techniques: manual brushing, immersed high-pressure spray, and manual brushing with ultrasonic cleansing. The methods tested in the experiment, those that employed manual scrubbing as part of the technique, were able to remove all of the visible soot deposits. Only the scrubbing plus ultrasonic agitation removed chlorine ions down to the 0.1-micron range. Manual brushing is essential for the removal of soot particles, while ultrasonic cleansing is an effective treatment to get equipment back to a like-new condition. Professional Resources Modern electronic equipment often uses very sensitive components, which could be affected by temperature extremes and cleaning agents. While the above procedures are generally accepted, property owners should always consult with the equipment manufacturer for specific instructions. Because of the complex and time-consuming nature of the cleaning process, many property owners utilize thirdparty professional cleaning firms. While using a professional cleaning firm is highly recommended, the property owner should evaluate the reputation of the company as well as any concerns for data security. Allowing disk drives, memory storage devices, etc., to be handled by a third party could expose the company to unauthorized release of sensitive or personal information. Property owners should request references and background checks and require that the service provider sign a non-disclosure agreement to limit the exposure. Prevention of Non-Thermal Damage While the cost of restoring non-thermally damaged equipment can be much less than purchasing new equipment, the cost of preventing non-thermal damage may be even more cost-effective. There are two main methods used to prevent non-thermal damage during a fire: prevent corrosive smoke and manage corrosive smoke s impact. Both of these methods not only reduce the damage from corrosive compounds produced during a fire, they aid in reducing non-corrosive contamination, as well. Preventing Corrosive Smoke Generation One method for preventing corrosive smoke generation is controlling the type of corrosive smoke evolved by the use of other materials for the manufacture of cabling (e.g., computer, telephone, and electrical wiring), building components, and furnishings. Alternate materials may include: Installing fire-retardant cabling using flame-retardant phosphate plasticizers in combination with chlorinated materials. These flame retardants volatize upon heating and help to prevent ignition, as well as limit the spread of chlorinated materials. 4

Using ethylene vinyl acetate (EVA) cables. EVA cabling is made with low-smoke, nonhalogenated materials that upon burning, emits low levels of smoke and corrosive gas. Eliminate PVC as a construction material. PVC is the source of most HCI evolved during a fire. Limit furnishings to materials having a Class A flame-spread rating. Managing the Impact of Corrosive Smoke Managing the impact of corrosive smoke is a difficult task. This is partially due to the immediate concern with the source of the corrosive smoke the fire. This prioritizing of hazards makes the use of passive protection a reasonable alternative to active fire protection measures. Passive fire protection methods include the use of surface treatments, such as acid-neutralizing coatings, encapsulation, and smoke filters. Additionally, limiting smoke travel during and after a fire can significantly reduce the amount of contamination. Methods to reduce smoke travel include: Large areas should be subdivided or compartmentalized. By compartmentalizing a large, open structure, horizontal smoke spread is reduced. Ensure firewalls and fire barrier walls are properly installed and free of unsealed penetrations (i.e., holes). Properly-installed walls can provide effective means of protection against the spread of smoke and fire. Utilize self-closing fire doors between individual smoke compartments. Completely enclose all vertical openings in fire-rated walls and partitions to prevent smoke and fire spread. Provide mechanical smoke and heat vents. Smoke and heat roof vents are designed to operate manually or automatically through the fusing of a fusible link or a plastic dome that shrinks and falls from place when exposed to fire. Telecommunication companies have put into practical use organic removal filters and reduced sulfur gas filters. Another technology makes use of an integrated filtration process, within the HVAC system, that removes vapors, soot, and corrosive gases. These types of systems could be activated in the event of a fire and provide the necessary environmental controls that would reduce potentially catastrophic non-thermal damage. 5

segment Hanover BanD risk solutions References 1. Cider, Lennart, Cleaning and Reliability of Smoke-Contaminated Electronics. Fire Technology 3 (1993): 226-245. 2. Dehann, John. Kirks Fire Investigation. 6th ed. Upper Saddle River, N.J.: Brady, 2007. 3. Drysdal, Douglas. An Introduction to Fire Dynamics. 2nd ed. Edinburgh, UK: Wiley, 1998. 4. Engineering and Safety Service. The Spread of Smoke and Fire. FP-30-00. Jersey City, NJ: ISO Services, Inc., 2011. 5. Factory Mutual Engineering Corp. Plastics in Construction. Property Loss Prevention Data Sheet 1-57. Norwood, MA: FM Global, 2010. 7. National Fire Protection Association (NFPA). Fire Protection Handbook. 20th ed. Quincy, MA: NFPA, 2008. 8. Special Analysis Package: Computer Equipment and Computer Areas. Quincy, MA: NFPA, 2004. 9. Patton, J.S. Fire and Smoke Corrosivity of Metals. Annapolis, MD: U.S. Navy/David Taylor Research Center, 1992. 10. Reagor, B. T. Smoke Corrosivity: Generation, Impact, Detection and Protection. Journal of Fire Sciences. 10.2 (1992). To learn more about Hanover Risk Solutions, visit hanoverrisksolutions.com 6. Telecommunications. Property Loss Prevention Data Sheet 5-14. Norwood, MA: FM Global, 2010. Why the Hanover? The Hanover is a leading Property and Casualty insurance company dedicated to achieving world-class performance. Our commitment is to deliver the products, services, and technology of the best national companies with the responsiveness, market focus, and local decision making of the best regional companies. This powerful combination has been a proven success since our founding in 1852, and is backed by our financial strength rating of A (Excellent) from A.M. Best. The Hanover Insurance Company 440 Lincoln Street, Worcester, MA 01653 hanover.com The Agency Place (TAP) https://tap.hanover.com Used with permission from ISO Services. Adapted from document FP-45-31 ISO Services. The recommendation(s), advice and contents of this material are provided for informational purposes only and do not purport to address every possible legal obligation, hazard, code violation, loss potential or exception to good practice. The Hanover Insurance Company and its affiliates and subsidiaries ( The Hanover ) specifically disclaim any warranty or representation that acceptance of any recommendations or advice contained herein will make any premises, property or operation safe or in compliance with any law or regulation. Under no circumstances should this material or your acceptance of any recommendations or advice contained herein be construed as establishing the existence or availability of any insurance coverage with The Hanover. By providing this information to you, The Hanover does not assume (and specifically disclaims) any duty, undertaking or responsibility to you. The decision to accept or implement any recommendation(s) or advice contained in this material must be made by you. 1271-0932 (01/14) LC 12-68