Tidal forces in the Solar System

Similar documents
Lecture 13. Gravity in the Solar System

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Earth in the Solar System

Background Information Students will learn about the Solar System while practicing communication skills.

Solar System Overview

The Solar System. Olivia Paquette

Introduction to the Solar System

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Our Planetary System. Earth, as viewed by the Voyager spacecraft Pearson Education, Inc.

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Lab 7: Gravity and Jupiter's Moons

Name Class Date. true

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

TIDES. 1. Tides are the regular rise and fall of sea level that occurs either once a day (every 24.8 hours) or twice a day (every 12.4 hours).

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

The orbit of Halley s Comet

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

Chapter 5: Circular Motion, the Planets, and Gravity

The Moon. Nicola Loaring, SAAO

Chapter 25.1: Models of our Solar System

Cosmic Journey: A Solar System Adventure General Information

Science Standard 4 Earth in Space Grade Level Expectations

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture

The Layout of the Solar System

Vocabulary - Understanding Revolution in. our Solar System

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

Orbital Dynamics. Orbital Dynamics 1/29/15

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

Gravity. in the Solar System. Beyond the Book. FOCUS Book

Study Guide due Friday, 1/29

The Solar System. Source

Science 9 Worksheet 13-1 The Solar System

Astronomy 1140 Quiz 1 Review

THE SOLAR SYSTEM - EXERCISES 1

From Aristotle to Newton

Angular Velocity vs. Linear Velocity

Copyright 2006, Astronomical Society of the Pacific

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Lecture 12: The Solar System Briefly

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Related Standards and Background Information

Newton s Law of Gravity

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Lecture 10 Formation of the Solar System January 6c, 2014

Page. ASTRONOMICAL OBJECTS (Page 4).

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Solar System Facts & Fun

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Orbital Mechanics. Angular Momentum

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Unit 8 Lesson 2 Gravity and the Solar System

RETURN TO THE MOON. Lesson Plan

Earth Is Not the Center of the Universe

Study Guide: Solar System

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

Chapter 8 Welcome to the Solar System

Summary: Four Major Features of our Solar System

Motions of Earth, Moon, and Sun

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Class 2 Solar System Characteristics Formation Exosolar Planets

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 5: Round and Round We Go Exploring Orbits in the Solar System

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

A.4 The Solar System Scale Model

Chapter 1: Our Place in the Universe Pearson Education Inc., publishing as Addison-Wesley

25 MS The Solar System Chapter Outline

AP Environmental Science Graph Prep

Solar System Fact Sheet

Lecture 19: Planet Formation I. Clues from the Solar System

Section 4: The Basics of Satellite Orbits

Orbital Mechanics and Space Geometry

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

Out of This World Classroom Activity

Group Leader: Group Members:

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Explain the Big Bang Theory and give two pieces of evidence which support it.

Correct Modeling of the Indirect Term for Third-Body Perturbations

Dynamics of Celestial Bodies, PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

Transcription:

Tidal forces in the Solar System Introduction As anywhere else in the Universe, gravity is the basic and fundamental principle that rules the shape and permanent motion of all the celestial bodies inside the Solar System. No matter the type of planet, moon, asteroid or comet, gravity accounts for the main parameters of each orbit, which can be calculated by considering each body as a point mass. But there are other gravitational effects, those coming from the fact that actual bodies do have internal dimensions, which become the major cause for specific and unique characteristics of a lot of members of the Solar System. Such effects are derived from differential gravitational forces or "tidal forces", which not only have dramatically affected the development of the present state of the Solar System, but will endlessly continue reshaping it as well. Tidal forces fundamentals According to Newton's law of universal gravitation, the attractive force (F) reciprocally exerted between two masses (m, M) being separated at a distance (d) is: GMm F = 2 d where G is the universal constant of gravitation. Inside a celestial body, the gravitational force exerted by the distant mass (M) on any small element of mass (m) varies as its relative position changes, having an overall distribution as illustrated in Figure 1. Figure 1 Forces relative to the distant mass Figure Figure 2 2 Forces Forces relative relative to de to the center center Page 1 of 6

Subtracting everywhere the central force vector from each local force vector, it's obtained the distribution of forces relative to center of the body, as Figure 2 shows. Those "differential" forces stretch the body laterally and compress it in the perpendicular direction, distorting it from the spherical shape into a prolate spheroid (rugby ball shape) as two "tidal bulges" at each side from the distant mass (M) have appeared. [1] Technically named "differential gravitational forces", they are normally called "tidal forces" because of their well-known effect producing diurnal ocean tides every 12 hours in the spinning Earth due to the Moon. The greater difference "tidal" force ( F) value comes from two elements of mass (m) at each side of the body, diametrically separated over the same line to the gravitational mass (M), as seen in the following diagram: body M For the usual case of d R, the greater tidal force value results: 4GMmR F 3 d where R is the radius of the body d is the distance from the center of the body to the gravitational mass M As the distance to the gravitational mass increases, the value of the tidal force rapidly decays due to result proportional to 1/d 3. Conversely, if the distance to the gravitational mass becomes near enough, it could be that the disruptive tidal forces even overcome the proper cohesive gravitational forces that hold the body together, making it break up into fragments. Therefore, for each planet there is a minimum safe distance from its center in order that any natural satellite could revolve it without risk of being disintegrated. That minimum distance is the "Roche limit". Page 2 of 6

Consequences of tidal forces in the Solar System a) Earth-Moon system Tidal bulges on Earth are basically due to the Sun and the Moon. Because of its nearness, tidal forces from the Moon are about twice as great as those from the Sun, which accounts for the noticeable direct effect of the Moon on Earth's ocean tides. As the body of the Earth is largely rigid, it cannot deform very much in response to tidal forces, as water in the oceans can actually do. The highest -"spring"- tides are obtained when tidal bulges from the Sun and the Moon overlap (as in full or new Moon case), and the smallest -"neap"- tides occur when they are at right angle (first or last quarter case). Because the Earth rotates on its axis more rapidly than the Moon revolves around it, the tidal bulges are not exactly aligned in the Earth-Moon direction, becoming dragged ahead as seen in Figure 3. That makes that the high tide appears delayed everywhere with respect to the time of local highest moon.. Figure 3 Misalignment of Earth's tidal bulges and net force exerted on the Moon's orbital direction That misalignment also implies that the Moon becomes affected by Earth's tidal forces, as it appears a non-zero net force in the same direction of the Moon's orbital motion which tends to move it up and away from the Earth, as Figure 3 also shows. The Earth's daily tides (mostly oceanic but also on solid surfaces) cause loss of energy of its rotation due to friction, meaning that the Earth is slowing down its rotation rate (currently about 0.0016 seconds per century). At the same time the Moon is moving away (about 3.8 meters per century), so its orbital period increases. This process will go on until a stable situation could be reached when the rotation period of the Earth equals the revolving period of the Moon. In such scenario, tidal forces by the Moon on the Earth will remain steady because the Earth will be "tidally locked" to the Moon, always keeping the same face towards it. The Moon was tidally locked to the Earth a long time ago because tidal forces of Earth on the Moon are much stronger. Page 3 of 6

Once the Earth-Moon becomes tidally locked, only other external tidal forces will affect its configuration. As solar tides will tend to slow the Earth's rotation even more, the tidal bulges due to the Moon will begin to get behind (in the reverse inclination as seen in Fig. 3). Therefore there would appear a net force opposite to the Moon's orbital motion, forcing it to spiral inward until it's disintegrated on reaching the Earth's Roche limit (18,500 km) [2]. b) Precession, nutation and climate changes The Earth is slightly oblate because of its rotation. As the Earth presents a tilted "equatorial bulge" to both the Sun and the Moon, differential forces appear trying to set the Earth's axis of rotation upright. Because the Earth is spinning, those tidal forces actually change the angular momentum perpendicular to the rotation, causing the Earth to precess, that is, its axis of rotation slowly traces out a circle in some 26,000 years, while keeping about the same inclination to the ecliptic ("obliquity"). Due to the Moon's orbit being slightly tilted from the ecliptic, the Earth's obliquity also gradually changes as the rotational axis wobbles while precessing. This slight nodding of the axis is called "nutation", forcing the precession motion to actually become a wiggly circle in the sky [3]. Tidal forces from the Sun and the Earth affect the orbit of the Moon, causing similar effects as precession and nutation on its orbit. Cyclical changes in the Earth's obliquity and eccentricity, ultimately due to the tidal forces of Jupiter and the other planets, account for some climate changes that have happened, such as the advances and retreats of continental glaciers. In the same way, others planets tidally affected like Mars "may be expected to have similar climate fluctuations" [4]. c) Synchronous rotation Many objects in the Solar System are in synchronous rotation, so that their rotational period has an exact numerical relation with their period of revolution (i.e. the Moon, having both the same). This is a direct consequence of tidal forces generated by a central object inside the revolving rotational body, having acted over a sufficiently long period of time. Having reached the synchronous rotation condition, most of the time the body has equal rotation and revolution periods (so called 1-to-1 spin-orbit coupling ) meaning that the body always shows the same face to the central object, revolving in a nearly circular orbit. That is the current situation for 23 satellites in the Solar System (the Earth's Moon, Mars's Phobos and Deimos, Jupiter's Amalthea, Io, Europa, Ganymede and Callisto, Saturn's, Janus, Epimetheus, Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus, Uranus' Miranda, Ariel, Umbriel, Titania and Oberon, Neptune's Triton, and Pluto's Charon). Another 7 satellites are also suspected of being in synchronous rotation: Jupiter's Thebe, Saturn's Prometheus, Pandora, Calypso and Titan, Neptune's Larissa and Proteus [5]. One special case of synchronous rotation is Mercury, which is locked into a 3-to-2 spinorbit coupling as a direct consequence of its rather eccentric orbit (e = 0.206). Instead of always keeping the same face towards the Sun, as it would be in the case of a nearly circular orbit, Mercury makes three complete rotations for every two complete orbits. Page 4 of 6

Pluto has already been synchronized by its previous tidally locked moon Charon, therefore resulting in the first tidally locked system in the whole Solar System. Synchronous rotation doesn't mean that the orbital parameters are stable. Tidal forces induced by satellites on theirs parent planets will continually reshape each moon's orbit until reciprocal -tidally locked- stable conditions can be achieved. Both Mars's Phobos and Deimos are in synchronous rotation. But while Deimos is slowly moving away from Mars, Phobos is slowly spiraling towards Mars. That is because the rotational period of Mars is greater than the orbital period of Phobos, which makes the relative position of Mars's tidal bulges behind that of Phobos. In about 40 millions years Phobos's inward spiral will end with its own disintegration [6]. As Triton orbits Neptune in retrograde motion, its tidally locked rotation leads to the same destiny as Phobos, making Triton slowly spiral inward until reaching Neptune's Roche limit in approximately 100 million years [6]. d) Tidal heating As all the four Galilean satellites are relatively large, each orbit has been significantly affected by the action of the other three. In particular, the orbital periods of Io, Europa and Ganymede -the three nearer Jupiter- maintain a nearly perfect 1:2:4 ratio, which implies that the reciprocal gravitational tugs have finally become rhythmical, leading to synchronized orbits. This orbital resonance forces Io, the innermost of the four and therefore the most tidally distorted by the planet, into a slightly eccentric orbit (e = 0.004). As Io goes around Jupiter barely varying its distance, also the strength of tidal forces inside the satellite barely change. But these continually varying tidal stresses make Io alternately squeeze and flex, generating so much heat through friction that much of its interior remains partially molten. This internal tidal heating makes Io the most volcanic body known in the whole universe [7]. Europa, the second of the Galilean satellites, is also forced to deform its orbits into an ellipse (e = 0.01) due to the orbital resonance exerted by Io and Ganymede. Therefore the effect of internal tidal heating is also generated, but with less intensity compared to Io, as the distance from Jupiter is greater. Nevertheless, this internal heat makes Europa the smoothest body in the Solar System, as its no-mountains-surface is been quietly but constantly reshaped through a water-and-ice version of plate tectonics [6]. Also Ganymede shows evidence of ancient tidal heating, as superficial founded furrows and grooves suggest once geologic activity, ceased a long time ago as its orbit became nearly circular (e = 0.001) [6]. Saturn's Enceladus and Dione are in an almost exactly 1:2 ratio of orbital periods, making the inner Enceladus to be caught in a rhythmical tug-of-war between Saturn and Dione. The resulting tidal heating is the most probable explanation for the geologic activity founded in Enceladus [6]. There also seems to be evidence of tidal heating in Uranus' Ariel, Titania, Miranda and Neptune's Triton [6]. Page 5 of 6

e) Ring systems All Jovian planets have rings obeying very strict geometrical laws: orbits must be almost perfectly circular, lie precisely in the equatorial plane, and be extremely flat. The rings are formed by icy particles, ranging in size from about 1 cm to pieces 5 m across. Their orbital speeds across the rings must verify Kepler's third law, so the nearer particles to the planet move around more rapidly than the further ones. As all ring systems lie within the Roche limits, probably their particles came from either being prevented from accreting into larger objects or being tidally disrupted from bodies approaching the planet. Rings are dynamic, as particles are constantly being disturbed. That makes them short-lived in astronomical terms [8]. f) Overall loss of mechanical energy due to tidal forces All the previously seen consequences of non-steady tidal forces imply friction. The total decrease in the mechanical energy of the Solar System due to tidal friction during its whole history has been estimated at 1.7 x 10 33 kg m 2 s -2 (0.85% of all its present integral energy), having been transformed into heat [9]. Conclusion Any celestial body placed in the gravitational field of another will experience tidal forces that tend to distort it, just because the attraction is stronger on one side than the other. Reciprocally, the generated distortion will affect the orbital parameters of the first object until a mutual stable condition could be achieved. Therefore tidal forces not only have been reshaping the Solar System orbits, determining now and future presence, location and orbital parameters of satellite system around planets, but accounts also for having induced special and particular characteristics such as tidal heating, ring systems and even global climate changes. References 1 Prof. Dale E. Gary, NJIT: "Differential (Tidal) Forces, Precession and Nutation", Astrophysics I: Lecture # 11, http://physics.njit.edu/classes/320/lecture11.html 2 Mikolaj Sawicki, John A. Logan College: "Myths about Gravity and Tides", http://www.jal.cc.il.us/- mikolajsawicki/tides_new2.pdf 3 Swinburne Astronomy Online: "HET 602 Exploring the Solar System", CD-ROM 4 NASA - UCLA -JPL: "Weather and Climate: A Brief Look at the Martian Almanac", http://mars.jpl.nasa.gov/msp98/mvacs/overview/climate.htm 5 "Observer's Handbook 2002" - The Royal Astronomical Society of Canada, 2001 6 Roger A. Freedman and William J. Kaufmann III: "Universe: The Solar System", 6 th edition, 2001, R.R. Donnelley et Sons Company 7 J. Kelly Beatty, Carolyn Collins Petersen and Andrew Chaikin: "The New Solar System", 4 th edition, 1999, Cambridge University Press 8 Steven Dutch, University of Wisconsin: "Rings and Resonances", http://www.uwgb.edu/dutchs/planets/resonanc.htm 9 M.Sidlichovsky, M. Bursa and Z. Sima: "Dynamics of Natural Bodies of the Solar System", www.asu.cas.cz/english/depart/dynas/naturalbodies.html Page 6 of 6