Rubén Pérez SPM Theory & Nanomechanics Group Departamento de Física Teórica de la Materia Condensada http://www.uam.es/spmth



Similar documents
7/3/2014. Introduction to Atomic Force Microscope. Introduction to Scanning Force Microscope. Invention of Atomic Force Microscope (AFM)

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

STM and AFM Tutorial. Katie Mitchell January 20, 2010

Microscopie à champs proche: et application

Scanning Tunneling Microscopy: Fundamentals and Applications

Surface Analysis with STM and AFM

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić

XCVII Congresso Nazionale

Microscopie à force atomique: Le mode noncontact

Physical Properties and Functionalization of Low-Dimensional Materials

Lecture 4 Scanning Probe Microscopy (SPM)

The influence of graphene curvature on hydrogen adsorption. Sarah Goler

SPM 150 Aarhus with KolibriSensor

The Application of Density Functional Theory in Materials Science

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Surface-state engineering for interconnects on H-passivated Si(100)

Electronic transport properties of nano-scale Si films: an ab initio study

New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. ab initio calculations

Modification of Graphene Films by Laser-Generated High Energy Particles

Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)

It has long been a goal to achieve higher spatial resolution in optical imaging and

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

SCANNING PROBE MICROSCOPY NANOS-E3 SCHOOL 29/09/2015 An introduction to surface microscopy probes

Nanoscience Course Descriptions

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Scanning Probe Microscopy

Nano-Microscopy: Lecture 1. Pavel Zinin HIGP, University of Hawaii, Honolulu, USA

Piezoelectric Scanners

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

Section 3: Crystal Binding

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

Exciton dissociation in solar cells:

G raphene layers on metal surfaces have been attracting the attention of scientists since several decades,

STM, LEED and Mass spectrometry

1 Introduction. 1.1 Historical Perspective

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

Nanoceanal Spectroscopy of Vibrariums and Electariums

Nondestructive characterization of advanced polymeric materials using spectroscopy and atomic force microscopy

Molecular Dynamics Simulations

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

α Ga (010) α Ga sample is needed to prevent its

e - Alessandro Baraldi

High flexibility of DNA on short length scales probed by atomic force microscopy

Analysis, post-processing and visualization tools

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Chapter 2. Atomic Structure and Interatomic Bonding

Near-field scanning optical microscopy (SNOM)

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

Tecniche a scansione di sonda per nanoscopia e nanomanipolazione 2: AFM e derivati

Free Electron Fermi Gas (Kittel Ch. 6)

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

1 The water molecule and hydrogen bonds in water

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications


Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Surface characterization of oxygen deficient SrTiO 3

Spatially separated excitons in 2D and 1D

HYDROGEN STORAGE MATERIALS A FIRST-PRINCIPLES STUDY SÜLEYMAN ER ISBN / EAN: DOI: /

Keysight Technologies How to Choose your MAC Lever. Technical Overview

Scanning probe microscopy AFM, STM. Near field Scanning Optical Microscopy(NSOM) Scanning probe fabrication

Etudes in situ et ex situ de multicouches C/FePt

Highlights of Solid State Physics. Man of the Year Nobel Prizes

Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition

Graphene a material for the future

Phase Characterization of TiO 2 Powder by XRD and TEM

Photocatalytic and photoelectric properties of cubic Ag 3 PO 4 sub-microcrystals with sharp corners and edges

Bi-metallic nanoparticles: A size problem

What is molecular dynamics (MD) simulation and how does it work?

Sampling the Brillouin-zone:

Atomic Force Microscope and Magnetic Force Microscope Background Information

Microscopy: Principles and Advances

Vacuum Evaporation Recap

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

Università degli Studi di Padova Dipartimento di Fisica e Astronomia Corso di Laurea Magistrale in Fisica

BNG 331 Cell-Tissue Material Interactions. Biomaterial Surfaces

Total Organic Synthesis and Characterization of Graphene Nanoribbons

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Carbon-Carbon bonds: Hybridization

DNA sequencing via transverse transport: possibilities and fundamental issues

The self-assembly of metallic nanowires

ATOMIC FORCE MICROSCOPY

Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

MBA Lattice Upgrade: New Opportunities for In-situ High Energy (30 kev 90 kev) X-ray Structural Analyses

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Chapter Outline. How do atoms arrange themselves to form solids?

Raman and AFM characterization of carbon nanotube polymer composites Illia Dobryden

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

Hydrogen, the simplest and most abundant element in the universe,

From Quantum to Matter 2006

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Transcription:

Probing nanostructures with forces and currents: From atomic-scale contrast on graphene and carbon nanotubes to heterofullerene synthesis with planar aromatic precursors Rubén Pérez SPM Theory & Nanomechanics Group Departamento de Física Teórica de la Materia Condensada http://www.uam.es/spmth Seminar Dresde 30/06/2011

Nanotechnology: Materials & Tools (SPMs) (Atomic scale is different ) Nanocontacts Scanning Probe Microscopes (SPMs): Scanning Tunneling Microscope (STM) Atomic Force Microscope (AFM)

Forces & Transport in Nanostructures: First-principles calculations STM & AFM Imaging Single-atom manipulation

Methodology The computer is a tool for clear thinking Freeman J. Dyson Ab-initio total energy methods (based in Density Functional Theory) Non-equilibrium Green s Functions both plane wave & local orbital basis: accuracy/efficiency balance Linked with the local orbital description Structure + electronic properties Electronic transport FIREBALL, OPENMX CASTEP, VASP + vdw corrections

Low-dimensional carbon materials outstanding electronic and mechanical properties Graphene and graphene nanoribbons (2D) Carbon Nanotubes (1D) Fullerenes (0D) And more: Controlled doping of carbon materials: o Endo & exofullerenes, heterofullerenes, doped nanotubes and graphene nanoribons, peapods, http://boomeria.org/chemlectures/organic/graphene2.jpg Tools to visualize, characterize and manipulate at the atomic scale: key step in turning these expectations into real devices

Outline 1. Frequency Modulation (FM) -AFM in a nutshell 2. Forces and currents in carbon nanostructures Atomic contrast: PRL (29/04/2011, Editors suggestion) Vacancies on Graphene/Pt(111): PRL (accepted) Are these defects magnetic? 3. Heterofullerenes from planar precursors: Atomic-scale Origami: Nature 454, 865 (2008) Surface induced enantiomeric recognition: Chem. Euro.J. 6, 3920 (2010) Vacancy network in Pt induced by C 60 Nature Materials (submitted)

Fullerenes from aromatic precursors by surface catalysed cyclodehydrogenation Nature 454, 865 (2008) G. Otero, C. Sánchez-Sánchez, L. Alvarez, R. Caillard, C. Rogero, M. F. López, F. J. Palomares, J. Méndez, José A. Martín-Gago (ICMM-CSIC, CAB) N. Cabello, A. M. Echavarren, B. Gómez-Lor (ICIQ, ICMM) G. Biddau, M. A. Basanta, J. Ortega, R. Pérez (UAM)

2. Frequency Modulation-AFM in a nutshell Developing new capabilities for the FM-AFM Chemical identification: Nature 446, 64 (2007) Atom Manipulation: Science 322, 413 (2008)

ATOMIC FORCE MICROSCOPY (AFM) G. Binnig, C. Gerber & C. Quate, PRL 56 (1986) 930 2nd most cited PRL: +5000 citations!!! http://monet.physik.unibas.ch/famars/afm_prin.htm

Dynamic AFM http://monet.physik.unibas.ch/famars/afm_prin.htm

Dynamic AFM: Our Goal Why changes observed in the dynamic properties of a vibrating cantilever with a tip that interacts with a surface make possible to: AM-dAFM Obtain molecular resolution images of biological samples in ambient conditions. Resolve atomic-scale defects in UHV. FM-dAFM R. García and R. Pérez, Surf. Sci. Rep. 47, 197 (2002)

Tip-sample Interaction: F V + F vdw + F chem F chem wfs overlap Sensitivity to Short-Range Forces? Exp: A = 340 Å!!!, R = 40 Å Weak singularity at turning points!!!!

Short-range Force (nn) Dynamic Force Spectroscopy: Access to F ts Ad2 Ad1 Ad1 Re1 H3 Ad2 Ad2 Ad1 Inversion algorithms 0,4 0,2 0,0-0,2-0,4-0,6-0,8-1,0-1,2-1,4-1,6 Exp. Adatom 2 Exp. Restatom 1 Exp. H3-1,8 1 2 3 4 5 6 7 8 9 Tip-surface Distance (Å) U. Durig, APL 76, 1203 (2000) F.J. Giessibl, APL 78, 123 (2001) J. E. Sader & S. P. Jarvis, APL 84, 1801 (2004). SR forces amenable to ab initio calculations

Force spectroscopy: Tip identification Short-range force (nn) Short-range force (nn) 0.4 Ad1 Tip A Ad2 Ad1 Re1 H3 Ad2 Ad1 Ad2 0.0-0.4-0.8-1.2 Exp. Adatom Calc. Adatom Exp. Restatom Calc. Restatom Exp. Hollow Calc. Hollow Tip B -1.6 1 2 3 4 5 6 7 8 9 0.4 Tip-surface distance (Å) Ad2 Ad1 0.0 Rotated Ad1 Re1 Re2 H3 Ad2 Ad1 Ad2-0.4-0.8-1.2 Exp. Adatom Calc. Adatom Exp. Restatom Calc. Restatom Exp. Hollow Calc. Hollow Ge -1.6 1 2 3 4 5 6 7 8 9 Tip-surface distance (Å) N. Oyabu et al. Phys. Rev. Lett. 96, 106101 (2006).

Structure & Stability of Semicond. Tip apexes 1. Structure of the outermost atoms: Tip terminations (T4, dimer) proposed in previous works are stable. 2. Last atomic layers: Both crystalline & amorphous solutions are possible. 3. Sharpening. Atomically sharp tips are stable. Tip-Sample interaction helps to produce atomically sharp tips. (More work is needed.) P. Pou, S.A. Ghasemi, P. Jelinek, T. Lenosky, S. Goedecker & R. P. Nanotechnology 20, 264015 (2009)

FM-AFM: Atomic contrast with SR Forces Lateral Manipulation Y. Sugimoto et al PRL 98, 106104 (2007). Imaging access to the real surface structure and currents -6.3 fn m Vertical Manipulation M. Lantz et al., Science 291, 2580 (2001) Chemical Identification -7.3 fn m -8.4 fn m Y. Sugimoto et al, Science 322 (2008) 413 O. Custance et al, Nat. Nano 4 (2009) 803 Y. Sugimoto et al, Nature 446 (2007) 64 P. Jelinek,et al, PRL 101 (2008) 176101 D. Sawada et al, APL (2009) 173117 PRB 73 (2006) 205329

3. Forces and currents in Carbon Nanostructures: Are we imaging atoms? Atomic contrast: PRL 106 (2011) 176101(Editors suggestion) Vacancies on Graphene/Pt(111): PRL (accepted)

Graphite: Bernal stacking

Atomic-scale contrast: maxima on the atoms honeycomb image STM Experiments: bright protrusions form an hexagonal lattice!!

Low-bias STM: Imaging of the β sublattice A I( ) I( ) I( ) I( ) * Experiments: contact resistance data * Theory: Calculations for tip-surface distance= 0.5 and 1 Å D. Tomanek et al., Phys. Rev. B 35, 7790 (1987).

Atomic-scale contrast: honeycomb vs hexagonal

Atomic-scale contrast: maxima on the atoms or hollow sites? honeycomb hexagonal hexagonal STM images taken with very different operation conditions and bias voltages show always an hexagonal symmetry

Force F short / nn SPM on low dimension carbon materials STM: Graphite (>25 years ago) FM-AFM (>10 years): Graphite o Albers et al, Nature Nano 2009; Hembacher et al, PRL 2005; Hembacher et al, PNAS 2003; Hölscher et al, PRB 2000; Carbon Nanotubes o Ashino et al, PRL 2004; Ashino et al nanotech 2005; PAHs: Pentacene o Gross et al, Science 2009 *Cisternas et al, PRB 79, 205431 (2009) *Hölscher et al, PRB 62, 6967 (2000) *Hembacher et al, PNAS 100, 12539 (2003) 0,00-0,03-0,06-0,09-0,12 *Ashino et al, Nanotec. 16, S134 (2005) -0,15 0,3 0,4 0,5 0,6 0,7 Distance z / nm

Imaging nanotubes with FM-AFM M. Ashino et al, Phys. Rev. Lett. 93, 136101 (2004). M. Ashino et al., Nat. Nanotechnol. 3, 337 (2008).

Frequency Shift vs Distance Curves @ Individual Atomic Lattice Sites Frequency Shift f / Hz 0-10 -20-30 -40-50 -60-70 -80 H 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Distance z / nm Frequency Shift f / Hz -50-60 H -70 dark bright -80 0.00 0.05 0.10 0.15 0.20 Distance z / nm M. Ashino H. Hölscher et al., PRB 62, 6967 (2000).

Force F total / nn Force F short / nn Analysis of Short-Range F short (z) Curves 0,00 Total Forces F total 0,00 Short-Range Force F short -0,05-0,10 F long z B z off, long -0,05-0,10 0,00-0,15-0,20-0,25 0,0 0,5 1,0 1,5 2,0 2,5 3,0 H Distance z / nm H -0,15-0,20-0,05-0,10-0,15 0,2 0,4 0,6 0,8-0,25 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Distance z / nm F short = F total F long * ) *) Guggisberg et al., PRB 61, 11151 (2000). Si(111)-7x7 ** ) M. Ashino **) M. Lantz et al., Science 291, 2580 (2001).

Force F short / nn Analysis of Short-Range F short (z) Curves 0,00 Forces derived from Lennard-Jones Potential -0,03-0,06 F L J z 12E z 0 0 z z 0 13 z z 0 7-0,09-0,12-0,15 0,3 0,4 0,5 0,6 0,7 Distance z / nm Tip H E 0 = Binding Energy z 0 = Equilibrium Distance ( z 0 0.334 nm ) E 0 (C1) 87.4 mev E 0 (C2) 91.8 mev E 0 ( H ) 101 mev M. Ashino

77.f.top / 19/11/09 Origin of the atomic contrast? FM-AFM: DFT+vdW Forces on SWCNT and graphite (0001) Is vdw providing atomic resolution? atomic contrast versus tip reactivity Does STM always image atoms?: multiple scattering effects Graphene on Pt(111): Moire patterns Vacancies on Gr/Pt(111): Are the localized states on the vacancy preserved? 5.2Å 6K M. M. Ugeda et al, PRL 104, 096804 (2010)

DFT+vdW calculations on CNT: system Nanotube (17,0) o Similar diameter to the NT used in experiments (1,34 nm vs 1,38 nm). o Semiconductor. o Small unit cell H 1,28 nm Unit cell: 204 atoms 1,34 nm

DFT+vdW calculations on CNT: Tips CHEMICAL REACTIVITY O apex atom in a Si tip Dimer Si tip H3 Si tip Metallic W tip

DFT+vdW calculations on NT: method Atomistic simulations with DFT + vdw: DFT calculation: o VASP: PW + PAW pseudopotentials o Electronic exchange correlation: PBE (also LDA) o Supercell calculation, 1x4x1 Monkhorst Pack (MP) E k -sampling mesh. Convergence criteria: Ecut = 500 ev. Forces < 0.01 ev/å vdw calculation: o Grimme approach [S. Grimme, J. Comp. Chem., 25 1463 (2004)] o Atomic relaxations included o Calculation taking into account the Tip and a large NT fragment (not supercell approach) E TOTAL = E DFT + E vdw

Rubén Pérez Forces and Currents on Low-dimensional Carbon Materials. SPM Theory & Nanomechanics Group, UAM ruben.perez@uam.es DFT+vdW calculations on NT: method Supercell for DFT vs nanotube + single tip for vdw DFT vdw

Force (nn) Force (nn) DFT+vdW calculations on NT: Results Dimer Si tip 0,3 0,2 0,1 Difference due to elastic deformation of tip&nt Experiment, SR Force, NT Leonard-Jones fit Ashino et al Nature Nano 2008 Forces vs experiments: GGA gives very small forces GGA+vdW yields the correct order of magnitude ~ -0.25 nn, but forces are larger than the experimental values, < 0.15 nn (tip model or vdw parameters?). 0,0-0,1-0,2-0,3-0,4-0,5 H, GGA+VdW C, GGA+VdW H, GGA C, GGA H, LDA C, LDA H, VdW C, VdW 2 3 4 5 6 Tip-NT Distance (Å) LDA provides a surprisingly good agreement with GGA+vdW

Force F short / nn Force (nn) DFT+vdW calculations on NT: Results Dimer Si tip 0,3 Atomic contrast H or C?: 0,00 H position gives larger forces -0,03 until very small tip-nt distances (bright -0,06 spot in topographic images) -0,09 Similar behaviour in experiments H -0,12 0,2 0,1 0,0-0,1-0,2-0,3-0,4-0,5 H, GGA+VdW C, GGA+VdW H, GGA C, GGA H, LDA C, LDA H, VdW C, VdW 2 3 4 5 6 Tip-NT Distance (Å) -0,15 M. Ashino 0,3 0,4 0,5 0,6 0,7 Distance z / nm

Force (nn) DFT+vdW calculations on NT: H3 Si tip H3 Si tip 0,1 0,0-0,1-0,2 Formation of a Si C bond Atomic contrast H or C?: H3 tip is more reactive. C gives larger forces (bright spot in topographic images) Very large Forces -0,3-0,4-0,5-0,6-0,7 H, GGA+VdW C, GGA+VdW H, GGA C, GGA H, LDA C, LDA H, VdW C, VdW 2 3 4 5 6 Tip-NT Distance (Å)

Atomic contrast vs tip reactivity For weakly reactive tips, vdw sets the absolute force scale but atomic contrast is always controlled by SR Chemical forces Weakly reactive tips: Pauli repulsion (smaller on areas of low electronic density) larger attractive forces on the hollow site: hexagonal pattern of bright spots Strongly interacting Tip: attractive interaction dominates larger forces on atoms (local change of hybridization) honeycomb pattern Inverted contrast on the repulsive regime M. Ondracek et al, Phys. Rev. Lett. 106 (2011) 176101 (Editors Suggestion, 29/04/2011 & ViewPoint)

The Chemical Structure of a Molecule Resolved by FM-AFM with a CO tip!! L. Gross et al, Science 325, 1110 (2009)

Does STM provides a clear identification of the maxima? STM AFM Hembacher et al, PRL 2005; Hembacher et al, PNAS 2003;

STM Simulations: KELDYSH-GREEN S FUNCTION METHOD Exact solution to all orders in the tip-sample hoppings!! I tunnel 4 e / Trace T eff eff ˆ Tˆ f ( ) f TS ˆ SS ST ˆ TT T S d Tˆ eff TS R R 1 1 Gˆ SSTˆ STG ˆ TTTˆ TS Tˆ TS Tˆ TS Tˆ TS Gˆ R SS Tˆ ST Gˆ R TT Tˆ TS... R G TT ( ) R G TT ( ) R G TT ( ) T TS T TS T ST T T TS T ST T TS T ST T + TS + TS +... R G SS ( ) R R G ( ) ( ) SS G SS JM. Blanco, F. Flores and R. P., Progress in Surface Science 81, 403-443 (2006)

W(100) Static STM: results constant height; 1024 k-points, V bias = -0.3 V change in the contrast with the distance inverted contrast for distances < 4 Å due to the multiple scattering effect α Η β α

Conclusions: Are we imaging atoms? FM-AFM: The atomic contrast is controlled by the Short Range Chemical forces. vdw interaction sets the absolute force scale. Topographic images yield bright spots on H or C positions depending on the Tip apex: less reactive tips favours the hollow position, more reactive apexes or metallic tips would yield the C atoms as bright spots. STM contrast changes with distance: Bright spots located on hollow sites for close distances. Multiple Scattering required!. AFM is an excellent experimental tool to check the theoretical vdw approaches!

Origin of the atomic contrast? FM-AFM: DFT+vdW Forces on SWCNT and graphite (0001) Is vdw providing atomic resolution? atomic contrast versus tip reactivity Does STM always image atoms?: multiple scattering effects Graphene on Pt(111): Moire patterns Vacancies on Gr/Pt(111): Are the localized states on the vacancy preserved? 5.2Å 77.f.top / 19/11/09 6K M. M. Ugeda et al, PRL 104, 096804 (2010)

Graphene on metals Highly perfect graphene sheets can be grown on various metals ML graphene on: Co, Ni, Ru, Rh, Pd, Ir, Pt, Cu see J. Wintterlin et al., Surf. Sci. 603, 1841 (2009) for a review Macroscopic-sized graphene films recently transferred to arbitrary substrates S. Bae et al., Nature Nano. 5, 574 (2010). How does the presence of a metallic substrate modify the properties of an The interaction of graphene layers with the different metallic substrates is strongly depending on the metal itself. atomically tailored graphene layer G. Giovannetti et al., PRL 101 026803 (2008). A. B. Preobrajenski et al. PRB 78, (2008) In the weakly interacting systems the electronic structure of ideal graphene is basically preserved. G/Ir(111) G/Pt(111) I. Pletikosic et al., PRL. 102 056808 (2009) P. Sutter, et al PRB 80 (2009)

Pristine graphene adsorbed on Pt(111) surfaces Graphene monolayer adsorbed on Pt(111) one of the weakest interacting graphene-metal systems v F = 10 6 m/s A. B. Preobrajenski et al. PRB 78, 073401 (2008) P. Sutter, et al., PRB 80, 245411 (2009).

Pristine graphene adsorbed on Pt(111) surfaces Formed by chemical vapor deposition of ethylene in UHV at temperatures above 1275K ( 21 21)R11º Moiré periodicity ML Graphene (a=2.46 Å) Pt(111) surface (a=2.78 Å) 3x3 1 2 Various moirés patterns are formed T. A. Land et al., Surf. Sci. 264 261 (1992). M. Enachescuet al., Phys. Rev. B 60, 16913 (1999). P. Sutter, et al., PRB. B 80, 245411 (2009). G. Otero et al. Phys. Rev. Lett. 105, 216102 (2010). Our results are basically independent of the moiré superstructure => 3x3 =19.1º

d//dv (a.u) Pristine graphene adsorbed on Pt(111) surfaces 3x3 moiré ( 21 21)R11º =19.1º 3x3 0.50 Experimental LDOS E D +300meV 0.25-1.5-1.0-0.5 0.0 0.5 1.0 1.5 Bias (V) Dirac point at +300 mev In agreement with theoretical predictions and photoemission estimations G. Giovannetti et al., PRL 101 026803 (2008). P. Sutter, et al PRB 80, 245411,(2009)

d//dv (a.u) Graphene on Pt(111): DFT calculations ( 21 21)R11º 3x3 moiré 3.35 Å Optimal Pt graphene distance!! Theory 0.50 Experiment Experimental LDOS E D +300meV 0.25 Calculation details: DFT- VASP code PBE functional + van der Waals interactions Planewave cutoff: 400 ev STM images: OpenMX code -1.5-1.0-0.5 0.0 0.5 1.0 1.5 Bias (V) STM corrugation can be explained as a purely electronic effect Calculations reinforce the association of the dip in the DOS with E D position

Graphene on Pt(111): STM Graphene on metals: Moiré structures: Topographic or purely electronic effect? Flat graphene layer: corrugation of ~0.03 Å 5.2Å 77.f.top / 19/11/09 6K 0.03 Å 0.00 Å 17 17 17 17 17 17 17 17 17 17 17

Graphene on Pt(111): STM Moiré structures: ANTICORRUGATION!!! electronic effects dominate... Pt(111)- (dzx-dzy) W(100)- (spd) 2,129E-9 2,13 na 2,126E-9 2,123E-9 2,121E-9 2,118E-9 2,115E-9 2,113E-9 2,110E-9 2,107E-9 2,105E-9 2,102E-9 2,099E-9 2,097E-9 2,094E-9 2,091E-9 2,089E-9 2,086E-9 2,083E-9 2,081E-9 2,078E-9 2,07 na 2,075E-9 2,129E-9 2,126E-9 2,123E-9 2,121E-9 2,118E-9 2,115E-9 2,113E-9 2,110E-9 2,107E-9 2,105E-9 2,102E-9 2,099E-9 2,097E-9 2,094E-9 2,091E-9 2,089E-9 2,086E-9 2,083E-9 2,081E-9 2,078E-9 2,075E-9 35,7 na 36,3 na 3,631E-8 3,629E-8 3,626E-8 3,623E-8 3,620E-8 3,617E-8 3,614E-8 3,611E-8 3,608E-8 3,605E-8 3,603E-8 3,600E-8 3,597E-8 3,594E-8 3,591E-8 3,588E-8 3,585E-8 3,582E-8 3,579E-8 3,576E-8 3,574E-8 3,631E-8 3,629E-8 3,626E-8 3,623E-8 3,620E-8 3,617E-8 3,614E-8 3,611E-8 3,608E-8 3,605E-8 3,603E-8 3,600E-8 3,597E-8 3,594E-8 3,591E-8 3,588E-8 3,585E-8 3,582E-8 3,579E-8 3,576E-8 3,574E-8 0,106 na 0,102 na Pt(111)-C- (pz) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Vacancies on Graphene/Pt(111) Creation of single vacancies by Ar + irradiation at RT (same parameters as in HOPG)

Vacancies on Graphene/Pt(111) Creation of single vacancies by Ar + irradiation at RT (same parameters as in HOPG)

Vacancies on Graphene/Pt(111) 4.8 Å 4.8 Å Almost identical features showing non trivial pattern of high LDOS intensity 2.5 nm 4.8 Å 4.8 Å Single C vacancies in HOPG We need bring into play DFT calculations in order to unravel its nature

Vacancies on Graphene/Pt(111) Free standing graphene (6x6) 1.95 Å Graphene on Pt(111) (6x6) 1.84 Å 2.90 Å Calculations show a magnetic moment for vacancy in FSG in agreement with O. Yazyev et al, Phys. Rev. B. 75, 125408 (2007) Graphene interaction with the metal strongly increases due to vacancies, giving rise to the quenching of the magnetic moment of the system

2.77 A Vacancies on Graphene/Pt(111) 1.84 Å supercell with 2 2 units of the 3x3 moiré 2.90 Å Calculations show that each of the bright features found 4.1 Å in the STM images after the ion bombardment is due a Experimental missing C atom 4.11 A 2.8 Å

d//dv (a.u) d//dv (a.u) d//dv (a.u) Tunneling Spectroscopy 0.6 LDOS C vacancy LDOS graphene/pt(111) 0.8 0.6 1 2 3 4 5 0.4 0.4 0.2 0.2 0.4 0.6 0.8 1.0 0.2 Bias (mv) Even in weakly coupled graphene/metal -1.5-1.0-0.5 0.0 systems, di/dv measured consecutively at 5K 0.5 1.0 1.5 the presence Lock-In parameters: V mod of = 1mV; f = 2.3kHz 1 3 3.0nm topography 2 4 5 Bias (V) the metal has to be seriously taken into account in order to di/dv map at +500mV controllably tune graphene properties by locally modifying its structure 1 2 3 4 5 LDOS 2.25 V -0.44 V High Low

Quenching of the magnetism (1): doping The doping effect induced by the metal pushes the C π states of both spins above the Fermi level!! A planar structure, like the one of the vacancy in isolated graphene, would be still magnetic!!

Quenching of the magnetism (2): relaxation of the unpaired C atom out of graphene plane 0.1 ev above magnetic GS The outward displacement mixes the σ and π states and changes the hybridization of the atom

Quenching of magnetism: Gr/Pt(111)

Character of the DOS resonance above E F Vacancy on Graphene Vacancy on Gr/Pt(111) The PDOS has esentially a p-character in this energy range

Conclusions 1. Forces & Transport in Nanostructures with ab initio methods: a perfect tool to extract information from STM and AFM experiments 2. FM-AFM: single-atom imaging, manipulation, and chemical identification on all kind of surfaces. 3. Forces and currents in carbon nanostructures AFM contrast controlled by tip apex reactivity STM contrast depends on distance: inversion!! Graphene/Pt(111): interaction modifies significantly the properties of the defects 4. Heterofullerenes from planar precursors: Atomic-scale Origami (2D chemistry+ surface catalyzed cyclization) Same ideas applied to the production of graphene nanoribbons (Jao et al., Nature 458, 877 (2010))

Acknowledgements THEORY: SPM-TH Group, UAM, Spain M. Ondracek, P. Jelinek (FZU, CAS, Prague), Cesar Gonzalez (ICMM-CSIC) EXPERIMENTS: FM-AFM: Osaka University & NIMS (Tsukuba), Japan: N. Oyabu, Y. Sugimoto, M. Abe, S. Morita & O. Custance Gr/Pt(111): M. M. Ugeda, I. Brihuega, A.J. Martinez-Galera, and J. M. Gómez-Rodríguez (UAM) FULLERENES: ICMM (CSIC): G. Otero,C. Sanchez-Sanchez, R. Caillard, M.F. Lopez, C. Rogero, F.J. Palomares, J. Mendez, J.A. Martin-Gago Chemistry ICMM: B. Gomez-Lor ICIQ: N. Cabello, A.M. Echevarren

Scanning Probe Microscopy Theory & Nanomechanics Group SPM-TH Group Leader: Prof. Rubén Pérez Postdoctoral Researchers: www.uam.es/spmth o Pablo Pou (RyC) o Delia Fernández o Milica Todorovic PhD Students: o Giulio Biddau o Carlos Gómez o Lucía Rodrigo

Acknowledgements & Funding MEC (Spain): Projects MAT2005-01298, NAN2004-09183-C10-07 EU FP-6: STREP project FORCETOOL (NMP4-CT-2004-013684) MICINN (Spain): Projects MAT2008-02929-NAN, MAT2008-02939-E (FANAS EUROCORES, ESF), MAT2008-02953-E (NSF Materials World Network) Spanish Supercomputing Network (RES): Magerit (CesViMa, Madrid) & Mare Nostrum (BSC, Barcelona) Thank you for your attention!! http://www.uam.es/spmth