Section 1.1 Exercises (Solutions)



Similar documents
STAB22 section 1.1. total = 88(200/100) + 85(200/100) + 77(300/100) + 90(200/100) + 80(100/100) = = 837,

1 Exploring Data CASE STUDY. Nielsen ratings C AS E S T U D Y. Delete

Summarizing and Displaying Categorical Data

Exploratory data analysis (Chapter 2) Fall 2011

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Chapter 2

The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)

Chapter 4 Displaying Quantitative Data

Chapter 2: Frequency Distributions and Graphs

Chapter 1: Exploring Data

Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures

Exercise 1.12 (Pg )

Demographics of Atlanta, Georgia:

+ Chapter 1 Exploring Data

Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous

Variables. Exploratory Data Analysis

Diagrams and Graphs of Statistical Data

Practice#1(chapter1,2) Name

Drawing a histogram using Excel

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

Section 1.3 Exercises (Solutions)

Mind on Statistics. Chapter 2

AP * Statistics Review. Descriptive Statistics

Modifying Colors and Symbols in ArcMap

Interpreting Data in Normal Distributions

AP Statistics Solutions to Packet 1

a. mean b. interquartile range c. range d. median

The Math. P (x) = 5! = = 120.

% 40 = = M 28 28

How To Color Print

Appendix 2.1 Tabular and Graphical Methods Using Excel

MEASURES OF VARIATION

Data Analysis, Statistics, and Probability

Week 1. Exploratory Data Analysis

1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers

Northumberland Knowledge

Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Name: Date: Use the following to answer questions 2-3:

Exploratory Data Analysis

3: Summary Statistics

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

Statistics Revision Sheet Question 6 of Paper 2

General Findings Over the five years being reviewed (2006 to 2011) there were 566 applicants for 210 positions.

Descriptive Statistics and Measurement Scales

PROBABILITY AND STATISTICS

SPSS Manual for Introductory Applied Statistics: A Variable Approach

Chapter 3. The Normal Distribution

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2. (b) 1.5. (c)

Describing, Exploring, and Comparing Data

How To: Analyse & Present Data

Step 3: Go to Column C. Use the function AVERAGE to calculate the mean values of n = 5. Column C is the column of the means.

7. Normal Distributions

2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Shape of Data Distributions

Table of Contents. 1. Overview Materials Required System Requirements User Mode Installation Instructions..

Module 2: Introduction to Quantitative Data Analysis

A Picture Really Is Worth a Thousand Words

Exploratory Data Analysis. Psychology 3256

Lesson 3: Constructing Circle Graphs. Selected Content Standards. Translating Content Standards into Instruction

CONTENTS. Chapter Chapter Chapter Chapter Chapter Chapter Chapter Chapter 8...

Hands-On Data Analysis

Computer Skills Microsoft Excel Creating Pie & Column Charts

PANTONE Solid to Process

Chapter 23. Inferences for Regression

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014

AMS 7L LAB #2 Spring, Exploratory Data Analysis

Mind on Statistics. Chapter 8

Basic Tools for Process Improvement

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Common Tools for Displaying and Communicating Data for Process Improvement

Pantone Matching System Color Chart PMS Colors Used For Printing

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Benefits of travel surveys

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

a) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?

Statistics and Probability

4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

Review for Test 2. Chapters 4, 5 and 6

MBA 611 STATISTICS AND QUANTITATIVE METHODS

Unit 13 Handling data. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives

AP Statistics Solutions to Packet 2

c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.

GRAPHS/TABLES. (line plots, bar graphs pictographs, line graphs)

This document contains Chapter 2: Statistics, Data Analysis, and Probability strand from the 2008 California High School Exit Examination (CAHSEE):

Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data

Part 2: Data Visualization How to communicate complex ideas with simple, efficient and accurate data graphics

IBM SPSS Statistics for Beginners for Windows

Statistics 151 Practice Midterm 1 Mike Kowalski

DESCRIPTIVE STATISTICS & DATA PRESENTATION*

Walk the Line Written by: Maryann Huey Drake University

Assignment #03: Time Management with Excel

Final Software Tools and Services for Traders

How to Use the Oklahoma Data Query System

Blood Glucose Monitoring Systems

4. Descriptive Statistics: Measures of Variability and Central Tendency

Lesson 1: Readiness for Fractions (5 Bars and Fraction Bingo) Your group may select elements from one or both lesson plans.

Mobile Money Manager

Transcription:

Section 1.1 Exercises (Solutions) HW: 1.14, 1.16, 1.19, 1.21, 1.24, 1.25*, 1.31*, 1.33, 1.34, 1.35, 1.38*, 1.39, 1.41* 1.14 Employee application data. The personnel department keeps records on all employees in a company. Here is the information that they keep in one of their data files: employee identification number, last name, first name, middle initial, department, number of years with the company, salary, education (coded as high school, some college, or college degree), and age. (a) What are the cases for this data set? (b) Describe each of these items as label, a quantitative variable, or a categorical variable. (c) Set up a spread sheet which could be used to record the data. Give appropriate column headings and five sample cases. 1.14. (a) The cases are the individual employees. (b) The first four (employee identification number, last name, first name, and middle initial) are labels. Department and education level are categorical variables; number of years with the company, salary, and age are quantitative variables. (c) Column headings in student spreadsheets will vary, as will sample cases. 1.16 Survey of students. A survey of students in an introductory statistics class asked the following questions: (a) age; (b) do you like to dance? (yes, no); (c) can you play a musical instrument (not at all, a little, pretty well); (d) how much did you spend on food last week? (e) height; (f) do you like broccoli? (yes, no). Classify each of these variables as categorical or quantitative and give reasons for your answers. 1.16. Recall that categorical variables place individuals into groups or categories, while quantitative variables take numerical values for which arithmetic operations... make sense. Variables (a), (d), and (e) age, amount spent on food, and height are quantitative. The answers to the other three questions about dancing, musical instruments, and broccoli are categorical variables. 1.19 Favorite colors. What is your favorite color? One survey produced the following summary of responses to that question: blue, 42%; green, 14%; purple, 14%; red, 8%; black, 7%; orange, 5%; yellow, 3%; brown, 3%; gray, 2%; and white, 2%. Make a bar graph of the percents and write a short summary of the major features of your graph. 1.19. For example, blue is by far the most popular choice; 70% of respondents chose 3 of the 10 options (blue, green, and purple).

1.21 Ages of survey respondents. The survey about color preferences reported the age distribution of the people who responded. Here are the results: (a) Add the counts and compute the percents for each age group. (b) Make a bar graph of the percents. (c) Describe the distribution. (d) Explain why your bar graph is not a histogram. 1.21. (a) There were 232 total respondents. The table that follows gives the percents; for example, 10/232= 4.31%. (b) The bar graph is on the following page. (c) For example, 87.5% of the group were between 19 and 50. (d) The age-group classes do not have equal width: The first is 18 years wide, the second is 6 years wide, the third is 11 years wide, etc. Note: In order to produce a histogram from the given data, the bar for the first age group would have to be three times as wide as the second bar, the third bar would have to be wider than the second bar by a factor of 11/6, etc. Additionally, if we change a bar s width by a factor of x, we would need to change that bar s height by a factor of 1/x.

1.24 Garbage. The formal name for garbage is municipal solid waste. Here is a breakdown of the materials that made up American municipal solid waste: (a) Add the weights and the percents for the nine materials given, including Other. Each entry, including the total, is separately rounded to the nearest tenth. So the sum and the total may differ slightly because of round-off error. (b) Make a bar graph of the percents. The graph gives a clearer picture of the main contributors to garbage if you order the bars from tallest to shortest. (c) If you use software, also make a pie chart of the percents. Comparing the two graphs, notice that it is easier to see the small differences among Food scraps, Plastics, and Yard trimmings in the bar graph.

1.24. (a) The weights add to 254.2 million tons, and the percents add to 99.9. (b) & (c) The bar graph and pie chart are shown below. 1.25 Recycled garbage. Refer to the previous exercise. The following table gives the percentage of the weight that was recycled for each of the categories. (a) Use a bar chart to display the percent recycled for these materials. Use the order of the materials given in the table above. (b) Make another bar chart where the materials are ordered by the percent recycled, largest percent to smallest percent. (c) Which bar chart, (a) or (b), do you prefer? Give a reason for your answer. (d) Explain why it is inappropriate to use a pie chart to display these data.

1.25. (a) & (b) Both bar graphs are shown below. (c) The ordered bars in the graph from (b) make it easier to identify those materials that are frequently recycled and those that are not. (d) Each percent represents part of a different whole. (For example, 2.6% of food scraps are recycled; 23.7% of glass is recycled, etc.) 1.31 Vehicle colors. Vehicle colors differ among types of vehicle. Here are data on the most popular colors for luxury cars and for intermediate cars in North America. (a) Make a bar graph for the luxury car percents. (b) Make a bar graph for the intermediate percents. (c) Now, be creative: make one bar graph that compares the two vehicle types as well as comparing colors. Arrange your graph so that it is easy to compare the two types of vehicle. 1.31. The graph below is one possible choice for comparing the two types of cars: for each color, we have one bar for each car type.

1.32 Shakespeare s plays. Figure 1.13 is a histogram of the lengths of words used in Shakespeare s plays. Because there are so many words in the plays, we use a histogram of percents. What is the overall shape of this distribution? What does this shape say about word lengths in Shakespeare? Do you expect other authors to have word length distributions of the same general shape? Why? FIGURE 1.13 Histogram of the lengths of words used in Shakespeare s plays, for Exercise 1.32. 1.32. This distribution is skewed to the right, meaning that Shakespeare s plays contain many short words (up to six letters) and fewer very long words. We would probably expect most authors to have skewed distributions, although the exact shape and spread will vary.

1.33 Diabetes and glucose. People with diabetes must monitor and control their blood glucose level. The goal is to maintain fasting plasma glucose between about 90 and 130 milligrams per deciliter (mg/dl). Here are the fasting plasma glucose levels for 18 diabetics enrolled in a diabetes control class, five months after the end of the class: Make a stemplot of these data and describe the main features of the distribution. (You will want to trim and also split stems.) Are there outliers? How well is the group as a whole achieving the goal for controlling glucose levels? 1.33. Shown is the stemplot; as the text suggests, we have trimmed numbers (dropped the last digit) and split stems. 359 mg/dl appears to be an outlier. Overall, glucose levels are not under control: Only 4 of the 18 had levels in the desired range. 0 799 1 0134444 1 5577 2 0 2 57 3 3 5 1.34 Compare glucose of instruction and control groups. The study described in the previous exercise also measured the fasting plasma glucose of 16 diabetics who were given individual instruction on diabetes control. Here are the data: Make a back-to-back stemplot to compare the class and individual instruction groups. How do the distribution shapes and success in achieving the glucose control goal compare? 1.34. The back-to-back stemplot below suggests that the individual-instruction group was more consistent (their numbers have less spread) but not more successful (only two had numbers in the desired range).

1.35 Vocabulary scores of seventh-grade students. Figure 1.14 displays the scores of all 947 seventh-grade students in the public schools of Gary, Indiana, on the vocabulary part of the Iowa Test of Basic Skills. Give a brief description of the overall pattern (shape, center, spread) of this distribution. FIGURE 1.14 Histogram of the Iowa Test of Basic Skills vocabulary scores of seventh-grade students in Gary, Indiana, for Exercise 1.35. 1.35. The distribution is roughly symmetric, centered near 7 (or between 6 and 7 ), and spread from 2 to 13.

1.38 Acidity of rainwater. Changing the choice of classes can change the appearance of a histogram. Here is an example in which a small shift in the classes, with no change in the number of classes, has an important effect on the histogram. The data are the acidity levels (measured by ph) in 105 samples of rainwater. Distilled water has ph 7.00. As the water becomes more acidic, the ph goes down. The ph of rainwater is important to environmentalists because of the problem of acid rain. 21 (a) Make a histogram of ph with 14 classes, using class boundaries 4.2, 4.4,, 7.0. How many modes does your histogram show? More than one mode suggests that the data contain groups that have different distributions. (b) Make a second histogram, also with 14 classes, using class boundaries 4.14, 4.34,, 6.94. The classes are those from (a) moved 0.06 to the left. How many modes does the new histogram show? (c) Use your software s histogram function to make a histogram without specifying the number of classes or their boundaries. How does the software s default histogram compare with those in (a) and (b)? 1.38. (a) The first histogram shows two modes: 5 5.2 and 5.6 5.8. (b) The second histogram has peaks in locations close to those of the first, but these peaks are much less pronounced, so they would usually be viewed as distinct modes. (c) The results will vary with the software used.

1.39 Identify the histograms. A survey of a large college class asked the following questions: 1. Are you female or male? (In the data, male = 0, female = 1.) 2. Are you right-handed or left-handed? (In the data, right = 0, left = 1.) 3. What is your height in inches? 4. How many minutes do you study on a typical weeknight? FIGURE 1.15 Match each histogram with its variable, for Exercise 1.39. Figure 1.15 shows histograms of the student responses, in scrambled order and without scale markings. Which histogram goes with each variable? Explain your reasoning. 1.39. Graph (a) is studying time (Question 4); it is reasonable to expect this to be rightskewed (many students study little or not at all; a few study longer). Graph (d) is the histogram of student heights (Question 3): One would expect a fair amount of variation but no particular skewness to such a distribution. The other two graphs are (b) handedness and (c) gender unless this was a particularly unusual class! We would expect that right-handed students should outnumber lefties substantially. (Roughly 10 to 15% of the population as a whole is left-handed.)

1.41 Time spent studying. Do women study more than men? We asked the students in a large firstyear college class how many minutes they studied on a typical weeknight. Here are the responses of random samples of 30 women and 30 men from the class: (a) Examine the data. Why are you not surprised that most responses are multiples of 10 minutes? We eliminated one student who claimed to study 30,000 minutes per night. Are there any other responses you consider suspicious? (b) Make a back-to-back stemplot of these data. Report the approximate midpoints of both groups. Does it appear that women study more than men (or at least claim that they do)? 1.41. (a) Not only are most responses multiples of 10; many are multiples of 30 and 60. Most people will round their answers when asked to give an estimate like this; in fact, the most striking answers are ones such as 115, 170, or 230. The students who claimed 360 minutes (6 hours) and 300 minutes (5 hours) may have been exaggerating. (Some students might also consider suspicious the student who claimed to study 0 minutes per night. (b) The stemplots suggest that women (claim to) study more than men. The approximate centers are 175 minutes for women and 120 minutes for men.