Numerical Methods 數 值 方 法 概 說. Daniel Lee. Nov. 1, 2006



Similar documents
BERNSTEIN POLYNOMIALS

Finite difference method

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

Ring structure of splines on triangulations

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II

Consider a 1-D stationary state diffusion-type equation, which we will call the generalized diffusion equation from now on:

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Introduction to Differential Algebraic Equations

Realistic Image Synthesis

Immersed interface methods for moving interface problems

Least Squares Fitting of Data

Support Vector Machines

Computational Fluid Dynamics II

A high-order compact method for nonlinear Black-Scholes option pricing equations of American Options

LECTURES on COMPUTATIONAL NUMERICAL ANALYSIS of PARTIAL DIFFERENTIAL EQUATIONS

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University

Imperial College London

On the Solution of Indefinite Systems Arising in Nonlinear Optimization

A PRIMER ON REGRESSION SPLINES. 1. Overview

where the coordinates are related to those in the old frame as follows.

A Three-Point Combined Compact Difference Scheme

Hedging Interest-Rate Risk with Duration

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters

2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

How To Assemble The Tangent Spaces Of A Manfold Nto A Coherent Whole

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

Fast degree elevation and knot insertion for B-spline curves

Study on Model of Risks Assessment of Standard Operation in Rural Power Network

PERRON FROBENIUS THEOREM

Automated information technology for ionosphere monitoring of low-orbit navigation satellite signals

The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1

Minimal Coding Network With Combinatorial Structure For Instantaneous Recovery From Edge Failures

8 Algorithm for Binary Searching in Trees

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

SUMMARY. Topology optimization, buckling, eigenvalue, derivative, structural optimization 1. INTRODUCTION

Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid

Damage detection in composite laminates using coin-tap method

This circuit than can be reduced to a planar circuit

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

MATHCAD'S PROGRAM FUNCTION and APPLICATION IN TEACHING OF MATH

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

Mooring Pattern Optimization using Genetic Algorithms

Project Networks With Mixed-Time Constraints

The Noether Theorems: from Noether to Ševera

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

Recurrence. 1 Definitions and main statements

Solving Factored MDPs with Continuous and Discrete Variables

Methods for Constructing a Yield Curve

Adaptive Fractal Image Coding in the Frequency Domain

Lecture 2: Single Layer Perceptrons Kevin Swingler

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

What is Candidate Sampling

Loop Parallelization

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Quantization Effects in Digital Filters

Lecture 5,6 Linear Methods for Classification. Summary

Brigid Mullany, Ph.D University of North Carolina, Charlotte

IMPACT ANALYSIS OF A CELLULAR PHONE

Matrix Multiplication I

INSTITUT FÜR INFORMATIK

Stability, observer design and control of networks using Lyapunov methods

A Prefix Code Matching Parallel Load-Balancing Method for Solution-Adaptive Unstructured Finite Element Graphs on Distributed Memory Multicomputers

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Extending Probabilistic Dynamic Epistemic Logic

Level Annuities with Payments Less Frequent than Each Interest Period

1. Introduction to CFD

Modern Problem Solving Techniques in Engineering with POLYMATH, Excel and MATLAB. Introduction

Modelling of Web Domain Visits by Radial Basis Function Neural Networks and Support Vector Machine Regression

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

The Application of Fractional Brownian Motion in Option Pricing

GIS: data processing Example of spatial queries. 3.1 Spatial queries. Chapter III. Geographic Information Systems: Data Processing

Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

On the Approximation Error of Mean-Field Models


Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Regression Models for a Binary Response Using EXCEL and JMP

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

SMOOTH TRAJECTORY PLANNING ALGORITHMS FOR INDUSTRIAL ROBOTS: AN EXPERIMENTAL EVALUATION

Transcription:

Numercal Methods 數 值 方 法 概 說 Danel Lee Nov. 1, 2006

Outlnes Lnear system : drect, teratve Nonlnear system : Newton-lke Interpolatons : polys, splnes, trg polys Approxmatons (I) : orthogonal polys Approxmatons (II) : specal func Numercal quadratures : Smpson s, Gaussan Numercal ODE (IVP) : RK, PC Numercal ODE (BVP) : shootng, FD, MOL Numercal ODE (BVP) : collocaton, spectral Numercal PDE (IBVP) : selected topcs

Course Foc 1/3 Lnear system (I) : GE, Trd, GS_SOR Lnear system (II) : CG, BCGstab, GMRes Nonlnear sys (I) : secant_1d, damped Newton Nonlnear sys (II) : Broyden s, Inexact Newton Interpolatons (I) : polynomals, splnes Interpolatons (II) : trg_polys Approxmatons (I) : orthogonal polynomals, L2 theory Approxmatons (II) : Chebyshev polys, mnmax theory Approxmatons (III) : specal functons, Bessel s, Numercal ntegraton : Smpson s, Gaussan quadrature

Course Foc 2/3 Numercal ODE, IVP : rkf45, N-dm Numercal ODE, IVP : PC, predct-correct Numercal ODE, BVP : MOL, 1D/2D Numercal ODE, TPBVP : FD Numercal ODE, TPBVP : Collocaton/splne Numercal ODE, TPBVP : Collocaton/Tchebyshev Numercal ODE, TPBVP : Spectral/Tchebyshev Numercal ODE, TPBVP : Spectral/Bessel Numercal ODE, TPBVP : Shoottng

Course Foc 3/3 Posson 3D Heat 2D Wave 2D Incompressble NS 2D

Lnear (Algebrac) System Matrx types : dense or sparse Methods : drect or teratve

Gaussan Elmnaton wthout Pvotng A 4-by-4 example (on page 264) Phase 1 : forward elmnatons Phase 2 : back substtutons 6x1 2x2 + 2x3 + 4x4 = 16 12x1 8x2 + 6x3 + 10x4 = 26 3x1 13x2 + 9x3 + 3x4 = 19 6x1 + 4x2 + x3 18x4 = 34

Forward Elmnatons (1) 6x1 2x2 + 2x3 + 4x4 = 16 12x1 8x2 + 6x3 + 10x4 = 26 3x1 13x2 + 9x3 + 3x4 = 19 6x1 + 4x2 + x3 18x4 = 34 6x1 2x2 + 2x3 + 4x4 = 16 x1 4x2 + 2x3 + 2x4 = 6 12x2 + 8x3 + x4 = 27 2x2 + 3x3 14x4 = 18

Forward Elmnatons (2) 6x1 2x2 + 2x3 + 4x4 = 16 x1 4x2 + 2x3 + 2x4 = 6 12x2 + 8x3 + x4 = 27 2x2 + 3x3 14x4 = 18 6x1 2x2 + 2x3 + 4x4 = 16 4x2 + 2x3 + 2x4 = 6 2x3 5x4 = 9 4x3 13x4 = 21

Forward Elmnatons (3) 6x1 2x2 + 2x3 + 4x4 = 16 4x2 + 2x3 + 2x4 = 6 2x3 5x4 = 9 4x3 13x4 = 21 6x1 2x2 + 2x3 + 4x4 = 16 4x2 + 2x3 + 2x4 = 6 2x3 5x4 = 9 3x4 = 3

Back Substtutons 6x1 2x2 + 2x3 + 4x4 = 16 4x2 + 2x3 + 2x4 = 6 2x3 5x4 = 9 3x4 = 3? x = 1 3 x = 2 1 x 2 3 = x = 4 1

GE --- Key Ponts An upper trangular matrx s easy to solve Elementary row operatons on a matrx GE as a seq of matrx left-multplcatons

GE --- Notatons and Termnologes Gaussan Elmnaton ( GE ) Upper trangular matrx Pvot element, pvot equaton Multplers Resdual vector r = Ax b Error vector e = x_sol x_computed Condton Num cond(a)= A A_nv No/partal/complete pvotng

GE --- More Thoughts Q1: Upper Trangular vs. Lower Trangular? Q2: Elementary column operatons?

GE --- wth Partal Pvotng Choose the pvot elements ( and eqs ) Interchange rows accordngly Compute multplers and do elmnatons Back substtutons as before In practce, store pvots and multplers Amng at lots of RHS and same matrx Routnes : LU_Decomp(), LU_Solve()

GE --- HW Functon ludecomp( ), page 285 Functon lusolve( ), page 287 Man : test

Nonlnear Solve--- Hghlghts 1D zero fnder N-dm Newton s method : Bascs Practcal N-dm Newton s method Two-pont Newton Methods Inexact Newton method Broyden s method

1-dm Zero Fnders Bsecton method Newton s method, quadratc convergence Secant method, superlnear convergence Other methods More readng assgnment

N-dm Newton Basc Issues (Crtcal) ntal start Expensve Jacoban evaluaton Approxmate Jacoban needed n practce Effcent lnear solve

Practcal N-dm Newton Modfed newton Damped newton Two-grd newton Inexact newton

Interpolaton --- Hghlghts Algebrac polynomal nterpolaton Cubc splne nterpolaton Trgonometrc polynomal nterpolaton

Polynomal Interpolatons Problem formulaton Lagrange bass functon approach Newton s recursve approach Ptfall of unform nodes : The Runge func Dvded dfference : general knots Newton s approach va dvded dfference Interpolaton at Chebyshev nodes

Splne Interpolatons (General) splnes as pecewse polynomals (Smooth) Cubc splnes Count of defnng coeffcents Count of constrants The degree-of-freedom Varous boundary condtons Matrx forms Convergence and stablty

Trg-polynomal Interpolatons Even/odd degree A trgonometrc dentty The bass functon

Approxmatons --- Hghlghts Orthogonal polynomals : weghted - 2 Chebyshev polynomals : L - theory (Non-poly) Specal Functons : Bessel s L

Orthogonal Polynomals Fnte/sem-nfnte/nfnte ntervals Weghted Remann ntegrals Weghted L 2 - norms Polynomals as subspace Gram-Schmdt orthogonalzaton Typcal examples

Chebyshev Polynomals T ( x) = cos( nθ ), wth x = cos n A few examples : explct forms A few examples : the graphs Three-term recurson Extremes and zeros θ T, T, L, T 1 2 8 More recursve relatons The mn-max characterzaton Varous applcatons n numercal analyss

Numercal Integratons 1/2 Remann ntegrals : as upper/lower lmts One-pont quadrature : md-pont rule Two-pont quadrature : trapezod rule Three-pont quadrature: Smpson s rule (Composte) Smpson s rule General Newton-Cotes formulae Gaussan type : nodes and weghts Software resources : Quadpack/netlb

Md-pont rule b a n 1 1 ( ) ( ) ( + ) + 1 + 1 2 = 0 f x dx x x f x x Trapezod rule b a n 1 1 f ( x) dx ( x + 1 x ) f ( x ) + f ( x + 1) 2 = 0 [ ]

(Composte) Smpson s Rule b a n / 2 h f ( x) dx f ( a) + f ( b) + 4 f a + (2 1) h 3 = 1 Gaussan type : [ ] [ ] ( n 2)/ 2 + 2 f ( a + 2 h) = 1 b f x dx A f x + A f x + A f x a 0 0 1 1 L + n n ( ) ( ) ( ) ( ) nodes weghts x, x, L, x 0 1 n A, A, L, A 0 1 n

Numercal Integratons 2/2 Runge-Kutta approach Lower order RK methods : RK2 RK3 method : Varous RK4 methods : RK5, RK6, RK7, RK8 : Acceleraton : halvng and combnng rkf45, rk56 : Software resources : rksute/netlb

RK2 where x( t + h) = x( t) + ( K + K ) 1 2 1 2 K = hf ( t, x) 1 K = hf ( t + h, x + K ) 2 1

RK3 x( t + h) = x( t) + (2K + 3K + 4 K ) 1 9 1 2 3 where K1 = hf ( t, x) 1 1 K2 = hf ( t + h, x + K 2 2 1) 3 3 K3 = hf ( t + h, x + K 4 4 2)

RK4 x( t + h) = x( t) + ( K + 2K + 2 K + K ) 1 6 1 2 3 4 where K1 = hf ( t, x) 1 1 K2 = hf ( t + h, x + K 2 2 1) 1 1 K3 = hf ( t + h, x + K 2 2 2) K4 = hf ( t + h, x + K3)

RK5 x( t + h) = x( t) + K + K + K K 25 1408 2197 1 216 1 2565 3 4104 4 5 5 where K1 = hf ( t, x) 1 1 K2 = hf ( t + h, x + K 4 4 1) 3 3 9 K3 = hf ( t + h, x + K 8 32 1 + K 32 2) 12 1932 7200 7296 K4 = hf ( t + h, x + K 13 2197 1 K 2197 2 + K 2197 3) 439 3680 845 K5 = hf ( t + h, x + K 216 1 8 K2 + K 513 3 K 4104 4)

Numercal ODE --- Hghlghts Types : IVP, BVP Doman geometry : regular or not, 1D/2D/ Numercal methods : mostly sem-mplct Dfferencng : explct, mplct, 3-level Spatal dfferences : FD, FV (cell-centered) Other methods for BVP : MOL, Collocaton Package approach : rksute, odepack, DAE :

Numercal BVP-FD 1st dervatve, 2-pont 1st order dfference 1st dervatve, 2-pont 2nd order central 2nd dervatve, 3-pont 2nd order central 2nd dervatve, 3-pont one-sded 1st order Combnaton of two lower order schemes 2D Cartesan type fve-pont stencls General geometry

Numercal BVP-FV Dvergence theorem and conservaton law Concept of fnte volumes Center/Vertex/Edge based FV methods Boundary-ftted or not Combnatons of dfferent types of FV Relatons to FD and FEM

Numercal BVP-MOL Sem-mplct dscretzaton Contnuous n tme, dscrete n spatal var Results n system of ODE/IVP Good IVP package/solver/routne expected Easy 1D for learnng May not be effcent for 3D applcatons

Numercal BVP-Collocaton The Fourer case Chebyshev polys and seres Bessel functons and seres Legendre polys and seres Model examples

Fnte Dfference for PDE Implct tme dfferencng u ( n+ 1) ( n) u x ( 1), j u x n+, j t ( x, j ) ( ) ( ) t Explct/Implct spatal dfferencng ( α = n, n + 1) u α α u x ( n 1) + 1, j u x + 1, j x ( x, j ) ( ) ( ) 2 x

FD --- Unform Cartesan Grd y y y + 1 1 2h y y 2y + y + 1 1 2 2h

FV --- General Geometry y p = Ap y p + Aw yw + Ae ye + As ys + An yn conservaton law plus Dvergence Theorem

Numercal BVP MOL (1) D.E. ut = uxx, 0 x 1, t 0 I.C. B.C. t = 0, u( x,0) = f ( x) x = 0,1, u(0, t) = u ( t), u(1, t) = u ( t) 0 n+ 1 Model : (contnuous n t, dscrete n x) Spatal Dscretzaton : 0 = x0 < x1 < L < x < Lxn < x n + 1 = 1 u( x, t) u ( t)

MOL (2) Dscrete System : = 1,2, L, n u ( t) = u ( t), u ( t) 0 n+ 1 u+ 1( t) u 1( t) 2 x : gven Problem : Solve system of IVP n t

FD -Frst Dervatve Approxmatons y x y( x ) y( x ) + 1 ( ) x+ 1 x y( x ) y( x 1) y ( x ) x x 1 y( x + 1) y( x 1) y ( x ) x x + 1 1

FD - 2nd Dervatve Approxmatons y 2y + y y ( x ) = h y, y, y + 2 + 1 y, y, y 1 2 + 1 1 2

Dervaton of Central Dfference of y h h h y y hy y y y 2 6 24 2 3 4 (4) + 1 = + + + + h h h y y hy y y y 2 6 24 2 3 4 (4) 1 = + + 3 h 5 y+ 1 y 1 = 2 hy + y + O( h ) 3 2 y+ 1 y 1 h 4 y = + y + O( h ) 2h 6

Dervaton of Central Dfference of y h h h y y hy y y y 2 6 24 2 3 4 (4) + 1 = + + + + h h h y y hy y y y 2 6 24 2 3 4 (4) 1 = + + 2 y+ 1 2y + y 1 h (4) 4 y + y ( ) 2 + O h h 12

One-sded Dfference for y 2 3 h h ''' y+ 1 = y + hy + y + y 2 6 2 3 4h 8h y + 2 = y + 2hy + y + y 2 6 ''' 4h y y y hy y 6 3 ''' + 2 4 + 1 + 3 = 2 + 1 3 y + 2y y 2 2 h + 2 + 1 1 2 = y h y 3

One-sded Dfference for y h h y y hy y y 2 6 2 3 ''' + 1 = + + + 4h 8h y y hy y y 2 6 2 3 ''' + 2 = + 2 + + 2h 6h y y y y y 2 6 2 3 ''' + 2 2 + 1 + = + y 2y + y + 2 + 1 2 h = y + hy

Combnng Two FD Schemes 2 y+ 1 2y + y 1 h (4) 4 y + y ( ) 2 + O h h 12 2 y+ 2 2y + y 2 4h (4) 4 y + y ( ) 2 + O h 4h 12 y 16y + 30y 16y + y + 4h + 2 + 1 1 2 4 3 y O( h ) 2

Two-dmensonal FD Applcatons u j j ( u ) x ( u ) u y xx = u( x, y ) j j + u yy u u u + 1, j 1, j 2h, j+ 1, j 1 2h x u y u + u + u + u 4u + 1, j 1, j, j+ 1, j 1 j 4

數 值 習 題 自 習 手 冊 李 天 佑 東 海 大 學 數 學 系 Nov. 1, 2006

線 性 系 統 Q1 : 何 謂 二 階 段 陽 春 高 斯 消 去 法? Q2 : 陽 春 型 前 進 消 去 階 段 之 可 能 障 礙 為 何? 解 決 方 法 為 何? Q3 : 前 述 階 段 是 否 必 定 成 功? Q4 : 消 去 階 段 結 束, 該 矩 陣 主 對 角 元 素 乘 積 之 理 論 意 義 為 何? Q5 : 前 述 判 斷 之 風 險 為 何? Q6 : 後 退 代 入 階 段 之 理 想 假 設 為 何? Q7 : 試 述 部 分 列 篩 選 型 高 斯 消 去 法 Q8 : 詳 述 高 斯 消 去 法 之 LU 分 解 理 論 Q9 : 當 高 斯 ( 消 去 ) 遇 見 對 稱 ( 矩 陣 ),, 請 補 實 續 完 Q10 : 重 新 開 始, 如 選 擇 第 n 個 方 程 式 與 第 n 個 變 數, 消 去 其 餘 方 程 之, 再 利 用 第 n-1 個 方 程 式 之 此 類 推, 是 為 後 退 消 去 階 段, 變 數, 消 去 其 餘 方 程 () 之 變 數 係 數, 以 所 得 矩 陣 有 何 特 徵? 本 階 段 有 何 風 險? 如 何 解 決? Q11 : ( 續 前 ) 繼 以 前 進 代 入, 總 結 為 UL 型 高 斯 消 去 法 程 式 習 作 : P1 : 設 計 並 測 試 副 程 式 ludecomp( ), lusolve( )

多 項 式 插 值 法 Q1 : 何 謂 多 項 式 插 值 問 題? Q2 : 相 關 之 Lagrange 基 底 函 數 為 何? Q3 : 為 何 b-orthogonalty 意 謂 線 性 獨 立? Q4 : 試 以 Lagrange 基 底 表 示 內 插 解 Q5 : 牛 頓 之 遞 迴 建 構 法 為 何? Q6 : 試 詳 述 ( 高 階 ) 差 分? Q7 : 內 插 解 之 差 分 形 式 為 何? 程 式 習 作 : P1 : Lagrange 形 式 插 值 解 之 簡 易 測 試 P2 : 牛 頓 差 分 型 插 值 解 之 軟 體 設 計

三 角 多 項 式 插 值 法 Q1 : 何 謂 三 角 多 項 式 插 值 問 題? Q2 : 相 關 之 基 底 函 數 為 何? 程 式 習 作 : P1 : 軟 體 設 計 與 測 試

三 次 樣 條 函 數 內 插 法 Q1 : 何 謂 片 段 多 項 式? Q2 : 何 謂 樣 條 函 數? Q3 : 何 謂 三 次 樣 條 插 值 問 題? Q4 : 節 點 與 結 點 差 異 為 何? Q5 : 樣 條 插 值 一 般 是 否 有 解? Q6 : 可 能 之 邊 界 條 件 為 何? Q7 : 實 用 性 之 考 量 因 素 為 何? 程 式 習 作 : P1 : 設 計 副 程 式 splne3_coef(), splne3_evalu8() 與 測 試 用 之 主 程 式

數 值 積 分 Q1 : 何 謂 中 點 法, 梯 形 法, 與 辛 普 森 法? Q2 : 試 述 Newton-Cotes 之 想 法? Q3 : 高 斯 積 分 公 式 之 想 法 為 何? Q4 : 試 比 較 前 述 二 種 構 想 Q5 : 調 適 型 辛 普 森 法 之 想 法 為 何? 程 式 習 作 : P1 : 設 計 辛 普 森 法 副 程 式 與 測 試 用 之 主 程 式 P2 : 針 對 次 數 為 4, 6, 8 之 高 斯 積 分 公 式, 設 計 副 程 式 與 測 試 用 之 主 程 式

Lnear System Readng assgnment : norms, analyss, prob Q1 : work out by hands an example va QL P1 : routne and test trd_dag (n,a_vec,b_vec,c_vec,x_vec,rhs_vec) P2 : lu_decomp( ), lu_solve( ) and test P3 : gs_sor( ) and test P4 : cg() and test

Newton s Method 1/2 How s Newton s method related to Taylor expanson? How s the newton step mplemented n practce? Descrbe reasonable stoppng crteron(s) How s Newton s method related to functonal teratons? Can accelerated Newton s method accelerate? Does damped newton s method damp somethng?

Newton s method 2/2 Desgn approxmate Jacoban n varous ways. What can a two-grd setup help Newton s method n one way or the other? Desgn a modfed Newton s method at a double root.of a two-by-two system

Interpolatons --- polynomals Readng assgnment : Q1 : What s a polynomal nterpolaton problem? Q2 : What are the Lagrange bass functons? Q3 : Why b-orthogonalty mples ndependence? Q4 : Express the nterpolant n terms of Lagrange bass. Q5 : What s the recursve constructon of Newton s? Q6 : Descrbe dvded dfferences n detals? Q7 : Express the nterpolant n terms of dvded dfferences. P1 : Smple test of Lagrange form. P2 : Work out the nterpolant n newton s form

Interpolatons --- Trg polys Odd and/or even degree. Some trg denttes. The bass functons. P1 : Desgn the routne(s) and test.

Interpolatons --- Cubc splnes What s a pecewse polynomal functon? What s a (polynomal) splne functon? What s a cubc splne nterpolaton problem? Dfferences bewteen nodes and knots? What s a rule of thurm for solvablty? Some possble boundary condtons? Practcal ssues and dscussons. P1 : routnes splne3_coef(), splne3_evalu8(), test

Numercal Quadratures Descrbe mdpont rule, trapezod s, and smpson s What s the dea of Newton-Cotes? Why s the Newton-Cotes restrctve, compared to Gaussan quadrature? What s the dea behnd adaptve smpson s? P1 : smpson s and test P2 : gaussan quadrature of degree 4, 6, 8.

Numercal ODE --- IVP P1 : rk4 of general dm, and test. Predctor-Corrector method : low order case Exercse on usng rkf45 : fnd cycle problem from your ODE text.

Numercal ODE --- BVP P0 : Implement the Shootng method for 1D P1 : Implement the FD method for 1D/2D P2 : Implement the MOL method for 1D/2D P3 : Implement Collocaton va cubc splne