Quantum Information Science (NIST trapped ion group) Dilbert confronts Schrödinger s cat, 4/17/12



Similar documents
Quantum Computing. Robert Sizemore

QUANTUM ENIGMA Summer 2014 Ted McIrvine

Quantum control of individual electron and nuclear spins in diamond lattice

Quantum Systems for Information Technology

Quantum Computing for Beginners: Building Qubits

Quantum Algorithms in NMR Experiments. 25 th May 2012 Ling LIN & Michael Loretz

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

Introduction to Quantum Computing

A More Efficient Way to De-shelve 137 Ba +

Applications of Quantum Chemistry HΨ = EΨ

Bits Superposition Quantum Parallelism

Nanoscience Course Descriptions

QOT - Quantum Optical Technologies

Quantum communication and quantum computing

THE RUSSIAN QUANTUM CENTER

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena

Particle control in a quantum world

Keywords Quantum logic gates, Quantum computing, Logic gate, Quantum computer

- thus, the total number of atoms per second that absorb a photon is

Quantum Computing Architectures

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

Classical and Quantum Logic Gates:

Entanglement: The Holy Grail of High-Speed Design

QUANTUM COMPUTER ELEMENTS BASED ON COUPLED QUANTUM WAVEGUIDES

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

CONCEPT OF DETERMINISTIC ION IMPLANTATION AT THE NANOSCALE

Online Courses for High School Students

Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar

Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Quantum computing in practice

UNIVERSIDADES TOP 100 RANKINGS DE ÁREA CIENCIAS NATURALES ARWU Y TIMES HIGHER EDUCATION

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014

Lecture 1 Version: 14/08/28. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo l.dicarlo@tudelft.nl dicarlolab.tudelft.

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Ion-Trap Quantum Computation

Indian Journal of Science International Weekly Journal for Science ISSN EISSN Discovery Publication. All Rights Reserved

Quantum Computing in Finance. Colin P. Williams D- Wave Systems Inc.

QUANTUM INFORMATION, COMPUTATION AND FUNDAMENTAL LIMITATION

Factoring a number with 400 digits a

arxiv:quant-ph/ v2 19 Jan 2000

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

The D-Wave 2X Quantum Computer Technology Overview

Optical Frequency Standards and Measurements

QUANTUM COMPUTING: A REVIEW FOR THE RELATED ISSUES AND ITS FUTURE ASPECTS

Quantum Computing with NMR

It has long been a goal to achieve higher spatial resolution in optical imaging and

The Role of Electric Polarization in Nonlinear optics

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

THEORETICAL

Exciton dissociation in solar cells:

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

A Quantum Full Adder for a. Scalable Nuclear Spin Quantum Computer

Measurement of the gravitational constant G by atom interferometry

Nanocomputer & Architecture

O6: The Diffraction Grating Spectrometer

Outline: Yb optical frequency standard The fiber link Applications and fundamental physics

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

A loophole-free Bell test

Quantum is Sexy. Google - Millions of Search Hits

Magnetic dynamics driven by spin current

Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Ph.D Brochure Department of Physics

Nanotechnology and Its Impact on Modern Computer

Raman spectroscopy Lecture

Calculating particle properties of a wave

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

Experiment #5: Qualitative Absorption Spectroscopy

Cold atom interferometers and their applications in precision measurements

NANOFLAM. Projet ANR Blanc 2011 BS Aide allouée: , durée 36+8 mois (fin : Mai 2015) Laboratoire H. Curien

COMPSCI 111/111G. Quantum Computing. Term 1, Prepared using LATEX Beamer by Cristian S.Calude 1 / 26

Experiment 5. Lasers and laser mode structure

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

Transcription:

Quantum Information Science (NIST trapped ion group) Dilbert confronts Schrödinger s cat, 4/7/

Data storage: classical: computer bit: (0) or () quantum: qubit α 0 +β superposition Scaling: Consider 3-bit register (N = 3): Classical register: (example): (0) Quantum register: (3 qubits): Ψ= C 000 0,0,0 + C 00 0,0, + C 00 0,,0 + C 0 0,, + C 00,0,0 + C 0,0, + C 0,,0 + C,, (represents 3 numbers simultaneously) For N = 300 qubits, store 300 0 90 numbers simultaneously (> classical information in universe!) Parallel processing: single gate operates on all N inputs simultaneously But!: quantum measurement rule: measured register gives only one number Factoring: Shor s Algorithm (994)

Atomic ion quantum computation: J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 409 (995). START MOTION IN GROUND STATE. SPIN MOTION MAP Ignacio Cirac Peter Zoller MOTION DATA BUS (e.g., center-of-mass mode) INTERNAL STATE SPIN QUBIT m = 3 m = m = m = 0 m for motion Motion qubit states

Atomic ion quantum computation: J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 409 (995). START MOTION IN GROUND STATE. SPIN MOTION MAP 3. SPIN MOTION GATE Ignacio Cirac Peter Zoller MOTION DATA BUS (e.g., center-of-mass mode) INTERNAL STATE SPIN QUBIT m = 3 m = m = m = 0 m for motion Motion qubit states

Interactions with laser beams : information transfer 0 alternative:, = hyperfine levels, + two-photon stimulated-raman transitions long coherence times ~ 30 min optical frequency 0 0 MHz (motional mode frequency)

SPIN-MOTION GATE: (Chris Monroe et al. PRL, 95) 0 ~ GG = σσ zz σσ zz 0 aux 0

Quantum computer algorithm to efficiently factorize large numbers ψ 0 3 in = N i= 0 Process all possible inputs simultaneously bit no. i N-qubits: Peter Shor (~ 994) e.g., for N = 3, Ψ in = 0,0,0 + 0,0, + 0,,0 +,0,0 + 0,, +,0, +,,0 +,, Circuit model: two-qubit gates U = U r,s (π) U p,q (π) R k (θ,φ) U i,j (π) N single qubit bit gate (manipulate superpositions)

Quantum computer algorithm to efficiently factorize large numbers ψ Process all possible inputs simultaneously bit no. 0 3 in = N i= 0 i N-qubits: analogous to waterwave interference (photo,hannover Univ.) two-qubit gates Peter Shor (~ 994) incident waves U = U r,s (π) U p,q (π) R k (θ,φ) U i,j (π) single qubit bit gate (rotation) N

Quantum computer algorithm to efficiently factorize large numbers Peter Shor (~ 994) ψ Process all possible inputs simultaneously bit no. 0 3 in N = i ψ = i i= 0 two-qubit gates U = U r,s (π) U p,q (π) R k (θ,φ) U i,j (π) out small selection measure qubits use measured i in classical algorithm to determine factors N single qubit bit gate (rotation) e.g., factorize 50 digit decimal # ~ 0 9 ops

Scale up qubit numbers? small electrodes: use lithographic techniques move ions in multi-zone arrays for scaling microfab at: GTRI, Sandia, NIST, Berkeley, Innsbruck, Mainz,. mm

Quantum simulation: mode frequency Center-of-mass mode tilt mode add magnetic field: H ( i) ( j) = J i ˆ σ ˆ σ + B ( i), j z z ˆ σ y i< j i Transverse Ising model (JQI, Innsbruck) moving standing wave statedependent optical-dipole forces transverse mode spectrum (9 ions) for ω force ω COM = i j J ˆ σ ˆ zσ z H -D array (Penning trap) Simulation in Wigner crystal (J. Bollinger et al., NIST) i< j ( ω force > ω COM ) H = J i, j i< j J i, j ~ ˆ σ ˆ σ i z j z + J 0 i j α (J i,j > 0, anti-ferromagnetic) vary α by varying detuning α = 0 - ~3

Atomic ion experimental groups pursuing Quantum Information Processing: Aarhus Amherst The Citadel Tsinghua (Bejing) U.C. Berkeley U.C.L.A. Duke ETH (Zürich) Freiburg Garching (MPQ) Georgia Tech Griffiths Hannover Innsbruck JQI (U. Maryland) Lincoln Labs Imperial (London) Mainz MIT NIST Northwestern NPL Osaka Oxford Paris (Université Paris) Pretoria, S. Africa PTB Saarland Sandia National Lab Siegen Simon Fraser Singapore SK Telecom, S. Korea Sussex Sydney U. Washington Weizmann Institute

Atomic ion experimental groups pursuing Quantum Information Processing: Aarhus Amherst The Citadel Tsinghua (Bejing) U.C. Berkeley U.C.L.A. Duke ETH (Zürich) Freiburg Garching (MPQ) Georgia Tech Griffiths Hannover Innsbruck JQI (U. Maryland) Lincoln Labs Imperial (London) Mainz MIT NIST Northwestern NPL Osaka Oxford Paris (Université Paris) Pretoria, S. Africa PTB Saarland Sandia National Lab Siegen Simon Fraser Singapore SK Telecom, S. Korea Sussex Sydney U. Washington Weizmann Institute + many other platforms: neutral atoms, Josephson junctions, quantum dots, NV centers in diamond, single photons,

Applications: Al + quantum-logic clock P Coulomb interaction P 3/ 3 P 0 Till Rosenband David Leibrandt λ = 67 nm Al + λ = 80 nm 5 Mg + (F=, m F = -) S / S 0 hyperfine qubit (F=3, m F = -3) α Al + β Al motion superposition α Mg + β Mg laser-cooled Mg + keeps Al + cold Mg + helps to calibrate B from all sources collisions observed by ions switching places Systematic uncertainty = 0.8 x 0-7

Future: More and better (more qubits, smaller gate errors) - dirty laundry: ion heating Simulation quantum logic gates emulate spin-spin coupling Example: transverse Ising model H now 0-3 per -qubit gate, need 0-4 for error correction improve hardware: e.g., optical fibers for UV collaborate with NIST surface group, D. Pappas et al. = ( i) ( j) J i ˆ σ ˆ σ + B ( i), j x x ˆ σ y i< j i useful simulations can tolerate higher errors Universal digital quantum simulation Metrology quantum-logic spectroscopy improve beyond standard quantum limit for phase measurements Factoring machine???? extend to molecules

NIST IONS, June 04 Jim Bergquist, John Bollinger, Joe Britton, Justin Bonet, Ryan Bowler, John Gaebler, Andrew Wilson, Dave Wineland, David Leibrandt, Peter Burns, Raghu Srinivas, Shon Cook, Robert Jordens David Hume Ting Rei Tan Shlomi Kotler, Dustin Hite, Katie McCormick,Susanna Todaro, Leif Waldner, Yiheng Lin, Daniel Slichter, James Chou, David Allcock, Didi Leibfried, Jwo-Sy Chen, Sam Brewer, Kyle McKay Not pictured: Brian Sawyer, Yong Wan, Aaron Hankin, Till Rosenband, Wayne Itano, Dave Pappas, Bob Drullinger