Mapping the soil gas radon concentration and soil permeability and their relation to pedological and geological background



Similar documents
Soil Gas Radon Concentration and Permeability at Valle della Caffarella Test Site (Roma, Italy).

Results of academic research for use in the daily business of geological survey

Radioisotopes in the metamorphic rocks of the Sopron hills

Data Preparation and Statistical Displays

Shape of Data Distributions

Members of the Hungarian Section of The Combustion Institute 2011, before June

Intro to Statistics 8 Curriculum

The indoor Rn-concentration: schools, kindergartens and official buildings versus homes.

Development of an Online Soil Valuation Database

Abstract. Keywords: soil survey, rate of soil erosion, thickness of surface soil (A horizon), North Hungary, Energy Region Eger Research Model Area

Lecture 1: Review and Exploratory Data Analysis (EDA)

WILLOCHRA BASIN GROUNDWATER STATUS REPORT

How To Map A Lake In The North Of The Holland (Fiji)

Vulnerability Assessment

RADON AND HEALTH. INFORMATION SHEET October What is radon and where does it come from?

How To Determine The Alpha Radiation Distribution Of Gneiss Rocks

Carbonate Rock Formation

Geostatistics Exploratory Analysis

3D stochastic modelling of litho-facies in The Netherlands

7.2.4 Seismic velocity, attenuation and rock properties

Review of Groundwater Vulnerability Assessment Methods Unsaturated Zone. Dept. of Earth Sciences University of the Western Cape

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

REGULATIONS FOR THE POSTGRADUATE DIPLOMA IN EARTH SCIENCES (PGDES)

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

Master in Earth Sciences

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

How To Manage Alfalfa

Geoscientific spatial data

ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation

Proposed Geology Course Offering Fall 2015 Summer 2017 Courses in Red are Broadcast (IVC) or Online Courses (Revised )

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA

Reservoir Characterization and Initialization at Little Mitchell Creek

Anthropogenic geomorphology of quarrying and mining at the Eger Model Region

KÁROLY RÓBERT COLLEGE GYÖNGYÖS. Challenges and Prospects for Innovation between

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

430 Statistics and Financial Mathematics for Business

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

UNIVERSITY OF MISKOLC AAPG MISKOLC STUDENT CHAPTER SPRING/SUMMER REPORT OF 2013

A GIS BASED GROUNDWATER MANAGEMENT TOOL FOR LONG TERM MINERAL PLANNING

VULNERABILITY ASSESSMENT OF GROUNDWATER RESOURCES IN THE LAMPANG BASIN OF NORTHERN THAILAND. Bangkok, Thailand, Chiang Mai, Thailand,

The CO2 Geological Storage: how it works

Exploratory data analysis (Chapter 2) Fall 2011

ROMANIAN PANNONIAN BASIN Outstanding Opportunity

CCS Risk Analysis. Vanessa Nuñez Lopez. CEPAC - CSLF Capacity Building Workshop Porto Alegre, Brazil July 30 Aug 3, 2012

Geologic Time Scale Newcomer Academy Visualization Three

Well-logging Correlation Analysis and correlation of well logs in Rio Grande do Norte basin wells

REGIONAL CLIMATE AND DOWNSCALING

Chesapeake Bay Governor School for Marine and Environmental Science

LANDSCAPES UNDER THE EUROPEAN TRANSFORMATION

The CO2 Geological Storage: how it works Salvatore Lombardi

UNIVERSITY IN CLUJ Tamás NÉDA, Ildikó MÓCSY, Szende TONK Sapientia University Cluj, Environmental Science Department

NOTES on the CONE PENETROMETER TEST

163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS

THE RESULTS OF THE LITHUANIAN RADON SURVEY. Gendrutis Morkunas 1, Gustav Akerblom 2

Week 1. Exploratory Data Analysis

CPT interpretation in marine soils less than 5m depth examples from the North Sea

Introducing the EIT ICT Labs Budapest Associate Partner Group

ENERGY ARBITRATION COURT ROLL OF ARBITRATORS

Unconventional Gas in Italy: the Ribolla Basin*

OPPORTUNITIES IN THE UPSTREAM SECTOR OF MONTENEGRO. Vladan Dubljević Tamara Pavličić

APPENDIX B CHARACTERIZATION OF SOILS AT TEST SITES

College of Science and Health ENVIRONMENTAL SCIENCE & GEOGRAPHY Course Outline

What is Soil Survey?

First Midterm Exam (MATH1070 Spring 2012)

Chapter 3. The Normal Distribution

Geology 200 Getting Started...

Italy - Porto Tolle: storage in offshore saline aquifer

Ingeniería y Georiesgos Ingeniería Geotécnica Car 19 a Nº of 204 ; TEL : igr@ingeoriesgos.com

RESERVOIR GEOSCIENCE AND ENGINEERING

GRADISTAT: A GRAIN SIZE DISTRIBUTION AND STATISTICS PACKAGE FOR THE ANALYSIS OF UNCONSOLIDATED SEDIMENTS

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Offshore monitoring for geological storage

4 Other useful features on the course web page. 5 Accessing SAS

Deep Geothermal energy and groundwater in

RADON Although radon is agas, its decay products are not, and they occur either as unattached

Exploratory Data Analysis

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

GEOCHEMISTRY IN GEOTHERMAL EXPLORATION

Participants of the program Program history Internet research in Hungary The concept of the Future Internet Research

MCLAREN VALE PWA GROUNDWATER LEVEL AND SALINITY STATUS REPORT

A Correlation of. to the. South Carolina Data Analysis and Probability Standards

Ride the Rock Cycle. Suggested Goals: Students will gain an understanding of how a rock can move through the different stages of the rock cycle.

Geothermal resources. Grado-1 borehole Future plans. Dep. of Civil and Environmental Engineering University of Trieste

Anthropogenic Geomorphology

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability

SEDIMENTARY GEOLOGY STABLE ISOTOPES. SEPM Short Course No. 10. Dallas MICHAEL A. ARTHUR, Organizer THOMAS F. ANDERSON JAN VEIZER LYNTON S.

Neutrons as a multifunctional tool for geophysicists

Santuario Block, Mature Fields South Region. Executive Summary. Block. Santuario

Geothermal. . To reduce the CO 2 emissions a lot of effort is put in the development of large scale application of sustainable energy.

Topic: Rocks, Minerals and Soil Duration: Grade Level: 6 9 days

MTH 140 Statistics Videos

Copyright Advanced Viticulture, Inc.

Groundwater Training Course SOPAC, April Electromagnetic (EM) Induction method for Groundwater Investigations

STAT355 - Probability & Statistics

We appreciate your feedback

International Intercomparison Exercise on Natural Radiation Measurements under Field Conditions

Prentice Hall Interactive Science Series 2011 Correlated to: Arizona Science Standards, Strands 1-6 (Grade 7)

ph is an expression of the concentration of hydrogen ions in solution

Interpret Box-and-Whisker Plots. Make a box-and-whisker plot

Transcription:

VII. Hungarian Radon Forum and Radon in Environment Satellite Workshop 2013. május 16-17., Veszprém, Hungary Mapping the soil gas radon concentration and soil permeability and their relation to pedological and geological background Katalin Zsuzsanna Szabó 1, Gyozo Jordan 2, Ákos Horváth 3, László Pásztor 2, Zsófia Bakacsi 2, Csaba Szabó 1 1 Lithosphere Fluid Research Lab, Department of Petrology and Geochemistry, Eötvös University, Budapest, Hungary (sz_k_zs@yahoo.de) 2 Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences 3 Department of Atomic Physics, Eötvös University, Budapest, Hungary

Aims Take the first steps towards Hungarian geogenic radon potential mapping Describe the geological formations from radon, permeability and radon potential point of view Understand the spatial variation of these variables Understand the relationship between these variables and geological/pedological features Compile a geogenic radon potential map for the studied area Selection of measurement sites Geological background Populated areas 10 10 km 2 grid net

Study area and measurement sites Middle Hungary (~5400 km 2 ) Geological background Mesozoic sedimentary rocks (limestone,dolomite) Tertiary volcanic rocks (andezite, dacite) Tertiary sedimentary rocks (marl, clay, sandstone) Quaternary sediments (loess, sand, fluvial sediment)

Study area and measurement sites Middle Hungary (~5400 km 2 ) Geological background Mesozoic sedimentary rocks (limestone,dolomite) Tertiary volcanic rocks (andezite, dacite) Tertiary sedimentary rocks (marl, clay, sandstone) Quaternary sediments (loess, sand, fluvial sediment) Populated areas Budapest

Study area and measurement sites Middle Hungary (~5400 km 2 ) Geological background Mesozoic sedimentary rocks (limestone,dolomite) Tertiary volcanic rocks (andezite, dacite) Tertiary sedimentary rocks (marl, clay, sandstone) Quaternary sediments (loess, sand, fluvial sediment) Populated areas Grid net 10 10 km 2 Budapest

Study area and measurement sites Middle Hungary (~5400 km 2 ) Geological background Mesozoic sedimentary rocks (limestone,dolomite) Tertiary volcanic rocks (andezite, dacite) Tertiary sedimentary rocks (marl, clay, sandstone) Quaternary sediments (loess, sand, fluvial sediment) Populated areas Grid net 10 10 km 2 Measurement sites average 3 sites per cell altogether 192 sites

Measurement methods Soil gas radon concentration and soil permeability RAD7 radon monitor (soild state semiconductor detecto, radon daughter detection) + soil gas probe GRAB protocol (30 min) 5 min pumping (1l/min) 5 min waiting for radioactive equilibrium 4 5 min counting ( 218 Po) RADON - JOK permeameter Sampling depth is generally 0.8 m RADON - JOK permeameter RAD7 + soil gas probe 15 cm

Calculation of geogenic radon potential Geogenic radon potential (GRP) Neznal et al. (2004) GRP log c 10 k 10 where c is the equilibrium soil gas radon concentration at a definite depth (0.8 m) (kbq m -3 ) k is the soil permeability (m 2 ) GRP<10 LOW GRP 10<GRP<35 MEDIUM GRP GRP>35 HIGH GRP

percentage cumulative probability frequency frequency Results Box-and-Whisker Plot Soil gas radon concentration (kbq m -3 ) Count 192 Average 14.1 Median 10.9 Standard deviation 10.2 Coeff. of variation 71.9 % MAD 5.7 Minimum 1.0 Maximum 47.1 Range 46.2 Lower quartile 6.8 Upper quartile 19.2 Interquartile range 12.3 60 50 50 40 40 30 30 0 10 20 30 40 50 radon_1 Histogram for radon Histogram Distribution Lognormal 20 20 10 Khi-squared and Kolmogorov-Smirnov tests data follow lognormal distribution 0 0-2 -2 18 18 38 38 58 58 78 78 radon radon Normal Quantile Probability probability Plot Plot plot 99.9 1 99 0.8 95 800.6 50 20 0.4 5 0.2 1 0.1 0 0 0 10 20 30 30 40 40 50 50 radon Distribution Lognormal

Results Legend (kbq m -3 ) Soil gas radon concentration Outliers >36 kbq m -3 Tertiary sedimentary rock: clay Quaternary sediments Proluvial-deluvial sediments Fluvial sediment Sandy loess Loess

median median Soil gas radon concentration on different geological formations 41 geological formations median of the measured soil gas radon concentrations of the geological formations 3 groups 5 geological formations have >8 data 25 20 35 30 25 Median Median Gr2 Gr1 15 10 5 0 20 15 10 5 0 Tozeg 1 Buda rsi Dolomit Formßci= 1 Fut=homok 9 Tinnyei Formßci= 3 Foly=vfzi nledtk (V. terasz) 2 Mtsziszap 2 Nagyalf ldi Tarkaagyag Formßci= (befogla 7 Dobog=koi Andezit Formßci= (B rzs ny-vis 2 Drift sand 9 Fluvioeolic sand 27 Gr3 Fodolomit Formßci= 1 Foly=vfzi agyag 1 Fluvioeolikus homok 27 Mßnyi Formßci= 1 Foly=vfzi homok 14 V r sagyag 3 Foly=vfzi-proluvißlis nledtk 1 Mßnyi Ts T r kbßlinti Formßci= ßtmenete 1 Zagyvai Formßci= 1 Szilßgyi Agyagmßrga Formßci= 1 Cs=dihegyi Dßcit Tagozat 1 Dorogi Ts Csolnok Formßci= sszevontan 2 Fluvial sand 14 L sz s homok 3 Kavics, lejtot rmeltk 2 Egyhßzasgergei Ts Garßbi Formßci= sszev 1 Homokos l sz 7 Homokos l sz, l sz s homok 2 L sz 30 Nagyalf ldi Tarkaagyag Formßci= 3 SzTpv lgyi MTszko F. 3 GEO_név geological formation Folyovizi aleurit 6 Foly=vfzi aleuritos homok 2 Hßrshegyi Homokko Formßci= 2 Loess 30 T r kbßlinti Homokko Formßci= 3 Hidroeolikus agyagos l sz 3 Fluvial sediment 27 Deluvißlis aleurit 2 Foly=vfzi nledtk 27 Egyhßzasgergei Formßci= 1 Dachsteini mtszko F. 1 Kiscelli Agyag Formßci= 2 Nagyv lgyi Dßcittufa Formßci= (B rzs ny- 4 Deluvißlis agyag, homok 1 Proluvißlis-deluvißlis nledtk 3

Soil gas radon concentration on different geological formations Legend Gr1 (>28 Bq m -3 ) Quaternary proluvial, deluvial sediments (3) 1 2 3 Püspökhatvan 1 2 3 1 2 3 Galgagyörk Pilisszentlászló Galgamácsa

Soil gas radon concentration on different geological formations Gr1 (med soilrn >28 Bq m -3 ) Quaternary proluvial, deluvial sediments (4) Gr2 (med soilrn : 20-28 Bq m -3 ) Tertiary (Miocene) dacite (1) Tertiary sedimentary clay (4) Mesozoic limestone (2) Tertiary sandstone (1) Quaternary fluvial sediment (27) Gr3(med soilrn < 20 Bq m -3 ) Quaternary loess (30) Quaternary fluvial sand (14) Quaternary fluvioeolic sand (27) Quaternary drift sand (9) etc. n>8

Soil gas radon concentration (kbq m-3) Soil gas radon concentration in case of different soil texture 20 18 16 Median 14 12 10 8 6 Sand 68 Rocky 5 Light loam 44 Loam 63 Heavy loam clay 4 soil texture

Soil gas radon concentration (kbq m-3) Soil gas radon concentration in case of different chemical behaviour 25 20 15 median 10 5 0 Rocky, gravelly 3 mainly acid, upper soil is unsaturated with chalk, lower soil contains carbonated chalk 29 mainly neutral or alkalescent, unsaturated with chalk 143 mostly acid, upper soil is unsaturated with chalk, lower soil do not contains carbonated chalk 9

frequency Eredmények Box-and-Whisker Plot Soil permeability Count 192 Average -26.2 Median -26.2 Standard deviation 1.8 Coeff. of variation -6.9% MAD 1.4 Minimum -29.9 Maximum -20.8 Range 9.2 Lower quartile -27.7 Upper quartile -24.9 Interquartile range 2.8 40 30 20 10 0-30 -28-26 -24-22 -20 log(permea) Histogram -31-29 -27-25 -23-21 -19 log(permea) ln(permea)= -26.7 (=2.5E-12 m 2 )

Eredmények Soil permeability

Eredmények Soil permeability Categorization (Neznal et al., 2004) high k medium k low k >4E-12 4E-12>k>4E-13 <4E-13

med(log((permea)) med(log((permea)) Soil permeability on different geological formations -20-21 -22-23 -24-25 -26-27 -28-29 -30-24 -24.5-25 -25.5-26 -26.5 med(permea) -27 Loess 30 Fluvial sand 14 Fluvial sediment 29 Fluvioeolic sand 31 Drift sand 9 geological formation geonev

Soil gas radon concentration and soil permeability on different geological formations R 2 = -0.42 25 soil radon -24 20 permea -24.5-25 15-25.5 10-26 5-26.5 0-27 Drift sand 9 Fluvioeolic sand 31 Fluvial sand 14 Loess 30 Fluvial sediment 29 Geo_nev R 2 = -0.92

GRP (geogenic radon potential) Eredmények Count 192 Average 11.9 Median 8.7 Standard deviation 14.6 Coeff. of variation 121.9% MAD 4.7 Minimum -50.1 Maximum 73.9 Range 124.1 Lower quartile 4.7 Upper quartile 15.5 Interquartile range 10.7 GRP<10 low 10<GRP>35 medium GRP>35 high

Results Geogenic radon potential (GRP) Neznal et al. (2004) c GRP log k 10 10 where c is the equilibrium soil gas radon concentration at a definite depth (0.8 m) (kbq m -3 ) k is the soil permeability (m 2 ) Based on Czech data (Barnet and Pacherova, 2010) GRP Low (<10) Medium (10-35) High (>35) Indoor radon concentration <200 Bq m -3 200-400 Bq m -3 >400 Bq m -3

Results GRP in case of different geological formations Folyóvízi-proluviális üledék 1 Mésziszap 2 Tozeg 1 Dobogókoi Andezit Formáció 2 Vörösagyag 3 Mányi és Törökbálinti Formáció átmenete 1 Nagyalföldi Tarkaagyag Formáció 7 Csódihegyi Dácit Tagozat 1 Folyóvízi homok 14 Futóhomok 9 Budaörsi Dolomit Formáció 1 Folyóvízi aleurit 7 Homokos lösz, löszös homok 2 Löszös homok 3 Fodolomit Formáció 1 Egyházasgergei és Garábi Formáció összev 1 Törökbálinti Homokko Formáció 3 Hidroeolikus agyagos lösz 3 Nagyalföldi Tarkaagyag Formáció 3 Mányi Formáció 1 Fluvioeolikus homok 28 Folyóvízi üledék (V. terasz) 2 Homokos lösz 7 Lösz 30 Folyóvízi aleuritos homok 3 Deluviális aleurit 2 Zagyvai Formáció 1 Folyóvízi üledék 27 Dachsteini mészko F. 1 Kavics, lejtotörmelék 2 Tinnyei Formáció 3 Kiscelli Agyag Formáció 2 Dorogi és Csolnok Formáció összevontan 2 Hárshegyi Homokko Formáció 2 Nagyvölgyi Dácittufa Formáció (Börzsöny- 4 Proluviális-deluviális üledék 3 Szilágyi Agyagmárga Formáció 2 Egyházasgergei Formáció 1 Szépvölgyi Mészko F. 2 Deluviális agyag, homok 1 80 70 60 50 40 30 20 10 0-10 -20 border of medium-high GRP border of low-medium GRP median of GRP values n>8

100% 0.03 Geogenic radon 90% potential 80% 0.28 map of the 70% study area 60% 50% 40% 30% 20% 10% 0% Based on our 192 data Percentage of low, medium and high GRP sites on the different GRP areaslegend 0.69 0.13 0.58 0.29 0.0 LOW MEDIUM HIGH 1.0 GRP low medium high no data HIGH MEDIUM LOW GRP of the area Low (<10) Medium (10-35) High (>35) GRP of sites 69% low 28% medium 3% high 29% low 58% medium 13% high 0% low 0% medium 100% high

Summary Soil gas radon concentration data soil gas radon concentration data follow lognormal distribution it has spatial pattern and relationship to geological background, soil texture and soil chemical behaviour Soil permeability data there is no pattern in the soil permeability spatial distribution it has relationship to geological background there is negative linear correlation between soil gas radon concentration and soil permeability Geogenic radon potential it has relationship to geological background most of the study area has low and medium GRP medium GRP: Quaternary fluvial sediment high GRP in case of proluvial-deluvial sediments

Thank you very much for your attention! Acknowledgement Anna Dömök Tamás Gábner Zsuzsanna Szabó Roland Helf Hédi Nagy (ELTE TTK) Péter Völgyesi (ELTE TTK) Doctoral School for Environmental Sciences, Eötvös University The research was founded by the European Union and Hungary in the framework of the TÁMOP 4.2.4.A/1-11-1-2012-0001 National Excellence Program - National Program for elaboration and run a system for personal support for Hungarian students and researchers