SPICE CIRCUIT FILE PROGRAM LABORATORIO --- 1ª --- 1.1 EXERCISE



Similar documents
Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE

Selected Filter Circuits Dr. Lynn Fuller

The 2N3393 Bipolar Junction Transistor

School of Engineering Department of Electrical and Computer Engineering

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

Bipolar Junction Transistors

What Does Rail-to-Rail Operation Really Mean?

Lecture 23: Common Emitter Amplifier Frequency Response. Miller s Theorem.

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Step Response of RC Circuits

TWO PORT NETWORKS h-parameter BJT MODEL

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

FEATURES DESCRIPTION APPLICATIONS BLOCK DIAGRAM. PT2248 Infrared Remote Control Transmitter

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Analog Signal Conditioning

Lab 7: Operational Amplifiers Part I

Lecture 22: Class C Power Amplifiers

Laboratory 4: Feedback and Compensation

MAS.836 HOW TO BIAS AN OP-AMP

DC-DC Converter Basics

unit:mm 3022A-DIP12F

L7800 SERIES POSITIVE VOLTAGE REGULATORS

ES250: Electrical Science. HW7: Energy Storage Elements

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Tutorial and Simulations for Micro-Cap IV

Regulated D.C. Power Supply

Analog and Telecommunication Electronics

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

L78M00 SERIES POSITIVE VOLTAGE REGULATORS.

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

Digital to Analog and Analog to Digital Conversion

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P

VOLTAGE-TO-FREQUENCY CONVERTER

Single Supply Op Amp Circuits Dr. Lynn Fuller

EECS 240 Topic 7: Current Sources

See Horenstein 4.3 and 4.4

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Conversion Between Analog and Digital Signals

Operational Amplifier - IC 741

Application Note AN- 1118

Bipolar Junction Transistor Basics

Chapter 19 Operational Amplifiers

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Linear Optocoupler, High Gain Stability, Wide Bandwidth

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Reading: HH Sections , (pgs , )

Oscillations and Regenerative Amplification using Negative Resistance Devices

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

LAB 12: ACTIVE FILTERS

The D.C Power Supply

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Voltage Divider Bias

U-102 APPLICATION NOTE UC1637/2637/3637 SWITCHED MODE CONTROLLER FOR DC MOTOR DRIVE

8 9 +

Diodes and Transistors

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors.

Dependent Sources: Introduction and analysis of circuits containing dependent sources.

Problem 5.1. Suggested Solution

PTC/NTC/Pt100/Pt100/Ni100. Measure the resistance when the probe IS NOT CONNECTED:

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

ENEE 307 Electronic Circuit Design Laboratory Spring A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C

Basic Op Amp Circuits

3.4 - BJT DIFFERENTIAL AMPLIFIERS

RGB for ZX Spectrum 128, +2, +2A, +3

LABORATORY MANUAL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

DDR SDRAM Memory Termination USING THE LX1672 AND LX1673 FOR DDR SDRAM MEMORY TERMINATION INTEGRATED PRODUCTS. Microsemi

SWITCH-MODE POWER SUPPLY CONTROLLER PULSE OUTPUT DC OUTPUT GROUND EXTERNAL FUNCTION SIMULATION ZERO CROSSING INPUT CONTROL EXTERNAL FUNCTION

Fundamentals of Microelectronics

Micro-Step Driving for Stepper Motors: A Case Study

High Intensify Interleaved Converter for Renewable Energy Resources

RISH CON - Hz. Salient Features : Application : Product Features: FREQUENCY TRANSDUCER

Amplifier Teaching Aid

OrCAD Capture with PSpice and Allegro DE CIS with AMS Simulator. Describes how to create a PSpice Archive File with Capture

TSL250, TSL251, TLS252 LIGHT-TO-VOLTAGE OPTICAL SENSORS

Basic RTD Measurements. Basics of Resistance Temperature Detectors

CHAPTER 28 ELECTRIC CIRCUITS

Rectifier circuits & DC power supplies

Fundamentals of Signature Analysis

Performance of 3-Phase 4-Wire Solid State Transformer under Imbalanced Loads

Tire pressure monitoring

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Total solder points: 248 Difficulty level: beginner advanced. 15 Channel infrared receiver K8050 ILLUSTRATED ASSEMBLY MANUAL

L4940 series VERY LOW DROP 1.5 A REGULATORS

Low Cost Instrumentation Amplifier AD622

Wireless Home Security System

How To Find The Current Of A Circuit

PBA series [PBA300F ~ 1500F and 1500T] *PBA series is suitable for general application which requires a current source power supply.

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND

Signal Conditioning Wheatstone Resistive Bridge Sensors

Frequency Response of Filters

Chapter 11 SERVO VALVES. Fluid Power Circuits and Controls, John S.Cundiff, 2001

Figure 1. Diode circuit model

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Transcription:

LABORATORIO --- 1ª Lezione --- 1.1 EXERCISE 5-13 * Exercise 5-13, Fig. 5-36, pag. 249. VS 1 0 DC 10 R1 1 2 1K R2 2 0 2K R3 2 3 3K R4 3 4 4K VA 4 0 DC 0.DC VS 10 10 1.PRINT DC V(2) V(3) I(VS) I(VA) PROBLEM 5-13 * Problem 5-13, Fig. P5-6, pag. 267. IS1 0 1 DC 100M IS2 4 0 DC 100M R1 1 4 1K R2 2 1 1K R3 2 3 1K R4 3 4 1K R5 2 0 2K R6 3 0 2K.DC IS1 100M 100M 1.PRINT DC V(2,3) I(R1) V(1) V(0,4) * La tensione Vx è data da: Vx = V(2,3) * La corrente Ix è data da: Ix = I(R1) * La potenza totale è data da: P_total = V(1)*IS1 + V(0,4)*IS2 PROBLEM 5-15 * Problem 5-15, Fig. P5-8, pag. 267. V1 1 0 DC 10 V2 2 1 DC 10 V3 4 0 DC 10 R1 1 3 10K R2 3 0 20K R3 3 2 30K R4 2 4 40K.DC V1 10 10 1.PRINT DC V(3) I(R3) I(V1) I(V2) I(V3) * Vx = V(3) --- Ix = I(R3) * P_total = - V1*I(V1) - V2*I(V2) - V3*I(V3)

LABORATORIO --- 1ª Lezione --- 1.2 PROBLEM 5-7 * R.E. Thomas, A. J. Rosa, "The Analysis and Design of Linear Circuits", * Problem 5-7, Fig. P5-7, pag. 266. VS 0 3 DC -10 R1 3 1 10K R2 3 2 20K R3 1 0 30K R4 2 0 40K RX 1 2 3K.DC VS -10-10 1.PRINT DC V(1,2) I(VS) V(3,2) * La tensione Vx è data da: Vx = V(1,2) * La corrente Ix è data da: Ix = I(Vs) * La potenza assorbita da R2 vale: P_R2 = [V(3,2)] 2 /R2 PROBLEM 5-9 *R. E. Thomas, A. J. Rosa, "The Analysis and Design of Linear Circuits", * Problem 5-9, Fig. P5-9, pag. 266. VS 4 0 DC 100 IS 1 2 DC 275M R1 4 1 1K R2 2 1 2K R3 2 3 1K R4 1 0 3K R5 3 0 1K RX 1 3 3K.DC IS 275M 275M 1.PRINT DC V(1) I(RX) V(2,1) * La tensione Vx è data da: Vx = V(1) * La corrente Ix è data da: Ix = I(RX) * La potenza del generatore è data da: P_IS = V(2,1)*IS

LABORATORIO --- 2ª Lezione --- 2.1 EXAMPLE 3.6 * Example 3.6, Fig. 3.14a & 3.14b, p. 109. I1 0 4 DC 2E-3 VS 1 0 DC 10M F1 0 3 V2 2 V2 1 2 DC 0 E1 3 4 4 5 3 V3 5 0 DC 0 R1 2 3 1K R2 4 5 500.DC VS 10M 10M 1M.PRINT DC I(V3) V(2,3) * La tensione V è data da: V = V(2,3) * La corrente I è data da: I = I(V3) EXAMPLE 3.7 * Example 3.7, Fig. 3.15a & 3.15b, pp. 109-111. VS 1 0 DC 1 I1 4 1 DC 2 V3 3 4 DC 0 F1 0 4 V2 6 V2 5 0 DC 0 R1 1 2 1 R2 2 5 3 R3 2 3 2.DC VS 1 1 1.PRINT DC I(V3) * La corrente Ix è data da: Ix = I(V3)

LABORATORIO --- 2ª Lezione --- 2.2 EXAMPLE 3.8 * Example 3.8, Fig. 3.16a & 3.16b, pp. 111-112. * Computation of voltage V, as Vin is varied from -10 V to +30 V. VS 1 0 DC 1 G1 2 0 1 4 1M H1 0 4 V2 700 V2 3 4 0DC R1 1 2 500 R2 2 3 500 R3 1 4 1K.DC V1-10 30 1 * To save output data in.out file.print DC V(1,4) * V = V(1,4) * Generate.DAT file for the waveform analyzer.probe EXAMPLE 3.9 * Example 3.9, Fig. 3.17b, pp. 112-113. * Plot of output voltage Vo for an op amp, as Vin is varied * from 1 mv to 500 mv. V1 2 0 DC 1 V2 1 0 DC 100M E1 5 0 3 4 100K R1 2 4 500 R2 1 3 5K R3 3 0 10K R4 4 3 100K R5 4 6 1K R6 5 6 1K R7 6 0 1K.DC V1 1M 500M 1M.PRINT DC V(6) * La tensione Vo è determinata come Vo = V(6).PROBE

LABORATORIO --- 2ª Lezione --- 2.3 EXAMPLE 3.10 * Example 3.10, Fig. 3.18b, pp. 114-115. * Computation of the input resistance of a bipolar transistor amplifier. I1 0 1 DC 1 E1 3 5 4 5 1E-4 F1 4 5 V1 100 V1 1 2 DC 0 R1 1 0 150K R2 2 3 250 R3 4 5 10K R4 4 0 5K R5 5 0 500.DC I1 1 1 1.PRINT DC V(1) * La resistenza equivalente è determinata dalla relazione: Req = V(1)/I1 = V(1) EXAMPLE 4.2 * Example 4.2, Fig. 4.7a & 4.8, pp. 131-133. VS 1 0 DC 10 I1 1 3 DC 2 I2 2 0 DC 8 H1 3 2 V2 4 V2 4 0 DC 0 R1 3 4 3 R2 2 1 2.DC VS 10 10 1.PRINT DC V(2,1) I(V2) * La tensione è determinata tramite la considerazione: V = V(2,1) * La corrente è valutata tramite la relazione seguente : I = I(V2)

LABORATORIO --- 2ª Lezione --- 2.4 EXERCISE 5-14 * Exercise 5-14, Fig. 5-39, p. 252. VS 1 0 DC 1 FX 3 0 VX 50 VX 5 0 DC 0 VA 4 0 DC 0 R1 1 2 8K R2 2 5 1K R3 2 3 40K R4 3 4 4K * If.DC and.print commands are not specified, all node-to-datum voltages, * and currents through voltages sources are reported in the.out file EXAMPLE 5-16 * Example 5-16, Fig. 5-41, pp. 257-258. * Evaluation of the input-output relationship of the circuit. VS1 1 0 DC 0 VS2 2 0 DC 0 G1 3 5 1 5 3M G2 4 5 2 5 3M R1 1 0 500K R2 2 0 500K R3 3 0 8K R4 4 0 8K RDS1 5 3 40K RDS2 5 4 40K.DC VS1 1 1 1.PRINT DC V(4) * K1 = V(4) if VS1 = 1, VS2 = 0 * K2 = V(4) if VS1 = 0, VS2 = 1 *.DC command is used to switch on the selected source.

LABORATORIO --- 2ª Lezione --- 2.5 SIMULAZIONE.TF SORGENTE VS IN TENSIONE USCITA IN TENSIONE PROVA ISTRUZIONE TF VS 1 0 DC 10V VB 5 4 DC 0V F1 3 4 VB 100 RS 1 2 1K RP 2 5 1K RF 2 3 100K RE 4 0 1K RC 3 0 10K.TF V(4) VS *--------------------------------------- *V(4)/VS = 8.937E-01 *INPUT RESISTANCE AT VS = 1.026E+04 *OUTPUT RESISTANCE AT V(4) = 9.821E+01 *--------------------------------------- SORGENTE IS IN CORRENTE USCITA IN TENSIONE PROVA ISTRUZIONE TF IS 0 1 DC 10A VB 5 4 DC 0V F1 3 4 VB 100 RS 1 2 1K RP 2 5 1K RF 2 3 100K RE 4 0 1K RC 3 0 10K.TF V(4) IS *-------------------------------------- *v(4)/is = 9.167E+03 *INPUT RESISTANCE AT IS = 1.026E+04 *OUTPUT RESISTANCE AT V(4) = 9.167E+02 *--------------------------------------

LABORATORIO --- 2ª Lezione --- 2.6 SIMULAZIONE.TF SORGENTE VS IN TENSIONE USCITA IN CORRENTE PROVA ISTRUZIONE TF VS 0 1 DC 10V VB 5 4 DC 0V F1 3 4 VB 100 VC 4 6 DC 0V RS 1 2 1K RP 2 5 1K RF 2 3 100K RE 6 0 1K RC 3 0 10K.TF I(VC) VS *----------------------------------------- * I(VC)/VS = -8.937E-04 * INPUT RESISTANCE AT VS = 1.026E+04 * OUTPUT RESISTANCE AT I(VC) = 1.109E+03 ------------------------------------------