Special diagnostics for the XFEL injector



Similar documents
ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

FLASH Commissioning and Startup

Slice Emittance Measurements at the SLAC Gun Test Facility*

Status of the Free Electron Laser

RF FRONT END FOR HIGH BANDWIDTH BUNCH ARRIVAL TIME MONITORS IN FREE-ELECTRON LASERS AT DESY

Damping Wigglers in PETRA III

Results: Low current ( ) Worst case: 800 MHz, GeV, 4 turns Energy oscillation amplitude 154 MeV, where

Status of IP FB system design

BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN

Short overview of TEUFEL-project

Installation, Commissioning and Operation of the Master Laser Oscillator at FLASH

BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY

Frequency Map Experiments at the Advanced Light Source. David Robin Advanced Light Source

Institute of Accelerator Technologies of Ankara University and TARLA Facility

Optical Synchronization of a Free-Electron Laser with Femtosecond Precision

FLS 2010 Storage Ring Working Group Session 4: Future ring technology and design issues

Libera at ELETTRA: prehistory, history and present state

Tune and Chromaticity Tracking in the Tevatron. C.Y. Tan 09 May 2006

Possible Upgrades and New Design. F. Velotti and B. Goddard

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

Results and Plans for April 2013

Development of Virtual Accelerator Environment for Beam Diagnostics *

Zero Degree Extraction using an Electrostatic Separator

Running in Luminosity. Mike Lamont Verena Kain

LLRF. Digital RF Stabilization System

Status of the SOLEIL project Commissioning from Linac to beamlines

Wir schaffen Wissen heute für morgen

FACET First Beam Commissioning. Jerry Yocky For the FACET commissioning team 21-May-2012 IPAC 2012, New Orleans, LA

SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II

DEVELOPMENT OF THE SWISSFEL UNDULATOR BPM SYSTEM

Status Report on Tools Development. Work done by O. Hensler, R. Kammering, T. Limberg, S. Meykopff, C. Schmidt, M. Tischer, M. Vogt and many more

LHC optics measurement & correction procedures. M. Aiba, R. Calaga, A. Morita, R. Tomás & G. Vanbavinckhove

Reliability and Availability Aspects of. the IPHI Project

Beam Instrumentation Group, CERN ACAS, Australian Collaboration for Accelerator Science 3. School of Physics, University of Melbourne 4

Comb beam for particle-driven plasma-based accelerators

Figure 1: Lattice drawing for the APS storage ring.

High Brightness Photo Injectors for Brilliant Light Sources

MYRRHA Injector Design

SOLEIL Current Performances. And. Futur Developments

Experiment 5. Lasers and laser mode structure

RF Network Analyzer Basics

3 Main Linac. 3.1 Introduction. 3.2 Beam Dynamics II-63

Calorimetry in particle physics experiments

Acousto-optic modulator

Module 13 : Measurements on Fiber Optic Systems

Search Engines Chapter 2 Architecture Felix Naumann

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

Systems, Inc. Energy Advanced

Activities at the University of Frankfurt (IAP)

A Beam Halo Monitor Based on Adaptive Optics. Courtesy of Dr Carsten P. Welsch AB/BI/PM

SIMULATIONS OF ELECTRON CLOUD BUILD-UP AND SATURATION IN THE APS *

RF SYSTEM FOR VEPP-5 DAMPING RING

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

Technical Datasheet Scalar Network Analyzer Model MHz to 40 GHz

XFEL Component Database

Advantages of Real-time Spectrum Analyzers in High Energy Physics Applications

Recent Measurements and Plans for the SLAC Compton X- Ray Source

Upgrading Your Skills to MCSA Windows Server 2012 MOC 20417

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time

Extended Resolution TOA Measurement in an IFM Receiver

Design and development of Configurable BPM readout system for ILSF

Calculation of Eigenmodes in Superconducting Cavities

Application Note Noise Frequently Asked Questions

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

Development of High Stability Supports for NSLS-II RF BPMS

10 Project Costs and Schedule

ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante

Information about the T9 beam line and experimental facilities

X-Ray Free Electron Lasers

THE DUKE FEL LIGHT SOURCE FACILITY

CONTROL ROOM ACCELERATOR PHYSICS

Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting

Study of electron cloud at MI and slip stacking process simulation

E190Q Lecture 5 Autonomous Robot Navigation

& Tunnel Cross Section

Large Systems Commissioning

STUDY OF THE TRANSVERSE BEAM EMITTANCE OF THE BERN MEDICAL CYCLOTRON

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

LHC MACHINE PROTECTION

Development and Commissioning of the Orion Laser Facility

Investigations on Critical Higher Order Modes in CEBAF Upgrade Cavities

THE TESLA TEST FACILITY AS A PROTOTYPE FOR THE GLOBAL ACCELERATOR NETWORK

Software / FileMaker / Plug-Ins Mailit 6 for FileMaker 10-13

The accurate calibration of all detectors is crucial for the subsequent data

Numerical Calculation of Beam Coupling Impedances in the Frequency Domain using the Finite Integration Technique

Introduction to Optical Link Design

How To Use A Sound Card With A Subsonic Sound Card

Ultraviolet selective thin film sensor TW30SX

Status of the Diamond Storage Ring RF Systems. Morten Jensen on behalf of Diamond Storage Ring RF Group

What's behind an Accelerator- Rüdiger Schmitz - MCS - WECOMA04 PCaPAC 2010, Saskatoon, October

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Status Overview The Australian Synchrotron. Steven Banks Control Systems Group

Fast Longitudinal Diagnostics for the HERA Proton Ring

A. Martinez, A. L. Klebaner, J. C. Theilacker, B. D. DeGraff, M. White and G. S. Johnson

Mission: Cure, Research and Teaching. Marco Pullia Cnao design and commissioning

Les Accélérateurs Laser Plasma

Tire pressure monitoring

Transcription:

Special diagnostics for the XFEL injector Holger Schlarb, Christopher Gerth, Michael Röhrs DESY 22607 Hamburg

Special diagnostics laser arrival time monitor (< 50 fs) EOM technique balanced DFG generation (LbSyn versus UV) relative gun phase to laser phase monitor launch of parasitic laser pulses (<50fs) (must) (can) high precision e-beam arrival time monitor (must) specs: < 30fs arrival time precision w.r.t LbSyn @ 5MHz readout transverse deflection structure for (recommended) longitudinal profile measurements: σ res < σ t /20 = 300fs slice emittance measurements: σ res < σ t /10, dε res /ε < 10% slice energy spread: σ E <1.3 kev online transverse profile control within macro-pulse (recommended) kicker and off-axis screens online longitudinal profile control (recommended) low frequency detector (50-400GHz), [fast, no bunch info] steak camera [only single shot, pure dynamic range] EO [multi-bunch possible, medium dynamic range]

Injector section up to Dogleg TCAV Kicker Kicker OTRs OTRs Diagnostic Dipole FODO Dark Current Kicker? Laser Heater upstream of TCAV 36 deg

45 - FODO section (2 additional screens) 1.5 Vertical bunch size 1 0.5 β x β y 0 sin(ψ y )*β y / β OTR sin(ψ y ) 0 1 2 3 4 5 6 z[m] Φy: 0 18 45 90 108 135 From TDS 36 deg 2 additional screens required compared to standard lattice

FODO section: kicker arrangement Off-axis screens 5.6 m Horizontal kicker = Vertical TCAV 36 βx βy βy = βx = 2.5m Φx: 0 27 45 90 117 135 Φy: 0 18 45 90 108 135

Energy Spread Measurements (Injector Dump) Goal: resolve uncorrelated energy spread ΔE ~ 5keV ΔE/E ~ 3.8*10-5 (from meas. at FLASH) monitor Laser Heater 5-30 kev Values at screen: ßx = 0.7 m ßy = 1.0 m Dx = 1.9 m ΔE/E ~ 2.8*10-5 Slice ε N = 1*10-6 µm Phase advance from TCAV: 382 o for current layout Higher order effects? Chromaticity? CSR effects

TDS parameters

Beam line overview proposed beam line design: Gun NRF Booster SRF booster Collimation Dark current Laser heater TDS Diagnostic section Spectrometer Dump Dogleg Matching sections Diagnostics elements

Summary space insufficient to include dark current removal and laser heater to commission laser heater, installation upstream of TDS!!!! optics has to be redesign to optimize beam size at dark current sweeper and laser heater!!! in case of space constrains: ACC1 equipped with doublet.

NRF booster Advantages: space and simpler access for diagnostics after gun and behind NRF booster reduced gradient unbalancing in SRF (4*12.5+4*20 MV/m) gradients NRF and SRF can be balanced in certain range no addition space required if ACC1 is fixed in position fine tuning with another solenoid possible better condition for velocity bunching? Disadvantage: costs of one more RF station one more RF station as single point of failure

Gun-dark current removal FLASH: XFEL: largest part of dark current lost in BC2 (relaxes) dark current kicker at 1 MHz (partially worked) larger dark current expected due to gun gradient! Better cleaning & cathode preparation? Speculative if this compensates for gradient induced dark current increase! significant fraction transported up to 500MeV point Problem with energy collimation: 10-30% of dark current has same energy! Recommended: Collimation also in time Specially easy because of 1.3GHz time structure

Dark current sweeper Sweeper Dark current Aperture in Y ~ Bunched beam ~ BPM coarse 10 um res. BPM fine 2 um res. Location: after ACC1 to remove dark current before diagnostic sections!!!!! Sweep direction: vertical since downstream laser heater in horizontal plan Moderate beta function in y: β y <= 10 m because of phase tolerance Optics: best simple drift R 34 ~ 4 m (to first order independent on optics) Tolerance on phase < f * σ xp / α y,max (eff, R 34, d aper ) ~ 0.01deg (10%) Beam based feedback on sweeper phase required Orbit stability f * σ xp minimum f=10%, nominal f=5%, desired f=2% f = 2.5MHz f = 5.0 MHz

Laser heater Motivation: Collective effect: SP/CSR drive micro-bunch instabilities Residual energy-spread ~ 1-3keV No Landau damping Energy-spread can be larger for FELs (σ E /E < ρ ~ 5e-4) increase ε E 10-50 kev (compression factor C!)

Laser heater heating σ L ~ 40keV Residual σ E ~ 1-3keV R 52 = -0.024 R 52 =0

Laser heater

Laser heater to tune lasing duration Laser profile (e.g. pulse stacker) Longitudinal charge density No density modulation induced! 1ps rms laser pulses gap Energy distribution of electrons rms energy spread 1 ps 80 kev 26 kev

Laser heater to tune lasing duration - bit more difficult - After heater After BC1 After BC2 135 MeV 500 MeV 2.0 GeV

Laser heater to tune lasing duration - bit more difficult - Longitudinal phase space (UND) Energy profile for different slices Short slices (+-2um) Back ground unperturbed

Operation modes for the Diagnostic Section FEL mode - parasitic Diagnostic mode 1 Long. Profile - not parasitic - Commissioning of long pulse trains - On-line beam characterisation - Correction of drifts Medium beta function at TDS (~15-25 m) Low space charge & chromatic effects Time resolution of TDSs ~ 30 fs Slice emittance measurement using kickers (optic 1) Projected emittance measurement using kickers (optic 2) Kicked bunches dumped in collimator Dipole to dump is switched off - High resolution longitudinal profiling with TCAVS High beta function at one TCAV (>50m) / special optic (optic 3) Small beta function at screen with 90 deg phase adv. Resolution better 10fs Dipole to dump is switched off Diagnostic mode 2 Energy spread - not parasitic - Precise determination of RF phases & amplitudes - Studies of collective effects on longitudinal phase space Dipole to dump is switched on Small horizontal and vertical beta at OTR and large dispersion (optic 4) Relative energy resolution at screen ΔE/E ~ 10-5 Single or few bunch mode Diagnostic mode 3 - Commissioning of LLRF upstream BC1 Long pulses - Studies of orbit stability and emittance variation across macro-pulse - not parasitic Dipole to dump is switched on Off-axis screen in dispersive section Large beta function at dump screen (optic 5) Low loss operation in dump line Up to 800us? operation (1Hz) 10/24/2006 High resolution BPM based Holger energy Schlarb, measurement DESY across macro-pulse

Matching into FODO Section TCAV Kicker OTRs Kicker OTRs Dark Current Kicker? FODO section Laser Heater upstream of TCAV? βx and βy ~ 2m New lattice design and more space required Phase advance [2π] 36 deg

Current beam line design Hallo Holger, hier die orbit-plots mit OTR-schirmen und quadrupolen. kicked_orbit_1 bezieht sich auf den ersten Kicker, den ich 0.5 m vor den ersten OTR-Schirm gesetzt habe. Die noetigen Kicks sind 2.6 mrad bzw. -4.4 mrad. Driftlaenge ist 0.75 m, horizontal fok. quadrupole sind rot. Beim zweiten Kicker sind Kicks von -2.6 mrad bzw. 1.9 mrad noetig. Wenn irgendwas geaendert werden sollte, sag bescheid. Gruss Michael Hallo Holger, hier der Plot zur 'condition number'; habe das gewaehlte Lattice mit den Standard 45 und 60 Grad Optionen verglichen. Der Mismatch parameter ist B=0.5*(beta1*gamma2-2*alpha1*alpha2 + beta2*gamma1); die vertikale Linie gibt den maximalen slice mismatch an, den wir in unseren Messungen gesehen haben. Bis zu diesem Wert ist die Schirmanordnung vergleichbar mit dem standard 60 Grad lattice und nicht dramatisch schlechter als die standard 45 Grad Option, darueber muesste man fuer das grobe matching dann wohl die projizierte emittanz mit den standard schirmen messen. Anmerkung: die (180-Grad-periodische) Abhaengigkeit von der Mismatch-Phase Theta habe ich herausgenommen, indem ich fuer jeden Mismatch Parameter B den maximalen Fehler im 180 Grad Intervall von Theta genommen habe. Minimale Strahlgroesse dividiert durch maximale Strahlgroesse, die man auf den Schirmen erhaelt: 0.73 fuer die gewaehlte Option, 0.4 fuer 45 Grad standard, 0.5 fuer 60 Grad standard. Bei einer nominellen AUfloesung von 300fs bedeutet das 411 fs, 750 fs bzw. 600 fs effektive Aufloesung bei den drei Anordnungen. Gruss Michael

Outlook and future developments 2007 installation of optical replica synthesizer (< 5fs resolution) in cooperation with Uppsala & Uni. Stockholm preparation of longitudinal feedback system (mainly new monitor systems) T arrial, A/ϕ ACC1 incoming orbit exiting orbit Fast FB A/ϕ ACC1 time energy compression allow for laser based beam manipulation and external seeding option: requires ~ 30-60 fs rms arrival time stability

Principle of the Arrival Time Detection The timing information of the electron bunch is transferred into an amplitude modulation. This modulation is measured with a photo detector and sampled by a fast ADC. sampling time of ADC 40.625 MHz (54 MHz) Courtesy: F. Löhl

Beam Pick-up Output signal measured in EOS hutch Isolated impedance-matched ring electrode installed in a thick Flange Broadband signal with more than 5 GHz bandwidth Sampled at zero-crossing with laser pulse

Electro-Optical-Modulator (EOM) bias voltage RF signal Lithium Niobate Commercially available with bandwidths up to 40 GHz (we use a 12 GHz version)

Test Bench for the Arrival-time Monitor System Courtesy: F. Löhl

Measurement of Bunch Arrival Time over Bunch Train Beam loading compensation off ~ 3 ps difference over bunch train ~ 3 ps difference over bunch train Beam loading compensation on (not optimized) da/a ~ 0.2% ACC1 Bunch to bunch time jitter rms(t n t (n+1) ) ~ 30fs ~ 1 ps difference over bunch train Courtesy: F. Löhl

header lines Current beam line design