Software Model Checking: Theory and Practice
|
|
|
- Robyn Peters
- 10 years ago
- Views:
Transcription
1 Software Model Checking: Theory and Practice Lecture: Specification Checking - LTL Model Checking Copyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted materials and may not be used in other course settings outside of Kansas State University and the University of Nebraska in their current form or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.
2 Objectives To understand Büchi automata and their relationship to LTL To understand how Büchi acceptance search enables a general LTL model checking algorithm Property Checking : LTL Model Checking 2
3 Safety Checking For safety properties we automated the instrumentation of checking for acceptance of a regular expression for a violation This involved modifying the DFS algorithm to Calculate states of the property automaton Check to see whether an accept state is reached We will apply the same basic strategy for LTL Property Checking : LTL Model Checking 3
4 LTL Model Checking From the semantics An LTL formula defines a set of (accepting) traces We can Check for trace containment System Property Property Checking : LTL Model Checking 4
5 LTL Model Checking From the semantics The negation of an LTL formula defines a set of (violating) traces We can Check for non-empty language intersection Negation of Property System Property Checking : LTL Model Checking 5
6 Emptiness Check LTL is closed under complement L(φ) = L( φ) where the language of a formula defines a set of infinite traces A Büchi automaton accepts a set of infinite traces Property Checking : LTL Model Checking 6
7 Büchi Automata A Büchi automaton is a quadruple (R,I,δ,F) S is a set of states I R is a set of initial states δ : R P(R) is a transition relation F is a set of accepting states Unlike FSAs, Büchi automata are always nondeterministic set of initial states multiple transitions from a state Property Checking : LTL Model Checking 7
8 Büchi Automata Automaton states are labeled with atomic propositions of the formula λ : R P(A) where A are the set of observables for the program λ(r) is the set of observables for a property state Note that the meaning of the automata is defined via this mapping plays the role of alphabet in FSA Property Checking : LTL Model Checking 8
9 Example : Büchi Automaton S = {r 0, r 1, r 2 } I = {r 0 } δ = {(r 0,{r 0,r 1 }),(r 1,{r 2 }),(r 2,{r 2 })} F = {r 2 } λ = {(r 0,cruire}),(r 1,{off}),(r 2,{})} cruise off true r 0 r 1 r 2 Property Checking : LTL Model Checking 9
10 Büchi Automata Semantics An infinite trace σ = r 0, r 1, is accepted by a Büchi automaton iff r 0 I starting in an initial state i 0 : r i+1 δ(r i ) trace corresponds to transition relation i 0 j i : r j F can reach a final state from end of all prefixes Property Checking : LTL Model Checking 10
11 Büchi Trace Containment Assume each system state (S) is labeled (Λ) with set of observables (A) A Büchi automaton accepts a system trace s 0, s 1, r 0 I : λ(r 0 ) Λ(s 0 ) i 0 r i+1 δ(r i ) : λ(r i+1 ) Λ(s i+1 ) i 0 j i : r j F Property Checking : LTL Model Checking 11
12 Example : Büchi Automaton cruise cruise off off accel accel cruise cruise cruise accel cruise off accel cruise off true r o r 1 r 2 Property Checking : LTL Model Checking 12
13 LTL and Büchi Automata Every LTL formula has a Büchi automaton that accepts its language (not vice versa) L(φ) L(BA) L(φ) L(BA) Büchi automata cannot be determinized i.e., there is no canonical deterministic automaton that accepts the same language Büchi automata are closed under the standard set operations Property Checking : LTL Model Checking 13
14 Example : Büchi Automaton What LTL property does this correspond to? cruise off true r o r 1 r 2 cruise U off Property Checking : LTL Model Checking 14
15 Example : Büchi Automaton What LTL property does this correspond to? true off true r o r 1 r 2 off Property Checking : LTL Model Checking 15
16 LTL Model Checking Apply same strategy as before Generate Büchi automaton for the negation of the LTL property Explore state space of the product of the automaton and the system Check for emptiness Violation are indicated by accepting traces Look for cycles containing an accept state Use nested depth-first search Property Checking : LTL Model Checking 16
17 LTL Model Checking errors := {} seen := {} for each r I do seen := seen U {(s 0, r)} stack := [(s 0, r)] DFS((s 0, r)) pop(stack) For each initial property state initialize DFS data structures perform search of initial product state Property Checking : LTL Model Checking 17
18 LTL Model Checking DFS ((s,r)) workset := enabled (s ) for each α workset do s := α (s ) for each r δ(r) do if λ(r ) Λ(s ) then if (s,r ) seen then seen := seen {(s,r )} push (stack, (s,r )) DFS((s,r )) if r A then seen := {(s,r )} stack := [(s,r )] NDFS((s,r ),(s,r )) pop(stack ) pop(stack) end DFS For each transition check if state labels match Only launch a cycle search from property accept states Property Checking : LTL Model Checking 18
19 LTL Model Checking NDFS ((s,r), seed) workset := enabled (s ) for each α workset do s := α (s ) for each r δ(r) do For each transition check if state labels match if λ(r ) Λ(s ) then if (s,r ) = eed then errors := errors U {(stack,stack )} continue if (s,r ) seen then seen := seen {(s,r )} push (stack, (s,r )) NDFS((s,r ), seed) pop(stack ) end NDFS Same logic as for progress checking Property Checking : LTL Model Checking 19
20 Fairness Liveness states that the system should eventually do something Often times in real systems threads rely on a schedule to give them a chance to run Abstracting scheduling to non-deterministic choice introduces severe approximation There are many forms of fairness The intuition is that we restrict the systems behaviors to only those on which each process gets a chance to execute Property Checking : LTL Model Checking 20
21 Fairness in LTL LTL is expressive enough to state fairness properties directly []<> (Phil1.eating Phil2.eating) ([]<>Phil1.eating) && ([]<>Phil2.eating) Fairness formula can be used to filter the behaviors that are checked as follows Fairness -> Property If not Fairness then whole thing is true Property checked only when Fairness holds Property Checking : LTL Model Checking 21
Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary
Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata
Formal Verification by Model Checking
Formal Verification by Model Checking Natasha Sharygina Carnegie Mellon University Guest Lectures at the Analysis of Software Artifacts Class, Spring 2005 1 Outline Lecture 1: Overview of Model Checking
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
The Model Checker SPIN
The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(
Software Model Checking: Theory and Practice
Software Model Checking: Theory and Practice Lecture: Secification Checking - Temoral Logic Coyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are coyrighted
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
Software Engineering using Formal Methods
Software Engineering using Formal Methods Model Checking with Temporal Logic Wolfgang Ahrendt 24th September 2013 SEFM: Model Checking with Temporal Logic /GU 130924 1 / 33 Model Checking with Spin model
Fundamentals of Software Engineering
Fundamentals of Software Engineering Model Checking with Temporal Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner
tutorial: hardware and software model checking
tutorial: hardware and software model checking gerard holzmann and anuj puri { gerard anuj } @research.bell-labs.com Bell Labs, USA outline introduction (15 mins) theory and algorithms system modeling
logic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system?
5. LTL, CTL Last part: Alloy logic language, static/dynamic models SAT solvers Today: Temporal Logic (LTL, CTL) Verified Software Systems 1 Overview How can we model check of a program or system? Modeling
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund
Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund RIACS Technical Report 01.21 August 2001 Presented at the 16 th IEEE International Conference
Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh [email protected].
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh [email protected] 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free
Formal Verification of Software
Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification
INF5140: Specification and Verification of Parallel Systems
INF5140: Specification and Verification of Parallel Systems Lecture 7 LTL into Automata and Introduction to Promela Gerardo Schneider Department of Informatics University of Oslo INF5140, Spring 2007 Gerardo
Model Checking LTL Properties over C Programs with Bounded Traces
Noname manuscript No. (will be inserted by the editor) Model Checking LTL Properties over C Programs with Bounded Traces Jeremy Morse 1, Lucas Cordeiro 2, Denis Nicole 1, Bernd Fischer 1,3 1 Electronics
Software Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
Formal Verification and Linear-time Model Checking
Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging
CISC422/853: Formal Methods
Outline CISC422/853: Formal Methods in Software Engineering: Computer-Aided Verification Topic 7: Specifying, or How to Describe How the System Should (or Should Not) Behave Juergen Dingel Feb, 2009 Readings:
Software Reliability: Runtime Verification
Software Reliability: Runtime Verification Martin Leucker and the whole ISP team Institute for Software Engineering Universität zu Lübeck Riga, 21.07. 04.08.14 Martin Leucker Basoti, 2014 1/117 Runtime
Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection
Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection Martin Leucker Technische Universität München (joint work with Andreas Bauer, Christian Schallhart et. al) FLACOS
Overview of E0222: Automata and Computability
Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study
Omega Automata: Minimization and Learning 1
Omega Automata: Minimization and Learning 1 Oded Maler CNRS - VERIMAG Grenoble, France 2007 1 Joint work with A. Pnueli, late 80s Summary Machine learning in general and of formal languages in particular
Monitoring Metric First-order Temporal Properties
Monitoring Metric First-order Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at
Software Verification and Testing. Lecture Notes: Temporal Logics
Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or non-terminating) can be modelled as relations are analysed wrt their input/output
On Omega-Languages Defined by Mean-Payoff Conditions
On Omega-Languages Defined by Mean-Payoff Conditions Rajeev Alur 1, Aldric Degorre 2, Oded Maler 2, Gera Weiss 1 1 Dept. of Computer and Information Science, University of Pennsylvania, USA {alur, gera}@cis.upenn.edu
A Continuous Truth Domain for Runtime Verification
Institut für Formale Methoden der Informatik Abteilung Theoretische Informatik Universität Stuttgart Universitätsstraße 38 D-70569 Stuttgart Laboratoire Spécification et Vérification École Normale Supérieure
Verification of hybrid dynamical systems
Verification of hybrid dynamical systems Jüri Vain Tallinn Technical University/Institute of Cybernetics [email protected] Outline What are Hybrid Systems? Hybrid automata Verification of hybrid systems Verification
Combining Software and Hardware Verification Techniques
Formal Methods in System Design, 21, 251 280, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Combining Software and Hardware Verification Techniques ROBERT P. KURSHAN VLADIMIR
Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
Constructing Automata from Temporal Logic Formulas : A Tutorial
Constructing Automata from Temporal Logic Formulas : A Tutorial Pierre Wolper Université de Liège, Institut Montefiore, B28, 4000 Liège, Belgium [email protected], http://www.montefiore.ulg.ac.be/~pw/
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Model Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
LTL Model Checking with Logic Based Petri Nets
LTL Model Checking with Logic Based Petri Nets Tristan M. Behrens and Jürgen Dix IfI Technical Report Series IfI-07-04 Impressum Publisher: Institut für Informatik, Technische Universität Clausthal Julius-Albert
Automata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,
Deterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
Validated Templates for Specification of Complex LTL Formulas
Validated Templates for Specification of Complex LTL Formulas Salamah Salamah Department of Electrical, computer, Software, and Systems Engineering Embry Riddle Aeronautical University 600 S. Clyde Morris
Runtime Verification for Real-Time Automotive Embedded Software
Runtime Verification for Real-Time Automotive Embedded Software S. Cotard, S. Faucou, J.-L. Béchennec, A. Queudet, Y. Trinquet 10th school of Modelling and Verifying Parallel processes (MOVEP) Runtime
Feature Specification and Automated Conflict Detection
Feature Specification and Automated Conflict Detection AMY P. FELTY University of Ottawa and KEDAR S. NAMJOSHI Bell Laboratories Large software systems, especially in the telecommunications field, are
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
Fast nondeterministic recognition of context-free languages using two queues
Fast nondeterministic recognition of context-free languages using two queues Burton Rosenberg University of Miami Abstract We show how to accept a context-free language nondeterministically in O( n log
Automata-based Verification - I
CS3172: Advanced Algorithms Automata-based Verification - I Howard Barringer Room KB2.20: email: [email protected] March 2006 Supporting and Background Material Copies of key slides (already
Model checking test models. Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl
Model checking test models Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl February 14, 2014 Abstract This thesis is about model checking testing models. These testing
Introduction to SPIN. Acknowledgments. Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck. Features PROMELA/SPIN
Acknowledgments Introduction to SPIN Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck Ralf Huuck COMP 4152 1 Ralf Huuck COMP 4152 2 PROMELA/SPIN PROMELA (PROcess MEta
Intrusion Detection via Static Analysis
Intrusion Detection via Static Analysis IEEE Symposium on Security & Privacy 01 David Wagner Drew Dean Presented by Yongjian Hu Outline Introduction Motivation Models Trivial model Callgraph model Abstract
An Overview of the Runtime Verification Tool Java PathExplorer
An Overview of the Runtime Verification Tool Java PathExplorer Klaus Havelund Kestrel Technology NASA Ames Research Center California, USA http://ase.arc.nasa.gov/havelund Grigore Roşu Department of Computer
On Winning Conditions of High Borel Complexity in Pushdown Games
Fundamenta Informaticae (2005) 1 22 1 IOS Press On Winning Conditions of High Borel Complexity in Pushdown Games Olivier Finkel Equipe de Logique Mathématique U.F.R. de Mathématiques, Université Paris
Temporal Logics. Computation Tree Logic
Temporal Logics CTL: definition, relationship between operators, adequate sets, specifying properties, safety/liveness/fairness Modeling: sequential, concurrent systems; maximum parallelism/interleaving
The Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
Program Synthesis is a Game
Program Synthesis is a Game Barbara Jobstmann CNRS/Verimag, Grenoble, France Outline Synthesis using automata- based game theory. MoBvaBon, comparison with MC and LTL. Basics Terminology Reachability/Safety
Semantics and Verification of Software
Semantics and Verification of Software Lecture 21: Nondeterminism and Parallelism IV (Equivalence of CCS Processes & Wrap-Up) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification)
Fabio Patrizi DIS Sapienza - University of Rome
Fabio Patrizi DIS Sapienza - University of Rome Overview Introduction to Services The Composition Problem Two frameworks for composition: Non data-aware services Data-aware services Conclusion & Research
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
How To Compare A Markov Algorithm To A Turing Machine
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
On the Modeling and Verification of Security-Aware and Process-Aware Information Systems
On the Modeling and Verification of Security-Aware and Process-Aware Information Systems 29 August 2011 What are workflows to us? Plans or schedules that map users or resources to tasks Such mappings may
Introduction to Software Verification
Introduction to Software Verification Orna Grumberg Lectures Material winter 2013-14 Lecture 4 5.11.13 Model Checking Automated formal verification: A different approach to formal verification Model Checking
Workflow Management Models and ConDec
A Declarative Approach for Flexible Business Processes Management M. Pesic and W.M.P. van der Aalst Department of Technology Management, Eindhoven University of Technology, P.O.Box 513, NL-5600 MB, Eindhoven,
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Fabio Massacci Ida Siahaan
Inline-Reference Monitor Optimization using Automata Modulo Theory (AMT) Fabio Massacci Ida Siahaan 2009-09-24 STM09 - UNITN - Siahaan 1 Inlined Reference Monitors Security Policy Original Application
Introduction to Promela and SPIN. LACL, Université Paris 12
Introduction to Promela and SPIN LACL, Université Paris 12 Promela = Process Meta Language A specification language! No programming language! Used for system description : Specify an abstraction of the
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or
Lecture 9 verifying temporal logic
Basics of advanced software systems Lecture 9 verifying temporal logic formulae with SPIN 21/01/2013 1 Outline for today 1. Introduction: motivations for formal methods, use in industry 2. Developing models
Model Checking II Temporal Logic Model Checking
1/32 Model Checking II Temporal Logic Model Checking Edmund M Clarke, Jr School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 2/32 Temporal Logic Model Checking Specification Language:
Data Structures and Algorithms V22.0102. Otávio Braga
Data Structures and Algorithms V22.0102 Otávio Braga We use a stack When an operand is read, output it When an operator is read Pop until the top of the stack has an element of lower precedence Then push
Copyright 2013 wolfssl Inc. All rights reserved. 2
- - Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 3 Copyright 2013 wolfssl Inc. All rights reserved.
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86
Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy
Büchi Complementation Made Tighter
International Journal of Foundations of Computer Science c World Scientific Publishing Company Büchi Complementation Made Tighter Ehud Friedgut Hebrew University, Institute of Mathematics, Jerusalem 91904,
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
First-order definable languages
First-order definable languages Volker Diekert 1 Paul Gastin 2 1 Institut für Formale Methoden der Informatik Universität Stuttgart Universitätsstraße 38 70569 Stuttgart, Germany [email protected]
Formal Verification of Computer Systems - (INFO-F-412)
Formal Verification of Computer Systems - (INFO-F-412) Thierry Massart Université Libre de Bruxelles Département d Informatique February 2013 Acknowledgment I want to thank Edmund Clarke, Keijo Heljanko,
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
The LIME Interface Specification Language and Runtime Monitoring Tool
The LIME Interface Specification Language and Runtime Monitoring Tool Kari Kähkönen, Jani Lampinen, Keijo Heljanko, and Ilkka Niemelä Helsinki University of Technology TKK Department of Information and
