Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...
|
|
|
- Agatha Riley
- 10 years ago
- Views:
Transcription
1 Confocal Microscopy and Atomic Force Microscopy (AFM) of biofilms A very brief primer...
2 Fundamentals of Confocal Microscopy Based on a conventional fluorescence microscope Fluorescent Microscope Confocal Microscope Arc Lamp Laser Excitation Diaphragm Excitation Filter Excitation Pinhole Excitation Filter Ocular PMT Objective Emission Filter Objective Emission Filter Emission Pinhole 2 DTU Sytems Biology, Technical University of Denmark
3 3D reconstruction # z sections =#images y z x 3 DTU Sytems Biology, Technical University of Denmark
4 Pseudomonas putida cells mixed with Acinetobacter cells in a microbial biofilm Christensen et al Appl. Environ. Microbiol. 64: DTU Sytems Biology, Technical University of Denmark
5 Benefits of Confocal Microscopy Reduced blurring of the image from light scattering Increased effective resolution Improved signal to noise ratio Clear examination of thick specimens Z-axis scanning (3D-reconstruction possible) Magnification can be adjusted electronically X-Y resolution: ~ nm (Ernst Abbe) Disadvantages of Confocal Microscopy Requires fluorescent samples Uses laser illumination (expensive, few wavelengths) Instrument expensive to acquire and run Z-resolution typically >500 nm 5 DTU Sytems Biology, Technical University of Denmark
6 Haagensen et al J. Bacteriol. 189: DTU Sytems Biology, Technical University of Denmark
7 al Mol. Microbiol. 50:61.68 Klausen et a 7 DTU Sytems Biology, Technical University of Denmark
8 8 DTU Sytems Biology, Technical University of Denmark
9 New developments in confocal microscopy MP (multi-photon) or two-photon confocal microscopy: Two or more photons from a long wavelength illumination at a time excites a fluorophore. High resolution in Z-axis (practally down to ~200 nm) White Laser (Leica): A continous wave white laser (tunable from nm, with up to 8 lines simultaneously) STED (Stimulated Emission Depletion)(Leica): A new method where fluourescence is depleted around the area of interest (see next slide) Superresolution structured microscopy (Zeiss): A methods where images are rotated and combined to create a moire pattern which is deconvolved to create a high res image. Photo-Activated localization microscopy (Zeiss): Sequential illumination and localization of fluorophores combined with computational reconstruction of high res images. Raman-confocal microscopy (Leica, under development): Confocal microscope combined with raman spectroscope. Enables localized determination of [changes in] concentrations of metabolites etc. 9 DTU Sytems Biology, Technical University of Denmark
10 STED (Stimulated Emission Depletion) In a Leica TCS STED microscope the sample is illuminated by two pulsed laser beams, tightly synchronized. The 635 nm wavelength excites the fluorophores of the sample the same way a conventional confocal system does. The excitation laser pulses are directly followed by a ring shaped illumination of a Ti:Sapphire Infrared laser nm). This pulse inhibits/depletes the fluorescence in the outer regions of the illuminated spot. The result: A smaller fluorescence spot that allows much more accurate scanning than with other methods using focused light. X-Y res: <90 nm 10 DTU Sytems Biology, Technical University of Denmark
11 Sample STED image Confocal image STED image Images: Prof. Dr. T. Lang, Univ. Of Bonn, germany and Leica Microsystems 11 DTU Sytems Biology, Technical University of Denmark
12 Atomic Force Microscopy (AFM) A method to record the topographic property of a surface Physical interaction ti with the surface is necessary 12 DTU Sytems Biology, Technical University of Denmark
13 The principle 13 DTU Sytems Biology, Technical University of Denmark
14 14 DTU Sytems Biology, Technical University of Denmark
15 Anne Louise Frost m.fl (unpublished) 15 DTU Sytems Biology, Technical University of Denmark
16 Benefits of AFM Extemely high resolution (down to atomic level few Å), but typically nm) No staining required Possible to measure attractive/replusive forces Disadvantages of AFM Extremely high resolution (very low focal depth ) Small image area Sample must be flat and tightly fixed Very difficult to work in humid or wet environments Need direct contact to sample Imaging depends on tip shape Slow 16 DTU Sytems Biology, Technical University of Denmark
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off
Zeiss 780 Training Notes
Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn
Applications of confocal fluorescence microscopy in biological sciences
Applications of confocal fluorescence microscopy in biological sciences B R Boruah Department of Physics IIT Guwahati Email: [email protected] Page 1 Contents Introduction Optical resolution Optical
Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University
Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.
Recording the Instrument Response Function of a Multiphoton FLIM System
Recording the Instrument Response Function of a Multiphoton FLIM System Abstract. FLIM data analysis in presence of SHG signals or extremely fast decay components requires the correct instrument response
Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES
BIODIVERSITY I BIOL1051 Microscopy Professor Marc C. Lavoie [email protected] MAJOR FUNCTIONS OF MICROSCOPES MAGNIFY RESOLVE: => INCREASE CONTRAST Microscopy 1. Eyepieces 2. Diopter adjustment
Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 You are sitting at your microscope working at high magnification trying to sort out the three-dimensional compartmentalization
Advanced Microscopy of Microbial Cells
Adv Biochem Engin/Biotechnol (2011) 124: 21 54 DOI: 10.1007/10_2010_83 Ó Springer-Verlag Berlin Heidelberg 2010 Published Online: 17 November 2010 Advanced Microscopy of Microbial Cells Janus A. J. Haagensen,
Raman spectroscopy Lecture
Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy
EXPERIMENT #1: MICROSCOPY
EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate
A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine
Chapter 1 A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine This chapter provides a historical foundation of the field of microscopy and outlines the significant
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,
PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.
FEMTOSECOND MEASUREMENTS COMBINED WITH NEAR FIELD OPTICAL MICROSCOPY Artyom A. Astafiev, Semyonov Institute of Chemical Physics, Moscow, Russian Federation. Keywords: diffraction limit nearfield scanning
Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.
Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General
Fluorescence Microscopy for an NMR- Biosensor Project
Fluorescence Microscopy for an NMR- Biosensor Project Ole Hirsch Physikalisch-Technische Bundesanstalt Medical Optics Abbestr. -1, 10587 Berlin, Germany Overview NMR Sensor Project Dimensions in biological
Super Resolution Optical Microscopy. Bo Huang
Super Resolution Optical Microscopy Bo Huang Mar 30, 2012 0.1mm 10µm 1µm 100nm Naked eye: ~ 50 100 μm 1595, Zaccharias and Hans Janssen First microscope, 9x magnification Antony Van Leeuwenhoek (1632 1723),
A VERYbrief history of the confocal microscope 1950s
Confocal Microscopy Confocal Microscopy Why do we use confocal microscopy? A brief history of the confocal microscope Advantages/disadvantages of a confocal microscope Types of confocal microscopes The
Neuro imaging: looking with lasers in the brain
Neuro imaging: looking with lasers in the brain Aim: To image life cells, label free, with cellular resolution in deep tissue Marloes Groot Vrije Universiteit Amsterdam Faculteit Exacte Wetenschappen Natuurkunde
Confocal Microscopy. Chapter 2
Chapter 2 Confocal Microscopy This Chapter offers a brief introduction to confocal microscopy and to other experimental techniques employed in this thesis. Unraveling structure and dynamics by confocal
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing Urs Ziegler Center for Microscopy and Image Analysis Light microscopy (Confocal Laser Scanning Microscopy) Light microscopy (Confocal Laser Scanning
Measuring the Point Spread Function of a Fluorescence Microscope
Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
Microscopy: Principles and Advances
Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology
Counting and imaging bacteria using fluorescent microscopy & Electron Microscopy and Atomic Force Microscopy (AFM)
Counting and imaging bacteria using fluorescent microscopy & Electron Microscopy and Atomic Force Microscopy (AFM) Bruce E. Logan Kappe Professor of Environmental Engineering Department of Civil and Environmental
Real-world applications of intense light matter interaction beyond the scope of classical micromachining.
Dr. Lukas Krainer [email protected] CEO Real-world applications of intense light matter interaction beyond the scope of classical micromachining. 1 Management & Company Company Based in Zürich, Switzerland
NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES
Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY
Optical Coherence Tomography OCT. 3D Imaging in Medical Technology and Quality Control
Optical Coherence Tomography OCT 3D Imaging in Medical Technology and Quality Control SLN Seminar, EPMT Lausanne, 26. May. 2011 Ch. Meier www.optolab.ch 1 / 27 SLN/EPMT, Lausanne, 26.5.2011 Ch. Meier Outline
ZEISS Microscopy Course Catalog
ZEISS Microscopy Course Catalog ZEISS Training and Education Expand Your Possibilities Practical microscopy training has a long tradition at ZEISS. The first courses were held in Jena as early as 1907,
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Lecture 4 Scanning Probe Microscopy (SPM)
Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
Microscopic Techniques
Microscopic Techniques Outline 1. Optical microscopy Conventional light microscopy, Fluorescence microscopy, confocal/multiphoton microscopy and Stimulated emission depletion microscopy 2. Scanning probe
Chapter 1 High-Resolution Optical and Confocal Microscopy
Chapter 1 High-Resolution Optical and Confocal Microscopy Olaf Hollricher and Wolfram Ibach Abstract In this chapter, the theory of optical image formation in an optical microscope is described, and the
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction
Webex-based remote instrument control guide
Webex-based remote instrument control guide 1) Once a microscopic imaging experiment is scheduled, the host (i.e., Hunter Bioimaging Facility) will send an email containing a Webex meeting link to the
Principles of Microscopy and Confocal and Fluorescence Microscopy
Principles of Microscopy and Confocal and Fluorescence Microscopy Content This course in Light Microscopy follows the series of successful courses in Light Microscopy, Confocal and Fluorescence Microscopy
Optical mesoscopy with a new giant lens. Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos
Optical mesoscopy with a new giant lens Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos The spot on specimen, source and detector aperture are at conjugate optical foci detector Advantage:
Leica TCS SP5 Confocal Laser Scanning Microscope User Guide 1. BASIC IMAGE ACQUISITION
Leica TCS SP5 Confocal Laser Scanning Microscope User Guide 1. BASIC IMAGE ACQUISITION This manual is the FIRST section of a THREE part Leica TCS - SP5 User Guide edited by Donald Pottle Leica True Confocal
Microscope Lab Introduction to the Microscope Lab Activity
Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool
Powerful Upright Microscope Solutions for Life Science and Clinical Applications
Powerful Upright Microscope Solutions for Life Science and Clinical Applications Leica DM4 B Leica DM6 B Short training time, intuitive usage and high quality images are decisive criteria when choosing
SILA Sistema Integrato di Laboratori per l Ambiente. CENTRE FOR MICROSCOPY AND MICROANALYSIS Scientific coordinator: Prof.ssa Rosanna De Rosa
CENTRE FOR MICROSCOPY AND MICROANALYSIS Scientific coordinator: Prof.ssa Rosanna De Rosa 0 The Centre for Microscopy and Microanalysis (CM2) is an interdisciplinary service centre, a comprehensive suite
Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts
Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any
The Basics of Scanning Electron Microscopy
The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single
MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.
MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize
Nano Optics: Overview of Research Activities. Sergey I. Bozhevolnyi SENSE, University of Southern Denmark, Odense, DENMARK
Nano Optics: Overview of Research Activities SENSE, University of Southern Denmark, Odense, DENMARK Optical characterization techniques: Leakage Radiation Microscopy Scanning Near-Field Optical Microscopy
Tandem Scanner. Leica TCS SP5 II: The Broadband Confocal High Speed and High Resolution All in One
Tandem Scanner Leica TCS SP5 II: The Broadband Confocal High Speed and High Resolution All in One Modern microscopy comes in two versions. On the one hand, the goal is to record brilliant images to clearly
Programme PhD / Master course Advanced Microscopy and Vital Imaging 2014. Time Item Location 09.00 09.15 Welcome and brief overview of the course
Programme PhD / Master course Advanced Microscopy and Vital Imaging 2014 Monday, June 2, 2014 09.00 09.15 Welcome and brief overview of the course 09.15 10.00 Basics of Microscopy 10.15 12.45 Practical
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center
Software-based three dimensional reconstructions and enhancements of focal depth in microphotographic images
FORMATEX 2007 A. Méndez-Vilas and J. Díaz (Eds.) Software-based three dimensional reconstructions and enhancements of focal depth in microphotographic images Jörg Piper Clinic Meduna, Department for Internal
Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:
Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T
Calibration of AFM with virtual standards; robust, versatile and accurate. Richard Koops VSL Dutch Metrology Institute Delft
Calibration of AFM with virtual standards; robust, versatile and accurate Richard Koops VSL Dutch Metrology Institute Delft 19-11-2015 VSL Dutch Metrology Institute VSL is the national metrology institute
Introduction to Flow Cytometry
Introduction to Flow Cytometry presented by: Flow Cytometry y Core Facility Biomedical Instrumentation Center Uniformed Services University Topics Covered in this Lecture What is flow cytometry? Flow cytometer
Zeiss Axioimager M2 microscope for stereoscopic analysis.
Zeiss Axioimager M2 microscope for stereoscopic analysis. This system is fully motorized and configured with bright field and multi-channel fluorescent. It works with Stereo Investigator, Neurolucida,
ProScan DC Linear Servo Stage Technology www.prior.com
ProScan DC Linear Servo Stage Technology www.prior.com Stretching the Boundaries of Performance... Ultra Quiet Operation Can you hear that? Neither can we! Even at high speeds (up to 300 mm/sec) the linear
Optical laser beam scanner lens relay system
1. Introduction Optical laser beam scanner lens relay system Laser beam scanning is used most often by far in confocal microscopes. There are many ways by which a laser beam can be scanned across the back
Optics and Spectroscopy at Surfaces and Interfaces
Vladimir G. Bordo and Horst-Gunter Rubahn Optics and Spectroscopy at Surfaces and Interfaces WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface IX 1 Introduction 1 2 Surfaces and Interfaces 5
Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture
Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound
Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications
Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology
pco.edge 4.2 LT 0.8 electrons 2048 x 2048 pixel 40 fps 37 500:1 > 70 % pco. low noise high resolution high speed high dynamic range
edge 4.2 LT scientific CMOS camera high resolution 2048 x 2048 pixel low noise 0.8 electrons USB 3.0 small form factor high dynamic range 37 500:1 high speed 40 fps high quantum efficiency > 70 % edge
View of ΣIGMA TM (Ref. 1)
Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF
Near-field optics and plasmonics
Near-field optics and plasmonics Manuel Rodrigues Gonçalves AFM topography 10 Pol. y / (µm) 8 6 4 2 0 0 2 4 6 x / (µm) 8 10 nm 60 80 100 120 140 Physik M. Sc. Master Advanced Materials Winter semester
SPM 150 Aarhus with KolibriSensor
Customied Systems and Solutions Nanostructures and Thin Film Deposition Surface Analysis and Preparation Components Surface Science Applications SPM 150 Aarhus with KolibriSensor Atomic resolution NC-AFM
How To Use An Edge 3.1 Scientific Cmmos Camera
edge 3.1 scientific CMOS camera high resolution 2048 x 1536 pixel low noise 1.1 electrons global shutter USB 3.0 small form factor high dynamic range 27 000:1 high speed 50 fps high quantum efficiency
Confocal Fluorescence Microscopy
Chapter 1 Confocal Fluorescence Microscopy 1.1 The principle Confocal fluorescence microscopy is a microscopic technique that provides true three-dimensional (3D) optical resolution. In microscopy, 3D
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
Raman Spectroscopy Basics
Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that
CREOL, College of Optics & Photonics, University of Central Florida
OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials
Chapter 12 Filters for FISH Imaging
Chapter 12 Filters for FISH Imaging Dan Osborn The application of in situ hybridization (ISH) has advanced from short lived, non-specific isotopic methods, to very specific, long lived, multiple color
Make Life Easier by Using Modern Features of the SPCM Software
Make Life Easier by Using Modern Features of the SPCM Software Abstract. Over a long period of time the SPCM operating software of the Becker & Hickl TCSPC systems has continuously been upgraded with new
Zecotek S Light Projection Network Marketing
White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company
Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity. Supporting Material
Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity Supporting Material Jieling Zhu and Laura J. Kaufman* Department of Chemistry, Columbia University, New York, NY 10027
Biomedical & X-ray Physics Kjell Carlsson. Light Microscopy. Compendium compiled for course SK2500, Physics of Biomedical Microscopy.
Biomedical & X-ray Physics Kjell Carlsson Light Microscopy Compendium compiled for course SK2500, Physics of Biomedical Microscopy by Kjell Carlsson Applied Physics Dept., KTH, Stockholm, 2007 No part
LIDAR Bathymetry in very shallow waters. Shachak Pe eri CCOM, UNH William Philpot Cornell University
LIDAR Bathymetry in very shallow waters Shachak Pe eri CCOM, UNH William Philpot Cornell University Nd:YAG laser generates pulses in the infrared (164 nm) and green (532 nm) simultaneously IR radiation
Infrared Viewers. Manual
Infrared Viewers Manual Contents Introduction 3 How it works 3 IR viewer in comparison with a CCD camera 4 Visualization of infrared laser beam in mid-air 4 Power Density 5 Spectral sensitivity 6 Operation
Non-Contact Vibration Measurement of Micro-Structures
Non-Contact Vibration Measurement of Micro-Structures Using Laser Doppler Vibrometry (LDV) and Planar Motion Analysis (PMA) to examine and assess the vibration characteristics of micro- and macro-structures.
3D Raman Imaging Nearfield-Raman TERS. Solutions for High-Resolution Confocal Raman Microscopy. www.witec.de
3D Raman Imaging Nearfield-Raman TERS Solutions for High-Resolution Confocal Raman Microscopy www.witec.de 01 3D Confocal Raman Imaging Outstanding performance in speed, sensitivity, and resolution with
Exercise 2. The Compound Light Microscope
6 Exercise 2 The Compound Light Microscope INTRODUCTION: Student Learning Objectives: After completing this exercise students will: a. Demonstrate proficient use of the microscope using low, high dry,
Time out states and transitions
Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between
Near-Field Scanning Optical Microscopy: a Brief Overview
Near-Field Scanning Optical Microscopy: a Brief Overview Serge HUANT Laboratoire de Spectrométrie Physique (SPECTRO) Université Joseph Fourier Grenoble et CNRS Thanks to my former & present collaborators
Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale
Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable
Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service
Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?
Introduction to flow cytometry
Introduction to flow cytometry Flow cytometry is a popular laser-based technology. Discover more with our introduction to flow cytometry. Flow cytometry is now a widely used method for analyzing the expression
Atomic Force Microscope and Magnetic Force Microscope Background Information
Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic
VISUALISIERUNG VON OBERFLÄCHENVERUNREINIGUNGEN UND SCHICHTARTEFAKTEN
15.09.2015 VISUALISIERUNG VON OBERFLÄCHENVERUNREINIGUNGEN UND SCHICHTARTEFAKTEN J. Baier, U. Beck, A. Hertwig, Th. Lange, M. Sahre, J. M. Stockmann, M. Weise Fachbereich 6.7 Oberflächenmodifizierung und
How To Use An Asbestos Microscope
Asbestos Microscopes and Accessories Pyser-SGI has been supplying microscopes and accessories into Asbestos Laboratories for over 40 years PS12 Stage Micrometer with UKAS Certificate of Calibration - For
NyONE - Cell imaging in a bird s eye view 4. NyONE...resolution matters! 8. Features & benefits 10. Fluorescence excitation channels 12
Envisions confirmed Content NyONE - Cell imaging in a bird s eye view 4 From cells to numbers 6 NyONE...resolution matters! 8 Features & benefits 10 Fluorescence excitation channels 12 Technical specifications
High Definition Imaging
High Definition Imaging Scientific CMOS Camera Photon Technology International www.pti-nj.com Scientific CMOS Camera The new HDI camera is a breakthrough in scientific imaging cameras, due to its distinctive
