Principles of Microscopy and Confocal and Fluorescence Microscopy
|
|
|
- Domenic Barber
- 9 years ago
- Views:
Transcription
1 Principles of Microscopy and Confocal and Fluorescence Microscopy Content This course in Light Microscopy follows the series of successful courses in Light Microscopy, Confocal and Fluorescence Microscopy and Electron Microscopy. This course consists of two modules. It is suitable for beginners in microscopy, and for people who use microscopes in their work and now want to extend their knowledge of basic principles and more specialised techniques. The course is divided into two weeks. The first week, Principles of Microscopy, provides an essential grounding in the basic principles of microscopy, including: the limitations of the eye; resolution, contrast and magnification; refraction; lenses and images; conjugate planes; methods of illumination; diffraction, aperture and resolution; generation of contrast; introduction to bright-field, dark ground, phase contrast, polarised light and differential interference contrast. The second week, Fluorescence and Confocal Microscopy, covers the characteristics of the confocal microscope; introduction to spinning disc and TIRF; the selection of fluorophores and corresponding filter sets; immunofluorescent and fluorescent affinity staining of biological specimens. The principles of FRET and FLAP will be covered and demonstrated in practice. In addition, methods for producing images representing two- and three-dimensional data sets from computer-based data sets and deconvolution techniques will be described and demonstrated in practice. Guidelines regarding participation fee The fee for participation DKK ,- must be paid by bank transfer to CFIM, Copenhagen University Bank information: Reg. no Account no It is very important that you remember to write your name and CFIM project number # in notes when making the bank transfer in order for us to confirm your registration and payment. Hotel accommodation Hotel Kong Arthur Address: Nørre Søgade 11, 1370 Copenhagen K Website: Price: Single room standard DKK 1225,- Booking: Please contact Hotel Kong Arthur, Mr. Jesper Holmberg, [email protected] Hotel CABINN Scandinavia Address: Vodroffsvej 55, 1900 Frederiksberg Website: Price: Single room standard/double DKK 535,- /DKK 665,- Booking: Please contact CFIM, Ms. Ragnhild Mostert, [email protected]
2 Hotel Wake up Address: Carsten Niebuhrs Gade 11, 1577 Copenhagen V Website: Price: Will be published at a later state Booking: Will be published at a later state In order to obtain the above mentioned rates at the hotels, please state that you are participating in the CFIM PhD course and attach your registration confirmation upon request. Principles of Microscopy Monday 6 August 2012 Time Topic Lecturer 09:00 09:30 Introduction KQ 09:30 10:15 The story of the microscope PJE/CH 10:15 Coffee break 10:30 12:45 Limitations of the eye. Resolution, contrast, magnification. PJE Lenses, magnifying glasses, compound microscopes. Conjugate planes 12:45 Lunch break 13:30 14:15 Lens defects and their correction PJE 14:15 15:00 Köhler illumination PJE 15:00 Coffee break 15:15 16:30 Practical Köhler illumination Conjugate planes on the optical bench Conjugate planes in the microscope Workbook DIY (1 5, 10, 11, and 14) KQ CH PJE CP 16:30 16:45 Summary of today s work; questions and workbook The objective of the day is that you should be able to understand the geometrical optics of the microscope, know how to set it up, and begin to understand why these steps are necessary.
3 Tuesday 7 August Time Topic Lecturer 09:00 10:15 Practical Köhler illumination Conjugate planes on the optical bench Conjugate planes in the microscope Workbook DIY (1-5, 10, 11, and 14) KQ CH PJE CP 10:15 Coffee 10:30 11:15 Demonstration Setting up Köhler illumination in transmitted light Depth of field and depth of focus 11:15 13:00 Lecture-demonstration PJE Diffraction, resolution and contrast 13:00 Lunch Practical Diffraction experiments Aperture (p. 15) Resolving power (p. 17) Work Book DIY (p. 4, 7-9) PJE CH KQ CP 15:45 Coffee 16:00 16:45 Practical continued 16:45 17:00 Summary of today s work; questions and workbook The objective of the day is that you should be able to understand how diffraction sets the limits to resolving power and provides the basis for generation of contrast.
4 Wednesday 8 August Time Topic Lecturer 09:00 09:45 Equations for limit of resolution of optical instruments CH 09:45 Coffee 10:00 11:00 Contrast: Bright field, dark ground, Rheinberg, Phase contrast PJE 11:15 12:00 Practical Dark field patch stop (p. 26) 12:00 13:00 Lunch 13:00 14:30 Practical (continued) Dark field patch stop Rheinberg 14:30 15:00 Coffee (exchange microscopes) 15:00 16:30 Practical Phase contrast (p. 28) 16:30 17:00 Summary of today s work; questions and workbook The objective of the day is that you should be able to understand how the properties of specimens may be exploited in the microscope to give rise to contrast.
5 Thursday 9 August Time Topic Lecturer The nature and properties of light CH Coffee Polarised light (lecture-demonstration) CH Practical Contrast in the polarised-light microscope; Effects of mounting media Coffee Practical Contrast in the polarised-light microscope; Effects of mounting media Understanding interference colou CH Lunch Differential interference contrast PJE Polarised light (p ) DIC (Epi-illumination and transmitted light) (p. 34) Workbook (17-19) Coffee Practical Polarised light: examples at lightbox DIC (Epi-illumination and transmitted light) CFIM introduction Workbook (17-19) CH PJE KQ CP Principles of the confocal microscope PJE Summary of today s work; questions and workbook The objective of the day is that you should be able to understand the concept of optical path difference, how polarization colours arise, and how these can be applied to generate contrast in the microscope image.
6 Friday 10 August Time Topic Lecturer Methods of recording images PJE Principles of digital image recording PJE Optical considerations in fitting a camera to a microscope Coffee Stereomicroscopes PJE Cleaning and maintenance PJE Lunch Principles of electron microscopy PJE/CH Coffee Practical Transmission electron microscopy Scanning electron microscopy Image recording; fitting the camera Methods of stereoscopic viewing RL KQ PJE CH Summary of today s work and questions Objectives of the day is that you should know the principles; see you in a week.
7 Confocal and Fluorescence Microscopy Monday 13 August Time Topic Lecturer Location Welcome & introductions KQ Lecture Atoms, light and matter AE Coffee Lecture Fluorescence and fluorophores AE Interactive lecture Computers and software AE & JC (Includes minutes free time for lunch) Lecture Fluorescence microscopy: an overview AE Interactive lecture The fluorescence microscope AE b Coffee Lecture Signals, noise and detectors AE Lecture Fluorescence microscopy: an overview (cont.) AE
8 Tuesday 14 August Time Topic Lecturer Location Lecture Confocal and wide-field fluorescence microscopy AE Coffee Lecture CCD cameras and detecting fluorescence Lecture Confocal and wide-field fluorescence microscopy (cont.) AE Practicals in 5 groups of 4 people 1) Zeiss LSM 710 (integration time & pixel density) AE CFIM 2) Zeiss LSM 700 (Collect 3D data / discuss sampling) JC CFIM 3) Zeiss LSM 780 (use spectral collection) CP CFIM 4) Zeiss ( real time )(Compare and contrast) THB CFIM 5) CCD cameras (Andor) LH CFIM Practical 1 CFIM Lunch Practicals 2 & 3 CFIM Coffee CFIM Practicals 4 & 5 CFIM
9 Wednesday 15 August Time Lecturer Lecturer Location Lecture Fluorescence Recovery After Photobleaching (FRAP) DZ Lecture JC D Reconstruction Coffee Lecture Fluorescent Resonance Energy Transfer (FRET) DZ Lecture 3D Reconstruction JC Lunch Practicals in 5 groups 1) Zeiss LSM 710 Checking the confocal microscope AE CFIM 2) 3D reconstruction JC CFIM 3) Zeiss LSM 780 FRAP, FRET & FCS DZ CFIM 4) Zeiss LSM 700 collecting confocal data CP CFIM 5) Fluorescence, alignment of the Hg arc THB/BBJ/KQ b Coffee Lecture Beyond the diffraction limit JC
10 Thursday 16 August Time Lecturer Location Practicals in groups (continued) CFIM Coffee CFIM Practicals in groups (continued) CFIM Lunch Practicals in groups (continued) CFIM Coffee Lecture Digital fluorescence micrographs and their presentation
11 Friday 17 August Time Lecturer Lecturer Location Lecture Quantification of fluorescence AE Coffee CFIM Practicals in groups (continued) CFIM Interactive lecture Deconvolution and image restoration JC Lunch Interactive lecture Deconvolution and image restoration (cont.) JC Lecture Fluorescence Localization After Photobleaching (FLAP) DZ Coffee Lecture Immunofluorescence and affinity fluorescent staining AE Evaluation of course
Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University
Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.
Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 You are sitting at your microscope working at high magnification trying to sort out the three-dimensional compartmentalization
Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES
BIODIVERSITY I BIOL1051 Microscopy Professor Marc C. Lavoie [email protected] MAJOR FUNCTIONS OF MICROSCOPES MAGNIFY RESOLVE: => INCREASE CONTRAST Microscopy 1. Eyepieces 2. Diopter adjustment
Microscopy: Principles and Advances
Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology
Measuring the Point Spread Function of a Fluorescence Microscope
Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
ZEISS Microscopy Course Catalog
ZEISS Microscopy Course Catalog ZEISS Training and Education Expand Your Possibilities Practical microscopy training has a long tradition at ZEISS. The first courses were held in Jena as early as 1907,
EXPERIMENT #1: MICROSCOPY
EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off
Zeiss Axioimager M2 microscope for stereoscopic analysis.
Zeiss Axioimager M2 microscope for stereoscopic analysis. This system is fully motorized and configured with bright field and multi-channel fluorescent. It works with Stereo Investigator, Neurolucida,
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing Urs Ziegler Center for Microscopy and Image Analysis Light microscopy (Confocal Laser Scanning Microscopy) Light microscopy (Confocal Laser Scanning
Biomedical & X-ray Physics Kjell Carlsson. Light Microscopy. Compendium compiled for course SK2500, Physics of Biomedical Microscopy.
Biomedical & X-ray Physics Kjell Carlsson Light Microscopy Compendium compiled for course SK2500, Physics of Biomedical Microscopy by Kjell Carlsson Applied Physics Dept., KTH, Stockholm, 2007 No part
Light and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.
MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize
A VERYbrief history of the confocal microscope 1950s
Confocal Microscopy Confocal Microscopy Why do we use confocal microscopy? A brief history of the confocal microscope Advantages/disadvantages of a confocal microscope Types of confocal microscopes The
The Basics of Scanning Electron Microscopy
The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single
Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...
Confocal Microscopy and Atomic Force Microscopy (AFM) of biofilms A very brief primer... Fundamentals of Confocal Microscopy Based on a conventional fluorescence microscope Fluorescent Microscope Confocal
Software-based three dimensional reconstructions and enhancements of focal depth in microphotographic images
FORMATEX 2007 A. Méndez-Vilas and J. Díaz (Eds.) Software-based three dimensional reconstructions and enhancements of focal depth in microphotographic images Jörg Piper Clinic Meduna, Department for Internal
Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications
Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology
AxioCam MR The All-round Camera for Biology, Medicine and Materials Analysis Digital Documentation in Microscopy
Microscopy from Carl Zeiss AxioCam MR The All-round Camera for Biology, Medicine and Materials Analysis Digital Documentation in Microscopy New Dimensions in Performance AxioCam MR from Carl Zeiss Both
Zeiss 780 Training Notes
Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn
Care and Use of the Compound Microscope
Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen
pco.edge 4.2 LT 0.8 electrons 2048 x 2048 pixel 40 fps 37 500:1 > 70 % pco. low noise high resolution high speed high dynamic range
edge 4.2 LT scientific CMOS camera high resolution 2048 x 2048 pixel low noise 0.8 electrons USB 3.0 small form factor high dynamic range 37 500:1 high speed 40 fps high quantum efficiency > 70 % edge
How To Use An Edge 3.1 Scientific Cmmos Camera
edge 3.1 scientific CMOS camera high resolution 2048 x 1536 pixel low noise 1.1 electrons global shutter USB 3.0 small form factor high dynamic range 27 000:1 high speed 50 fps high quantum efficiency
THE COMPOUND MICROSCOPE
THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how
Applications of confocal fluorescence microscopy in biological sciences
Applications of confocal fluorescence microscopy in biological sciences B R Boruah Department of Physics IIT Guwahati Email: [email protected] Page 1 Contents Introduction Optical resolution Optical
AxioCam HR The Camera that Challenges your Microscope
Microscopy from Carl Zeiss AxioCam HR The Camera that Challenges your Microscope Documentation at the edge of the visible The Camera for Maximum Success: AxioCam HR Low light fluorescence, live cell imaging,
Microscope Lab Introduction to the Microscope Lab Activity
Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool
Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments
Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses
Introduction to microstructure
Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term crystal
Forensic Science: The Basics. Microscopy
Forensic Science: The Basics Microscopy Chapter 6 Jay A. Siegel,Ph.D. Power point presentation by Greg Galardi, Peru State College, Peru Nebraska Presentation by Greg Galardi, Peru State College CRC Press,
A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine
Chapter 1 A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine This chapter provides a historical foundation of the field of microscopy and outlines the significant
Three-dimensional image sensing by chromatic confocal microscopy
Three-dimensional image sensing by chromatic confocal microscopy H. J. Tiziani and H.-M. Uhde In the image of a confocal microscope, only those parts of an object appear bright that are located in the
Infrared Viewers. Manual
Infrared Viewers Manual Contents Introduction 3 How it works 3 IR viewer in comparison with a CCD camera 4 Visualization of infrared laser beam in mid-air 4 Power Density 5 Spectral sensitivity 6 Operation
CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging
CSCI 4974 / 6974 Hardware Reverse Engineering Lecture 8: Microscopy and Imaging Data Acquisition for RE Microscopy Imaging Registration and stitching Microscopy Optical Electron Scanning Transmission Scanning
Confocal Microscopy. Chapter 2
Chapter 2 Confocal Microscopy This Chapter offers a brief introduction to confocal microscopy and to other experimental techniques employed in this thesis. Unraveling structure and dynamics by confocal
Lenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
Optical mesoscopy with a new giant lens. Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos
Optical mesoscopy with a new giant lens Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos The spot on specimen, source and detector aperture are at conjugate optical foci detector Advantage:
Endoscope Optics. Chapter 8. 8.1 Introduction
Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize
Product Range Overview
Product Range Overview Stereo Optical Inspection Microscopes Non-Contact Measurement Systems Laboratory Microscopes Metallurgical Microscopes FM 557119 Vision Engineering Ltd has been certificated for
Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis
Cam CANIMPEX CPX-SOLUTIONS 3D Digital Microscope Camera FAST PRECISE AFFORDABLE 3D CAMERA FOR MICROSCOPY Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
14 The ability of the lenses to distinguish fine detail and structure is called a. Illumination b. Magnification c. Refractive index d.
1 2 Assume you stain Bacillus by applying malachite green with heat and then counterstain with safranin. Through the microscope, the green structures are a. cell walls. b. capsules. c. endospores. d. flagella.
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.
Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?
Schlieren and Shadowgraph Techniques
G. S. Settles Schlieren and Shadowgraph Techniques Visualizing Phenomena in Transparent Media With 208 Figures and 48 Color Plates Springer Table of Contents List of Nomenclature, XV 1 Historical Background
SILA Sistema Integrato di Laboratori per l Ambiente. CENTRE FOR MICROSCOPY AND MICROANALYSIS Scientific coordinator: Prof.ssa Rosanna De Rosa
CENTRE FOR MICROSCOPY AND MICROANALYSIS Scientific coordinator: Prof.ssa Rosanna De Rosa 0 The Centre for Microscopy and Microanalysis (CM2) is an interdisciplinary service centre, a comprehensive suite
Complement in human disease, September 8th - 12th 2017
Complement in human disease, September 8th - 12th 2017 www.emchd2017.dk Copenhagen, Denmark venue Hotel Scandic Copenhagen september 8th - 12th 2017 Vester Søgade 6, 1601 COMPLEMENT IN HUMAN DISEASE 2017
Introduction to Optics
Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas
Chapter 12 Filters for FISH Imaging
Chapter 12 Filters for FISH Imaging Dan Osborn The application of in situ hybridization (ISH) has advanced from short lived, non-specific isotopic methods, to very specific, long lived, multiple color
Advances in scmos Camera Technology Benefit Bio Research
Advances in scmos Camera Technology Benefit Bio Research scmos camera technology is gaining in popularity - Why? In recent years, cell biology has emphasized live cell dynamics, mechanisms and electrochemical
LBS-300 Beam Sampler for C-mount Cameras. YAG Focal Spot Analysis Adapter. User Notes
LBS-300 Beam Sampler for C-mount Cameras P/N SP90183, SP90184, SP90185 and SP90186 YAG Focal Spot Analysis Adapter P/N SP90187, SP90188, SP90189, SP90190, SP90191 User Notes Ophir-Spiricon Inc. 60 West
MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY
MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY Adapted from Foundations of Biology I; Lab 6 Introduction to Microscopy Dr. John Robertson, Westminster College Biology Department,
Z-Stacking and Z-Projection using a Scaffold-based 3D Cell Culture Model
A p p l i c a t i o n N o t e Z-Stacking and Z-Projection using a Scaffold-based 3D Cell Culture Model Brad Larson and Peter Banks, BioTek Instruments, Inc., Winooski, VT Grant Cameron, TAP Biosystems
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
How To Use An Asbestos Microscope
Asbestos Microscopes and Accessories Pyser-SGI has been supplying microscopes and accessories into Asbestos Laboratories for over 40 years PS12 Stage Micrometer with UKAS Certificate of Calibration - For
Invitation Workshop «Get the most out of your sample» - The perfect workflow for your sample
Invitation Workshop «Get the most out of your sample» - The perfect workflow for your sample University of Bern, Institute of Anatomy, Bern April 20 th -21 st, 2016 Sample: courtesy of S. Traikov, BIOTEC,
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Microscopy and Cellular Morphology
Microscopy and Cellular Morphology As we discussed in class, many organisms on the planet exist as single cells and are referred to as microorganisms bacteria, protozoans, among others. When a single microorganism
9/16 Optics 1 /11 GEOMETRIC OPTICS
9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target
Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.
Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ., Raleigh, NC One vital step is to choose a transfer lens matched to your
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,
Realization of a UV fisheye hyperspectral camera
Realization of a UV fisheye hyperspectral camera Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM Outline Purpose of the instrument Required specs Hyperspectral technique Optical
WHITE PAPER. Are More Pixels Better? www.basler-ipcam.com. Resolution Does it Really Matter?
WHITE PAPER www.basler-ipcam.com Are More Pixels Better? The most frequently asked question when buying a new digital security camera is, What resolution does the camera provide? The resolution is indeed
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center
Advanced Instrumentation Research Facility
Advanced Instrumentation Research Facility USER CHARGES (All s to be prepared by users at their end unless specified) Please consult concerned AIRF staff member(s) before bringing your s. w.e.f 01.01.2015
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
Leica MZ125. Modular high-performance stereomicroscope with 12.5:1 zoom
Leica MZ125 Modular high-performance stereomicroscope with 12.5:1 zoom The vision Leading-edge technology for a new era In research and technology the bar has been raised. Advances in science and industry
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Measuring. User Manual
0 1 2 3 4 5 6 7 8 9 10 11 Measuring User Manual Accessories for measuring tasks Stage micrometer (1) for calibration Graticules with various measuring pitches (2) in mm and inches Graticule with mesh (3)
Modern Classical Optics
Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1
2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
A new advance in routine inspections INVERTED MICROSCOPE CKX41/CKX31
A new advance in routine inspections INVERTED MICROSCOPE CKX41/CKX31 Phase contrast Relief contrast Incorporation of advanced UIS2 optics ensures the highest level of clarity for cell checking applications.
The Basic Principle of Airyscanning. Technology Note
The Basic Principle of Airyscanning Technology Note The Basic Principle of Airyscanning Author: Klaus Weisshart Date: July 014 Airyscanning is a technique based on confocal laser scanning microscopy. We
High Definition Imaging
High Definition Imaging Scientific CMOS Camera Photon Technology International www.pti-nj.com Scientific CMOS Camera The new HDI camera is a breakthrough in scientific imaging cameras, due to its distinctive
Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010
Lecture 12: Cameras and Geometry CAP 5415 Fall 2010 The midterm What does the response of a derivative filter tell me about whether there is an edge or not? Things aren't working Did you look at the filters?
NyONE - Cell imaging in a bird s eye view 4. NyONE...resolution matters! 8. Features & benefits 10. Fluorescence excitation channels 12
Envisions confirmed Content NyONE - Cell imaging in a bird s eye view 4 From cells to numbers 6 NyONE...resolution matters! 8 Features & benefits 10 Fluorescence excitation channels 12 Technical specifications
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
Testing and characterization of anti-reflection coatings on glass
Testing and characterization of anti-reflection coatings on glass Diagnostic approaches at CSP M.Turek, M. Dyrba, S. Großer, V. Naumann, Ch. Hagendorf contact: [email protected] Tests and methods
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
Plastic Film Texture Measurement With 3D Profilometry
Plastic Film Texture Measurement With 3D Profilometry Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.
Electron Microscopy SEM and TEM
Electron Microscopy SEM and TEM Content 1. Introduction: Motivation for electron microscopy 2. Interaction with matter 3. SEM: Scanning Electron Microscopy 3.1 Functional Principle 3.2 Examples 3.3 EDX
Confocal Fluorescence Microscopy
Chapter 1 Confocal Fluorescence Microscopy 1.1 The principle Confocal fluorescence microscopy is a microscopic technique that provides true three-dimensional (3D) optical resolution. In microscopy, 3D
DECEMBER 2015 PTAB Public Hearing Schedule
IPR 2015-00021 Tuesday, December 01, 2015 9:00 AM A ALEXANDRIA, VA 2013-003491 12422863 Tuesday, December 01, 2015 9:00 AM (MST) 14-133 DENVER, CO 2013-003763 11839384 Tuesday, December 01, 2015 9:00 AM
Imaging techniques with refractive beam shaping optics
Imaging techniques with refractive beam shaping optics Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Applying of the refractive beam shapers in real
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
MRC High Resolution. MR-compatible digital HD video camera. User manual
MRC High Resolution MR-compatible digital HD video camera User manual page 1 of 12 Contents 1. Intended use...2 2. System components...3 3. Video camera and lens...4 4. Interface...4 5. Installation...5
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Optical System Design
Optical System Design Robert E. Fischer CEO, OPTICS 1, Incorporated Biljana Tadic-Galeb Panavision Paul R. Yoder Consultant With contributions by Ranko Galeb Bernard C.Kress, Ph.D. Stephen C. McClain,
3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY
3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY Prepared by Duanjie Li, PhD & Andrea Novitsky 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard
