Satistical modelling of clinical trials
|
|
|
- Silvester Mosley
- 10 years ago
- Views:
Transcription
1 Sept. 21st, /13
2 Patients recruitment in a multicentric clinical trial : Recruit N f patients via C centres. Typically, N f 300 and C 50. Trial can be very long (several years) and very expensive Previous models based on linear or exponential interpolation = Need for a probabilistic model that takes into account large variability of recruitment rates in different centres 2/13
3 Centre i opens at timeu i. Γ-model proposed by V. Anisimov (2; 1) : Recruitment processes of centres are independent Poisson processes Recruitment rate of centre i : λ i (unknown) Γ-Poisson model : (λ 1,...,λ C ) iid with Gamma distribution of parametersα and β. p α,β (x) = e βx x α 1 β α Γ(α) 1 3/13
4 On-going study at time t 1. Observed data is the number of patients recruited by each of C centres : (k 1,...,k C ). Independent but not identically distributed since λ L i Γ(α,β) and k L i P(λ i τ i ). Let τ i = t 1 u i (0 if negative). Estimation of (α,β) maximum likelihood technique : P[N i t 1 = k i ; 1 i C = E [ C (λ i τ i ) k i k i! log-likelihood (up to some constant) : e τ iλ i = C Γ(α+k i ) k i!γ(α) β α τ k i i (β +τ i ) α+k i L C (α,β) = α lnβ lnγ(α)+ 1 C C lnγ(α+k i ) (α+k i ) ln(β +τ i ) (ˆα C, ˆβ C ) = arg max (α,β) Θ L C (α,β) 4/13
5 As C +, the MLE is consistent and asymptotically normal. Approximated Fischer information matrix : if f(θ, k i,τ i ) = α lnβ lnγ(α)+lnγ(α+k i ) (α+k i ) ln(β +τ i ), then (θ = (α,β)) : and I(θ 0 ) 1 C C I i (θ 0 ) = 1 C C C(ˆθC θ 0 ) L N(0, I(θ 0 ) 1 ) E θ0 [ 2 f(θ 0, k i,τ i ). (I i ) 11 = E α0,β 0 [ψ (1) (α 0 + k i ) (I i ) 12 = (I i ) 21 = 1 β 2 0 ( 1 (I i ) 22 = α ( 0 1 β τ i /β τ i /β 0 ), ), +ψ (1) (α 0 ), 5/13
6 Bayesian re-estimation of the distribution of λ i : forward distribution of λ i conditionnaly of the information at t 1 : Γ(α+k i,β +τ i ) Overall recruitment rate : Λ = C λ i = C Γ(α+k i,β +τ i ), that can be approximated by a Γ(A, B) distribution by matching moments. In this framework, the (remaining) recruitment time ˆT t 1 has density : Then it is easy to get : P [ˆT Tf E[ˆT x N1 1 p T (x) = Γ(A+N 1) Γ(A)Γ(N 1 ) BA (x + B) N 1+A 6/13
7 If P [ˆT Tf is too small (say lower than p = 95%), we open M centres. C M Λ = λ i + λ i has the forward distribution Γ(α 0 + k i,β 0 +τ i ) λ i has a Γ(α 0,β 0 ) distribution Here, centres are supposed to open instantaneously, but it is possible to assume they open later in some interval [r i, s i. If P [ˆT Tf is too high, one can close centres to save money. λ i 7/13
8 Sensitivity parameters (see (3)) : P [ˆT Tf and E[ˆT are calculated with (ˆα C, ˆβ C ) estimated at t 1, instead of real parameters(α 0,β 0 ). The subsequent error is evaluated thanks to sensitivity parameters (e.g. αp [ˆT Tf ). When the overall rate is approximated by a Gamma distribution : althenors m = C α+k i β +τ i et v = C αe[ˆt N α(m v ) m (m v, m )2 β E[ˆT N β(m v ) m (m v. m )2 α+k i (β +τ i ) 2 8/13
9 Extension of the model Pareto distribution instead of Gamma distribution : p kp,x m (x) = k px kp m 1 x xm x 1 kp opening times u i of centres unkown, but we know the time of first recruitment v i. Then we assume u i uniformly distributed in [0, v i. 9/13
10 (centres opening times unkown) : N = 610, C = 77, T f = 3 years Study actually finished in 2.31 years. t Pareto - parameters (1.19, 1.39) (1.23, 1.30) (1.18, 1.22) Pareto - E[ˆT Gamma - parameters (1.17, 0.25) (1.08, 0.26) (1.31, 0.33) Gamma - E[ˆT At t 1 = 1, in the Γ-Poisson model, we get P [ˆT Tf Closing the smallest 10 centres steal leads to P [ˆT Tf /13
11 Model validation : ν i = number of centres having recruited exactly i patients FIGURE: Green : real data ; Bleu : Gamma model ; Rouge : Pareto model 11/13
12 Further research : simultaneaous modelling of screened, randomized and lost patients cost modelling exogenous variables? 12/13
13 [1 Vladimir V. Anisimov, Using mixed poisson models in patient recruit in multicentre clinical trials, Proceegings of th World Congress on Ingineering (London, United Kingdom), vol. II, [2 Vladimir V. Anisimov and Valerii V. Fedorov, Modelling, prediction and adaptive adjustment of recruitment in multicentre trials, Stat. Med. 26 (2007), no. 27, MR MR [3 Guillaume Mijoule, Stéphanie Savy, and Nicolas Savy, Models for patients recruitment in clinical trials and sensitivity analysis, Statistics in Medicine 31 (2012), no. 16, /13
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
Pure risk premiums under deductibles
Pure risk premiums under deductibles K. Burnecki J. Nowicka-Zagrajek A. Wy lomańska Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo/ Pure risk premiums under deductibles
Local classification and local likelihoods
Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
Penalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
Inference on the parameters of the Weibull distribution using records
Statistics & Operations Research Transactions SORT 39 (1) January-June 2015, 3-18 ISSN: 1696-2281 eissn: 2013-8830 www.idescat.cat/sort/ Statistics & Operations Research c Institut d Estadstica de Catalunya
Lecture Notes 1. Brief Review of Basic Probability
Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very
Homework set 4 - Solutions
Homework set 4 - Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at
ESTIMATION OF CLAIM NUMBERS IN AUTOMOBILE INSURANCE
Annales Univ. Sci. Budapest., Sect. Comp. 42 (2014) 19 35 ESTIMATION OF CLAIM NUMBERS IN AUTOMOBILE INSURANCE Miklós Arató (Budapest, Hungary) László Martinek (Budapest, Hungary) Dedicated to András Benczúr
Exponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
UNIT I: RANDOM VARIABLES PART- A -TWO MARKS
UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS
SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 005 by the Society of Actuaries and the Casualty Actuarial Society
Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit scoring, contracting.
Prof. Dr. J. Franke All of Statistics 1.52 Binary response variables - logistic regression Response variables assume only two values, say Y j = 1 or = 0, called success and failure (spam detection, credit
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
How To Solve A Save Problem With Time T
Bayesian Functional Data Analysis for Computer Model Validation Fei Liu Institute of Statistics and Decision Sciences Duke University Transition Workshop on Development, Assessment and Utilization of Complex
University of Ljubljana Doctoral Programme in Statistics Methodology of Statistical Research Written examination February 14 th, 2014.
University of Ljubljana Doctoral Programme in Statistics ethodology of Statistical Research Written examination February 14 th, 2014 Name and surname: ID number: Instructions Read carefully the wording
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma
Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma Shinto Eguchi a, and John Copas b a Institute of Statistical Mathematics and Graduate University of Advanced Studies, Minami-azabu
Part 2: One-parameter models
Part 2: One-parameter models Bernoilli/binomial models Return to iid Y 1,...,Y n Bin(1, θ). The sampling model/likelihood is p(y 1,...,y n θ) =θ P y i (1 θ) n P y i When combined with a prior p(θ), Bayes
A New Extension of the Exponential Distribution
Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 25 a 34 A New Extension of the Exponential Distribution Una nueva extensión de la distribución exponencial Yolanda M. Gómez 1,a, Heleno
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
Linear Classification. Volker Tresp Summer 2015
Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong
Exam C, Fall 2006 PRELIMINARY ANSWER KEY
Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14
Lecture 8: Gamma regression
Lecture 8: Gamma regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Models with constant coefficient of variation Gamma regression: estimation and testing
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
Mixing internal and external data for managing operational risk
Mixing internal and external data for managing operational risk Antoine Frachot and Thierry Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France This version: January 29, 2002 Introduction
Un point de vue bayésien pour des algorithmes de bandit plus performants
Un point de vue bayésien pour des algorithmes de bandit plus performants Emilie Kaufmann, Telecom ParisTech Rencontre des Jeunes Statisticiens, Aussois, 28 août 2013 Emilie Kaufmann (Telecom ParisTech)
The CUSUM algorithm a small review. Pierre Granjon
The CUSUM algorithm a small review Pierre Granjon June, 1 Contents 1 The CUSUM algorithm 1.1 Algorithm............................... 1.1.1 The problem......................... 1.1. The different steps......................
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
Aggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
NUMBER OF ACCIDENTS OR NUMBER OF CLAIMS? AN APPROACH WITH ZERO-INFLATED POISSON MODELS FOR PANEL DATA
NUMBER OF ACCIDENTS OR NUMBER OF CLAIMS? AN APPROACH WITH ZERO-INFLATED POISSON MODELS FOR PANEL DATA Jean-Philippe Boucher [email protected] Département de Mathématiques Université du Québec
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process
LECTURE 16 Readings: Section 5.1 Lecture outline Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process Number of successes Distribution of interarrival times The
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Dynamic Linear Models with R
Giovanni Petris, Sonia Petrone, Patrizia Campagnoli Dynamic Linear Models with R SPIN Springer s internal project number, if known Monograph August 10, 2007 Springer Berlin Heidelberg NewYork Hong Kong
On the mathematical theory of splitting and Russian roulette
On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the
Maximum Likelihood Estimation by R
Maximum Likelihood Estimation by R MTH 541/643 Instructor: Songfeng Zheng In the previous lectures, we demonstrated the basic procedure of MLE, and studied some examples. In the studied examples, we are
Important Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.
Exact Confidence Intervals
Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter
Back Analysis of Material Properties
Back Analysis of Material Properties 23-1 Back Analysis of Material Properties This tutorial will demonstrate how to perform back analysis of material properties using sensitivity analysis or probabilistic
Bayes and Naïve Bayes. cs534-machine Learning
Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
The Kelly Betting System for Favorable Games.
The Kelly Betting System for Favorable Games. Thomas Ferguson, Statistics Department, UCLA A Simple Example. Suppose that each day you are offered a gamble with probability 2/3 of winning and probability
From the help desk: Bootstrapped standard errors
The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution
Analysis of Reliability and Warranty Claims in Products with Age and Usage Scales
Analysis of Reliability and Warranty Claims in Products with Age and Usage Scales J.F. Lawless M.J. Crowder K.-A. Lee University of Waterloo Imperial College London University of Waterloo Abstract Failures
NON-LIFE INSURANCE PRICING USING THE GENERALIZED ADDITIVE MODEL, SMOOTHING SPLINES AND L-CURVES
NON-LIFE INSURANCE PRICING USING THE GENERALIZED ADDITIVE MODEL, SMOOTHING SPLINES AND L-CURVES Kivan Kaivanipour A thesis submitted for the degree of Master of Science in Engineering Physics Department
Bayesian Information Criterion The BIC Of Algebraic geometry
Generalized BIC for Singular Models Factoring through Regular Models Shaowei Lin http://math.berkeley.edu/ shaowei/ Department of Mathematics, University of California, Berkeley PhD student (Advisor: Bernd
Advanced statistical inference. Suhasini Subba Rao Email: [email protected]
Advanced statistical inference Suhasini Subba Rao Email: [email protected] August 1, 2012 2 Chapter 1 Basic Inference 1.1 A review of results in statistical inference In this section, we
On Marginal Effects in Semiparametric Censored Regression Models
On Marginal Effects in Semiparametric Censored Regression Models Bo E. Honoré September 3, 2008 Introduction It is often argued that estimation of semiparametric censored regression models such as the
An Internal Model for Operational Risk Computation
An Internal Model for Operational Risk Computation Seminarios de Matemática Financiera Instituto MEFF-RiskLab, Madrid http://www.risklab-madrid.uam.es/ Nicolas Baud, Antoine Frachot & Thierry Roncalli
Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Notes on the Negative Binomial Distribution
Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between
MAS2317/3317. Introduction to Bayesian Statistics. More revision material
MAS2317/3317 Introduction to Bayesian Statistics More revision material Dr. Lee Fawcett, 2014 2015 1 Section A style questions 1. Describe briefly the frequency, classical and Bayesian interpretations
e.g. arrival of a customer to a service station or breakdown of a component in some system.
Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its
STAT 830 Convergence in Distribution
STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31
L3: Statistical Modeling with Hadoop
L3: Statistical Modeling with Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...
Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random
Probabilistic concepts of risk classification in insurance
Probabilistic concepts of risk classification in insurance Emiliano A. Valdez Michigan State University East Lansing, Michigan, USA joint work with Katrien Antonio* * K.U. Leuven 7th International Workshop
MAS108 Probability I
1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper
Lecture 6: Poisson regression
Lecture 6: Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction EDA for Poisson regression Estimation and testing in Poisson regression
( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: [email protected] Posted September 21,
ACTUARIAL MODELING FOR INSURANCE CLAIM SEVERITY IN MOTOR COMPREHENSIVE POLICY USING INDUSTRIAL STATISTICAL DISTRIBUTIONS
i ACTUARIAL MODELING FOR INSURANCE CLAIM SEVERITY IN MOTOR COMPREHENSIVE POLICY USING INDUSTRIAL STATISTICAL DISTRIBUTIONS OYUGI MARGARET ACHIENG BOSOM INSURANCE BROKERS LTD P.O.BOX 74547-00200 NAIROBI,
Development Period 1 2 3 4 5 6 7 8 9 Observed Payments
Pricing and reserving in the general insurance industry Solutions developed in The SAS System John Hansen & Christian Larsen, Larsen & Partners Ltd 1. Introduction The two business solutions presented
Sections 2.11 and 5.8
Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and
Chapter 6: Point Estimation. Fall 2011. - Probability & Statistics
STAT355 Chapter 6: Point Estimation Fall 2011 Chapter Fall 2011 6: Point1 Estimat / 18 Chap 6 - Point Estimation 1 6.1 Some general Concepts of Point Estimation Point Estimate Unbiasedness Principle of
Course 4 Examination Questions And Illustrative Solutions. November 2000
Course 4 Examination Questions And Illustrative Solutions Novemer 000 1. You fit an invertile first-order moving average model to a time series. The lag-one sample autocorrelation coefficient is 0.35.
Uncertainty quantification for the family-wise error rate in multivariate copula models
Uncertainty quantification for the family-wise error rate in multivariate copula models Thorsten Dickhaus (joint work with Taras Bodnar, Jakob Gierl and Jens Stange) University of Bremen Institute for
Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985
Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985 Small sample estimation and testing for heavy tails Fabián, Zdeněk (1st author) Academy of Sciences of
Patients Recruitment Forecast in Clinical Trials
Cognizant 20-20 Insights Patients Recruitment Forecast in Clinical Trials Accurate patient recruitment forecasts are critical to the clinical trial planning process. Here, our recommendations on ways to
STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400&3400 STAT2400&3400 STAT2400&3400 STAT2400&3400 STAT3400 STAT3400
Exam P Learning Objectives All 23 learning objectives are covered. General Probability STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 1. Set functions including set notation and basic elements
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
Permutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
Introduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Optimal reinsurance with ruin probability target
Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept. 2008 http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1 Ruin, solvency
Example 1: Dear Abby. Stat Camp for the Full-time MBA Program
Stat Camp for the Full-time MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so?
. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.
Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric
Sharing Online Advertising Revenue with Consumers
Sharing Online Advertising Revenue with Consumers Yiling Chen 2,, Arpita Ghosh 1, Preston McAfee 1, and David Pennock 1 1 Yahoo! Research. Email: arpita, mcafee, [email protected] 2 Harvard University.
Chapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
A Model of Optimum Tariff in Vehicle Fleet Insurance
A Model of Optimum Tariff in Vehicle Fleet Insurance. Bouhetala and F.Belhia and R.Salmi Statistics and Probability Department Bp, 3, El-Alia, USTHB, Bab-Ezzouar, Alger Algeria. Summary: An approach about
1. A survey of a group s viewing habits over the last year revealed the following
1. A survey of a group s viewing habits over the last year revealed the following information: (i) 8% watched gymnastics (ii) 9% watched baseball (iii) 19% watched soccer (iv) 14% watched gymnastics and
