Maximum Likelihood Estimation by R
|
|
|
- Janice Richard
- 9 years ago
- Views:
Transcription
1 Maximum Likelihood Estimation by R MTH 541/643 Instructor: Songfeng Zheng In the previous lectures, we demonstrated the basic procedure of MLE, and studied some examples. In the studied examples, we are lucky that we can find the MLE by solving equations in closed form. But life is never easy. In applications, we usually don t have closed form solutions due to the complicated probability distribution or the nonlinearity of the equations obtained from maximum likelihood principles. In these situations, we can use a computer to solve the problem. Many statistics software package has MLE as a standard procedure, but for the purpose of learning MLE and for the purpose of learning programming language, let us develop the code ourselves. In this course, we use R for our computer programming. R is free software, and you can download it from R is one of the most widely used software packages in the statistics community these days, together with SAS, SPSS, SPLUS, STATA, among others. We will introduce the R programming for MLE via an example: The Poisson distribution has been used by traffic engineers as a model for light traffic, based on the rationale that if the rate is approximately constant and the traffic is light (so the individual cars move independently of each other), the distribution of counts of cars in a given time interval or space area should be nearly Poisson (Gerlough and Schuhl 1955). The following table shows the number of right turns during minute intervals at a specific intersection. n frequency
2 13+ 0 If we suppose Poisson model might be a good model for this dataset, we still need to find out which Poisson, that is estimate the parameter λ in the Poisson model: λ x e λ PX ( = x) =. x! Of course, we can use the formula to calculate MLE of the parameter λ in the Poisson model as: ˆ λ = X (please check this yourselves.) For the purpose of demonstrating the use of R, let us just use this Poisson distribution as an example. The first step is of course, input the data. If the data are stored in a file (*.txt, or in excel format), we can directly read the data from file. In this example, we can input the data directly: X <- c(rep(0,14), rep(1,30), rep(2,36), rep(3,68), rep(4, 43), rep(5,43), rep(6, 30), rep(7,14), rep(8,10), rep(9, 6), rep(10,4), rep(11,1), rep(12,1)) Here rep(x, n) means repeat the number x for n times, and c( ) is the operation to combine all the numbers into a long vector. We can also plot out the histogram of the data, and compare to the point mass function of Poisson, to gain a rough impression whether a Poisson model is good or not. hist(x, main="histogram of number of right turns", right=false, prob=true) and the following is the graph for histogram:
3 If we believe the Poisson model is good for the data, we need to estimate the parameter. Let s first get the size of the sample by using the following command: n <- length(x) In order to obtain the MLE, we need to maximize the likelihood function or log likelihood function. The R package provides a function which can minimize an object function, therefore, we can define the negative log likelihood function as follows: negloglike<-function(lam) { n* lam -sum(x) *log(lam) + sum(log(factorial(x))) } Here the first line negloglike<-function(lam) defines a function, and the function name is called negloglike, and the input parameter of the function is lam, function is a keyword in R, which means the following is a function. The argument lam can also be a vector in the case of more than two unknown parameters (see the exercise). The statement inside the bracket is the body of the function. Please note that, there should not be any unknown values in the function body except for the input parameter lam. For example, here, you know X, and n. Once the function is defined in R, you can evaluate the function value by giving it a value for lam. For example, you can type in negloglike(0.3) to find the negative log likelihood at λ = 0.3. After we define the negative log likelihood, we can perform the optimization as following: out<-nlm(negloglike,p=c(0.5), hessian = TRUE) here nlm is the nonlinear minimization function provided by R, and the first argument is the object function to be minimized; the second argument p=c(0.5), specifies the initial value of the unknown parameter, here we start at 0.5; the third argument, hessian = TRUE says that we want the Hessian matrix as a part of the output result. The optimization result and relevant information will be stored in a structure, and in this example, the variable out stores the structure. You may get some warning messages, like the following, which does not matter: Warning messages: 1: In log(p) : NaNs produced 2: In nlm(fn, p = c(0.5), hessian = TRUE) : NA/Inf replaced by maximum positive value 3: In log(p) : NaNs produced 4: In nlm(fn, p = c(0.5), hessian = TRUE) :
4 NA/Inf replaced by maximum positive value If you want to see the result, just type in the variable name out in this case, and you will have the following information: out $minimum [1] $estimate [1] $gradient [1] e-05 $hessian [,1] [1,] $code [1] 1 $iterations [1] 10 Where, out$minimum is the negative log-likelihood, out$estimate are the maximum likelihood estimates of the parameters, out$gradient is the gradient of the negative loglikelihood function at this point, out$hessian is the value of the second derivative at this point, out$iterations is the number of iterations need to converge. The notation $ is to take the component of the output variable out. For this Poisson distribution, it is well-known that the MLE is the mean value of the values, type in command to find the mean value: mean(x) [1] Which is very close to the result from the code.
5 Exercise: (Please fit a gamma distribution, plot the graphs, turn in the results and code! Please type your solution to a file.) The file gamma-arrivals.txt contains another set of gamma-ray data, this one consisting of the times between arrivals (inter-arrival times) of 3935 photons (units are seconds). Assume the Gamma distribution is a good model for the data: β f x αβ x e x Γ ( α) α α 1 βx (, ) =, for 0 where both alpha and beta are unknown. 1. Make a histogram of the inter-arrival times. Does it appear that a gamma distribution would be a plausible model? 2. Fit the parameters by the method of moments and maximum likelihood. How do the estimate compare? 3. Plot the two fitted gamma densities on top of the histogram. Do the fits look reasonable? Notes: a. in order to read the data, if you are connected to Internet, you need the following: x = scan( " The url can be replaced by the file path, if desired. For example: x = (scan( " C:\\TEACHING\\MATH 541\\Data_Rice\\ASCII Comma\\Chapter 8\\gamma-arrivals.txt ")) This command also has the advantage of importing the data as a vector instead of a data frame, making the subsequent conversion unnecessary. b. You don t need to use the function nlm to do Method of Moment, instead, you need to derive the formula for the estimator, and write the code to calculate directly. c. to plot the density of a distribution, use the following: curve(dgamma(x, shape=alpha_hat_mle, scale=1.0/beta_hat_mle)) d. to put the density on top of the histogram, you can use the following: curve(dgamma(x, shape=alpha_hat_mle, scale=1.0/beta_hat_mle),col='blue',add=true)
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
A Step-by-Step Tutorial: Divergence Time Estimation with Approximate Likelihood Calculation Using MCMCTREE in PAML
9 June 2011 A Step-by-Step Tutorial: Divergence Time Estimation with Approximate Likelihood Calculation Using MCMCTREE in PAML by Jun Inoue, Mario dos Reis, and Ziheng Yang In this tutorial we will analyze
Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)
Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and
Descriptive Statistics
Descriptive Statistics Descriptive statistics consist of methods for organizing and summarizing data. It includes the construction of graphs, charts and tables, as well various descriptive measures such
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
12.5: CHI-SQUARE GOODNESS OF FIT TESTS
125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Package EstCRM. July 13, 2015
Version 1.4 Date 2015-7-11 Package EstCRM July 13, 2015 Title Calibrating Parameters for the Samejima's Continuous IRT Model Author Cengiz Zopluoglu Maintainer Cengiz Zopluoglu
LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as
LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values
Exact Confidence Intervals
Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter
Wes, Delaram, and Emily MA751. Exercise 4.5. 1 p(x; β) = [1 p(xi ; β)] = 1 p(x. y i [βx i ] log [1 + exp {βx i }].
Wes, Delaram, and Emily MA75 Exercise 4.5 Consider a two-class logistic regression problem with x R. Characterize the maximum-likelihood estimates of the slope and intercept parameter if the sample for
Lecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
Lecture 19: Conditional Logistic Regression
Lecture 19: Conditional Logistic Regression Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina
Notes on the Negative Binomial Distribution
Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, Discrete Changes JunXuJ.ScottLong Indiana University August 22, 2005 The paper provides technical details on
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University
Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Penalized Logistic Regression and Classification of Microarray Data
Penalized Logistic Regression and Classification of Microarray Data Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France Penalized Logistic Regression andclassification
7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
Lecture 2 ESTIMATING THE SURVIVAL FUNCTION. One-sample nonparametric methods
Lecture 2 ESTIMATING THE SURVIVAL FUNCTION One-sample nonparametric methods There are commonly three methods for estimating a survivorship function S(t) = P (T > t) without resorting to parametric models:
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
Introduction to Logistic Regression
OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction
Software for Distributions in R
David Scott 1 Diethelm Würtz 2 Christine Dong 1 1 Department of Statistics The University of Auckland 2 Institut für Theoretische Physik ETH Zürich July 10, 2009 Outline 1 Introduction 2 Distributions
From the help desk: Demand system estimation
The Stata Journal (2002) 2, Number 4, pp. 403 410 From the help desk: Demand system estimation Brian P. Poi Stata Corporation Abstract. This article provides an example illustrating how to use Stata to
14. Nonlinear least-squares
14 Nonlinear least-squares EE103 (Fall 2011-12) definition Newton s method Gauss-Newton method 14-1 Nonlinear least-squares minimize r i (x) 2 = r(x) 2 r i is a nonlinear function of the n-vector of variables
Package dsmodellingclient
Package dsmodellingclient Maintainer Author Version 4.1.0 License GPL-3 August 20, 2015 Title DataSHIELD client site functions for statistical modelling DataSHIELD
GLM, insurance pricing & big data: paying attention to convergence issues.
GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - [email protected] Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.
INSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
From the help desk: hurdle models
The Stata Journal (2003) 3, Number 2, pp. 178 184 From the help desk: hurdle models Allen McDowell Stata Corporation Abstract. This article demonstrates that, although there is no command in Stata for
Computer exercise 4 Poisson Regression
Chalmers-University of Gothenburg Department of Mathematical Sciences Probability, Statistics and Risk MVE300 Computer exercise 4 Poisson Regression When dealing with two or more variables, the functional
TEST 2 STUDY GUIDE. 1. Consider the data shown below.
2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency
A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA
REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
Some Problems of Second-Order Rational Difference Equations with Quadratic Terms
International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic
The Method of Least Squares. Lectures INF2320 p. 1/80
The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How
Exam C, Fall 2006 PRELIMINARY ANSWER KEY
Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14
Time Series Analysis
Time Series Analysis [email protected] Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:
Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma
Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma Shinto Eguchi a, and John Copas b a Institute of Statistical Mathematics and Graduate University of Advanced Studies, Minami-azabu
1 Maximum likelihood estimation
COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
Logit Models for Binary Data
Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis. These models are appropriate when the response
Chapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
A few useful MATLAB functions
A few useful MATLAB functions Renato Feres - Math 350 Fall 2012 1 Uniform random numbers The Matlab command rand is based on a popular deterministic algorithm called multiplicative congruential method.
Machine Learning and Pattern Recognition Logistic Regression
Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,
Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:
Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:
Handling missing data in Stata a whirlwind tour
Handling missing data in Stata a whirlwind tour 2012 Italian Stata Users Group Meeting Jonathan Bartlett www.missingdata.org.uk 20th September 2012 1/55 Outline The problem of missing data and a principled
A Comparison of Nonlinear. Regression Codes
A Comparison of Nonlinear Regression Codes by Paul Fredrick Mondragon Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics with Operations Research and
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Chapter 4 Online Appendix: The Mathematics of Utility Functions
Chapter 4 Online Appendix: The Mathematics of Utility Functions We saw in the text that utility functions and indifference curves are different ways to represent a consumer s preferences. Calculus can
Questions and Answers
GNH7/GEOLGG9/GEOL2 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD TUTORIAL (6): EARTHQUAKE STATISTICS Question. Questions and Answers How many distinct 5-card hands can be dealt from a standard 52-card deck?
Polynomial Neural Network Discovery Client User Guide
Polynomial Neural Network Discovery Client User Guide Version 1.3 Table of contents Table of contents...2 1. Introduction...3 1.1 Overview...3 1.2 PNN algorithm principles...3 1.3 Additional criteria...3
Opgaven Onderzoeksmethoden, Onderdeel Statistiek
Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week
Fixed Point Theorems
Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Numerical Methods in MATLAB
Numerical Methods in MATLAB Center for Interdisciplinary Research and Consulting Department of Mathematics and Statistics University of Maryland, Baltimore County www.umbc.edu/circ Winter 2008 Mission
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
PS 271B: Quantitative Methods II. Lecture Notes
PS 271B: Quantitative Methods II Lecture Notes Langche Zeng [email protected] The Empirical Research Process; Fundamental Methodological Issues 2 Theory; Data; Models/model selection; Estimation; Inference.
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
Package MDM. February 19, 2015
Type Package Title Multinomial Diversity Model Version 1.3 Date 2013-06-28 Package MDM February 19, 2015 Author Glenn De'ath ; Code for mdm was adapted from multinom in the nnet package
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
A mixture model for random graphs
A mixture model for random graphs J-J Daudin, F. Picard, S. Robin [email protected] UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Examples of networks. Social: Biological:
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
Homework 2. Page 154: Exercise 8.10. Page 145: Exercise 8.3 Page 150: Exercise 8.9
Homework 2 Page 110: Exercise 6.10; Exercise 6.12 Page 116: Exercise 6.15; Exercise 6.17 Page 121: Exercise 6.19 Page 122: Exercise 6.20; Exercise 6.23; Exercise 6.24 Page 131: Exercise 7.3; Exercise 7.5;
M1 in Economics and Economics and Statistics Applied multivariate Analysis - Big data analytics Worksheet 1 - Bootstrap
Nathalie Villa-Vialanei Année 2015/2016 M1 in Economics and Economics and Statistics Applied multivariate Analsis - Big data analtics Worksheet 1 - Bootstrap This worksheet illustrates the use of nonparametric
R: A self-learn tutorial
R: A self-learn tutorial 1 Introduction R is a software language for carrying out complicated (and simple) statistical analyses. It includes routines for data summary and exploration, graphical presentation
Final Review Ch. 1 #2
Final Review Ch. 1 #2 9th Grade Algebra 1A / Algebra 1 Beta (Ms. Dalton) Student Name/ID: Instructor Note: Show all of your work! 1. Translate the phrase into an algebraic expression. The sum of and 2.
Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
The equivalence of logistic regression and maximum entropy models
The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/
Bootstrap Example and Sample Code
U.C. Berkeley Stat 135 : Concepts of Statistics Bootstrap Example and Sample Code 1 Bootstrap Example This section will demonstrate how the bootstrap can be used to generate confidence intervals. Suppose
Empirical Project, part 2, ECO 672, Spring 2014
Empirical Project, part 2, ECO 672, Spring 2014 Due Date: 12 PM, May 12, 2014 Instruction: This is part 2 of the empirical project, which is worth 15 points. You need to work independently on this project.
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part 1
Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part Note: Assume missing data (if any) and mention the same. Q. Suppose X has a normal
Lecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
Basics of STATA. 1 Data les. 2 Loading data into STATA
Basics of STATA This handout is intended as an introduction to STATA. STATA is available on the PCs in the computer lab as well as on the Unix system. Throughout, bold type will refer to STATA commands,
