Optimal reinsurance with ruin probability target
|
|
|
- Moris Briggs
- 10 years ago
- Views:
Transcription
1 Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1
2 Ruin, solvency and reinsurance reinsurance plays an important role in reducing the risk in an insurance portfolio. Goovaerts & Vyncke (2004). Reinsurance Forms in Encyclopedia of Actuarial Science. reinsurance is able to offer additional underwriting capacity for cedants, but also to reduce the probability of a direct insurer s ruin. Engelmann & Kipp (1995). Reinsurance. in Encyclopaedia of Financial Engineering and Risk Management. 2
3 Proportional Reinsurance (Quota-Share) claim loss X : αx paid by the cedant, (1 α)x paid by the reinsurer, premium P : αp kept by the cedant, (1 α)p transfered to the reinsurer, Nonproportional Reinsurance (Excess-of-Loss) claim loss X : min{x, u} paid by the cedant, max{0, X u} paid by the reinsurer, premium P : P u kept by the cedant, P P u transfered to the reinsurer, 3
4 Proportional versus nonproportional reinsurance Proportional reinsurance (QS) Nonproportional reinsurance (XL) reinsurer cedent reinsurer cedent claim 1 claim 2 claim 3 claim 4 claim 5 claim 1 claim 2 claim 3 claim 4 claim 5 Fig. 1 Reinsurance mechanism for claims indemnity, proportional versus nonproportional treaties. 4
5 Classical Cramér-Lundberg framework : Mathematical framework claims arrival is driven by an homogeneous Poisson process, N t P(λt), durations between consecutive arrivals T i+1 T i are independent E(λ), claims size X 1,, X n, are i.i.d. non-negative random variables, independent of claims arrival. Let Y t = N t i=1 X i denote the aggregate amount of claims during period [0, t]. 5
6 Premium The pure premium required over period [0, t] is π t = E(Y t ) = E(N t )E(X) = λe(x) t. } {{ } π Note that more general premiums can be considered, e.g. safety loading proportional to the pure premium, π t = [1 + λ] E(Y t ), safety loading proportional to the variance, π t = E(Y t ) + λ V ar(y t ), safety loading proportional to the standard deviation, π t = E(Y t ) + λ V ar(y t ), entropic premium (exponential expected utility) π t = 1 α log ( E(e αy t ) ), Esscher premium π t = E(X eαy t ) E(e αy, t ) Wang distorted premium π t = 0 Φ ( Φ 1 (P(Y t > x)) + λ ) dx, 6
7 A classical solvency problem Given a ruin probability target, e.g. 0.1%, on a give, time horizon T, find capital u such that, ψ(t, u) = 1 P(u + πt Y t, t [0, T ]) = 1 P(S t 0 t [0, T ]) = P(inf{S t } < 0) = 0.1%, where S t = u + πt Y t denotes the insurance company surplus. 7
8 A classical solvency problem After reinsurance, the net surplus is then where π (θ) = E ( N1 i=1 X (θ) i ) S (θ) t and = u + π (θ) t N t i=1 X (θ) i, X (θ) i = θx i, θ [0, 1], for quota share treaties, X (θ) i = min{θ, X i }, θ > 0, for excess-of-loss treaties. 8
9 Classical answers : using upper bounds Instead of targeting a ruin probability level, Centeno (1986) and Chapter 9 in Dickson (2005) target an upper bound of the ruin probability. In the case of light tailed claims, let γ denote the adjustment coefficient, defined as the unique positive root of λ + πγ = λm X (γ), where M X (t) = E(exp(tX)). The Lundberg inequality states that 0 ψ(t, u) ψ(, u) exp[ γu] = ψ CL (u). Gerber (1976) proposed an improvement in the case of finite horizon (T < ). 9
10 Classical answers : using approximations u de Vylder (1996) proposed the following approximation, assuming that E( X 3 ) <, ψ dv (u) 1 ( 1 + γ exp β γ ) µ 1 + γ quand u where γ = 2µm 3 3m 2 2 γ et β = 3m 2 m 3. Beekman (1969) considered ψ B (u) γ [1 Γ (u)] quand u where Γ is the c.d.f. of the Γ(α, β) distribution α = 1 ( ( ) ) 4µm γ et β = 2µγ 1 + γ 3m 2 2 ( m 2 + ( 4µm3 3m 2 2 ) ) 1 m 2 γ 10
11 Classical answers : using approximations u Rényi - see Grandell (2000) - proposed an exponential approximation of the convoluted distribution function ψ R (u) 1 ( 1 + γ exp 2µγu ) quand u m 2 (1 + γ) In the case of subexponential claims ψ SE (u) 1 γµ ( µ u 0 ) F (x) dx 11
12 Classical answers : using approximations u CL dv B R SE Exponential yes yes yes yes no Gamma yes yes yes yes no Weibull no yes yes yes β ]0, 1[ Lognormal no yes yes yes yes Pareto no α > 3 α > 3 α > 2 yes Burr no αγ > 3 αγ > 3 αγ > 2 yes 12
13 Proportional reinsurance (QS) With proportional reinsurance, if 1 α is the ceding ratio, S (α) t = u + απt N t i=1 αx i = (1 α)u + αs t Reinsurance can always decrease ruin probability. Assuming that there was ruin (without reinsurance) before time T, if the insurance had ceded a proportion 1 α of its business, where α = u u inf{s t, t [0, T ]}, there would have been no ruin (at least on the period [0, T ]). then α = u u min{s t, t [0, T ]} 1(min{S t, t [0, T ]} < 0) + 1(min{S t, t [0, T ]} 0), ψ(t, u, α) = ψ(t, u) P(α α). 13
14 Proportional reinsurance (QS) Impact of proportional reinsurance in case of ruin Time (one year) Fig. 2 Proportional reinsurance used to decrease ruin probability, the plain line is the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty. 14
15 Proportional reinsurance (QS) In that case, the algorithm to plot the ruin probability as a function of the reinsurance share is simply the following RUIN <- 0; ALPHA <- NA for(i in 1:Nb.Simul){ T <- rexp(n,lambda); T <- T[cumsum(T)<1]; n <- length(t) X <- r.claims(n); S <- u+premium*cumsum(t)-cumsum(x) if(min(s)<0) { RUIN <- RUIN +1 ALPHA <- c(alpha,u/(u-min(s))) } } rate <- seq(0,1,by=.01); proportion <- rep(na,length(rate)) for(i in 1:length(rate)){ proportion[i]=sum(alpha<rate[i])/length(alpha) } plot(rate,proportion*ruin/nb.simul) 15
16 Proportional reinsurance (QS) Ruin probability (in %) Pareto claims Exponential claims Cedent's quota share Fig. 3 Ruin probability as a function of the cedant s share. 16
17 Proportional reinsurance (QS) Ruin probability (w.r.t. nonproportional case, in %) (tail index of Pareto individual claims) rate Fig. 4 Ruin probability as a function of the cedant s share. 17
18 Nonproportional reinsurance (QS) With nonproportional reinsurance, if d 0 is the priority of the reinsurance contract, the surplus process for the company is S (d) t = u + π (d) t N t i=1 min{x i, d} where π (d) = E(S (d) 1 ) = E(N 1 ) E(min{X i, d}). Here the problem is that it is possible to have a lot of small claims (smaller than d), and to have ruin with the reinsurance cover (since p (d) < p and min{x i, d} = X i for all i if claims are no very large), while there was no ruin without the reinsurance cover (see Figure 5). 18
19 Proportional reinsurance (QS) Impact of nonproportional reinsurance in case of nonruin Time (one year) Fig. 5 Case where nonproportional reinsurance can cause ruin, the plain line is the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty. 19
20 Proportional reinsurance (QS), homogeneous Poisson Ruin probability (in %) Deductible of the reinsurance treaty Fig. 6 Monte Carlo computation of ruin probabilities, where n = 100, 000 trajectories are generated for each deductible. 20
21 Proportional reinsurance (QS), nonhomogeneous Poisson Ruin probability (in %) % 10% Deductible of the reinsurance treaty Fig. 7 Monte Carlo computation of ruin probabilities, where n = 100, 000 trajectories are generated for each deductible. 21
22 Proportional reinsurance (QS), nonhomogeneous Poisson Ruin probability (in %) Deductible of the reinsurance treaty Fig. 8 Monte Carlo computation of ruin probabilities, where n = 100, 000 trajectories are generated for each deductible. 22
23 Proportional reinsurance (QS), nonhomogeneous Poisson Ruin probability (in %) % 20% Deductible of the reinsurance treaty Fig. 9 Monte Carlo computation of ruin probabilities, where n = 100, 000 trajectories are generated for each deductible. 23
24 Références [1] Asmussen, S. (2000). Ruin Probability. World Scientific Publishing Company. [2] Beekmann, J.A. (1969). A ruin function approximation. Transactions of the Society of Actuaries,21, [3] Bühlmann, H. (1970). Mathematical Methods in Risk Theory. Springer-Verlag. [4] Burnecki, K. Mista, P. & Weron, A. (2005). Ruin Probabilities in Finite and Infinite Time. in Statistical Tools for Finance and Insurance, Cízek,P., Härdle, W. & Weron, R. Eds., Springer Verlag. [5] Centeno, L. (1986). Measuring the Effects of Reinsurance by the Adjustment Coefficient. Insurance : Mathematics and Economics 5, [6] Dickson, D.C.M. & Waters, H.R. (1996). Reinsurance and ruin. Insurance : Mathematics and Economics, 19, 1, [7] Dickson, D.C.M. (2005). Reinsurance risk and ruin. Cambridge University Press. 24
25 [8] Engelmann, B. & Kipp, S. (1995). Reinsurance. in Peter Moles (ed.) : Encyclopaedia of Financial Engineering and Risk Management, New York & London : Routledge. [9] Gerber, H.U. (1979). An Introduction to Mathematical Risk Theory. Huebner. [10] Grandell, J. (1991). Aspects of Risk Theory. Springer Verlag. [11] Goovaerts, M. & Vyncke, D. (2004). Reinsurance forms. in Encyclopedia of Actuarial Science, Wiley, Vol. III, [12] Kravych, Y. (2001). On existence of insurer s optimal excess of loss reinsurance strategy. Proceedings of 32nd ASTIN Colloquium. [13] de Longueville, P. (1995). Optimal reinsurance from the point of view of the excess of loss reinsurer under the finite-time ruin criterion. [14] de Vylder, F.E. (1996). Advanced Risk Theory. A Self-Contained Introduction. Editions de l Universit de Bruxelles and Swiss Association of Actuaries. 25
Cover. Optimal Retentions with Ruin Probability Target in The case of Fire. Insurance in Iran
Cover Optimal Retentions with Ruin Probability Target in The case of Fire Insurance in Iran Ghadir Mahdavi Ass. Prof., ECO College of Insurance, Allameh Tabataba i University, Iran Omid Ghavibazoo MS in
Stop Loss Reinsurance
Stop Loss Reinsurance Stop loss is a nonproportional type of reinsurance and works similarly to excess-of-loss reinsurance. While excess-of-loss is related to single loss amounts, either per risk or per
A Model of Optimum Tariff in Vehicle Fleet Insurance
A Model of Optimum Tariff in Vehicle Fleet Insurance. Bouhetala and F.Belhia and R.Salmi Statistics and Probability Department Bp, 3, El-Alia, USTHB, Bab-Ezzouar, Alger Algeria. Summary: An approach about
From Ruin Theory to Solvency in Non-Life Insurance
From Ruin Theory to Solvency in Non-Life Insurance Mario V. Wüthrich RiskLab ETH Zurich & Swiss Finance Institute SFI January 23, 2014 LUH Colloquium Versicherungs- und Finanzmathematik Leibniz Universität
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market W. Hürlimann 1 Abstract. We consider the dynamic stable benchmark rate model introduced in Verlaak et al. (005),
Visualization Tools for Insurance Risk Processes
Visualization Tools for Insurance Risk Processes IV.7 Krzysztof Burnecki, Rafał Weron 7.1 Introduction... 2 7.2 Software... 4 7.3 Fitting Loss and Waiting Time Distributions... 4 Mean Excess Function...
Non-Life Insurance Mathematics
Thomas Mikosch Non-Life Insurance Mathematics An Introduction with the Poisson Process Second Edition 4y Springer Contents Part I Collective Risk Models 1 The Basic Model 3 2 Models for the Claim Number
FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang
FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang 87. Li, J.; Tang, Q. Interplay of insurance and financial risks in a discrete-time model with strongly regular variation. Bernoulli 21 (2015), no. 3,
AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE. David Dickson, Centre for Actuarial Studies, University of Melbourne. Cherry Bud Workshop
AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE David Dickson, Centre for Actuarial Studies, University of Melbourne Cherry Bud Workshop Keio University, 27 March 2006 Basic General Insurance Risk Model where
Pricing catastrophe options in incomplete market
Pricing catastrophe options in incomplete market Arthur Charpentier [email protected] Actuarial and Financial Mathematics Conference Interplay between finance and insurance, February 2008
CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE
CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE EKONOMIKA A MANAGEMENT Valéria Skřivánková, Alena Tartaľová 1. Introduction At the end of the second millennium, a view of catastrophic events during
STATISTICAL METHODS IN GENERAL INSURANCE. Philip J. Boland National University of Ireland, Dublin [email protected]
STATISTICAL METHODS IN GENERAL INSURANCE Philip J. Boland National University of Ireland, Dublin [email protected] The Actuarial profession appeals to many with excellent quantitative skills who aspire
Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks
1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics
Insurance models and risk-function premium principle
Insurance models and risk-function premium principle Aditya Challa Supervisor : Prof. Vassili Kolokoltsov July 2, 212 Abstract Insurance sector was developed based on the idea to protect people from random
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
INSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
Approximation of Aggregate Losses Using Simulation
Journal of Mathematics and Statistics 6 (3): 233-239, 2010 ISSN 1549-3644 2010 Science Publications Approimation of Aggregate Losses Using Simulation Mohamed Amraja Mohamed, Ahmad Mahir Razali and Noriszura
Pricing Alternative forms of Commercial Insurance cover
Pricing Alternative forms of Commercial Insurance cover Prepared by Andrew Harford Presented to the Institute of Actuaries of Australia Biennial Convention 23-26 September 2007 Christchurch, New Zealand
Underwriting risk control in non-life insurance via generalized linear models and stochastic programming
Underwriting risk control in non-life insurance via generalized linear models and stochastic programming 1 Introduction Martin Branda 1 Abstract. We focus on rating of non-life insurance contracts. We
Exam Introduction Mathematical Finance and Insurance
Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions
PLANNING PROBLEMS OF A GAMBLING-HOUSE WITH APPLICATION TO INSURANCE BUSINESS. Stockholm
PLANNING PROBLEMS OF A GAMBLING-HOUSE WITH APPLICATION TO INSURANCE BUSINESS HARALD BOHMAN Stockholm In the classical risk theory the interdependence between the security loading and the initial risk reserve
Pure risk premiums under deductibles
Pure risk premiums under deductibles K. Burnecki J. Nowicka-Zagrajek A. Wy lomańska Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo/ Pure risk premiums under deductibles
APS REINSURANCE. By BRUNO KOLLER, NICOLE DETTWYLER
APS REINSURANCE By BRUNO KOLLER, NICOLE DETTWYLER ABSTRACT This paper presents a new reinsurance product, called 'Adaptive Pivot Smoothing' (APS). It is designed to reduce the variance of the risk reinsured
( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: [email protected] Posted September 21,
Pricing Alternative forms of Commercial insurance cover. Andrew Harford
Pricing Alternative forms of Commercial insurance cover Andrew Harford Pricing alternative covers Types of policies Overview of Pricing Approaches Total claim cost distribution Discounting Cash flows Adjusting
How to Model Operational Risk, if You Must
How to Model Operational Risk, if You Must Paul Embrechts ETH Zürich (www.math.ethz.ch/ embrechts) Based on joint work with V. Chavez-Demoulin, H. Furrer, R. Kaufmann, J. Nešlehová and G. Samorodnitsky
Understanding Agricultural Reinsurance
1 Understanding Agricultural Reinsurance Ramiro Iturrioz Insurance for the Poor The World Bank June, 2010 2 What is reinsurance? Reinsurance is insurance for insurers. It is an agreement between an insurer
Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Non-life insurance mathematics Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring About the lecturer PhD in risk analysis, Institute for Mathematics, University of Oslo 11 years experience
Credibility and Pooling Applications to Group Life and Group Disability Insurance
Credibility and Pooling Applications to Group Life and Group Disability Insurance Presented by Paul L. Correia Consulting Actuary [email protected] (207) 771-1204 May 20, 2014 What I plan to cover
Aggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
NUMERICAL FINITE HORIZON RUIN PROBABILITIES IN THE CLASSICAL RISK MODEL WITH STOCHASTIC RETURN ON INVESTMENTS
NUMERICAL FINITE HORIZON RUIN PROBABILITIES IN THE CLASSICAL RISK MODEL WITH STOCHASTIC RETURN ON INVESTMENTS Lubasi Simataa M.Sc. (Mathematical Modelling) Dissertation University Of Dar es Salaam June,
**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1.
**BEGINNING OF EXAMINATION** 1. You are given: (i) The annual number of claims for an insured has probability function: 3 p x q q x x ( ) = ( 1 ) 3 x, x = 0,1,, 3 (ii) The prior density is π ( q) = q,
Longevity and disability risk analysis in enhanced life annuities
Longevity and disability risk analysis in enhanced life annuities Susanna Levantesi 1 and Massimiliano Menzietti 2 1 University of Rome La Sapienza Via Nomentana, 41 - I 00161 Rome (Italy) Phone: +39 0649919567
Stochastic programming approaches to pricing in non-life insurance
Stochastic programming approaches to pricing in non-life insurance Martin Branda Charles University in Prague Department of Probability and Mathematical Statistics 11th International Conference on COMPUTATIONAL
Properties of Future Lifetime Distributions and Estimation
Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.
Point Process Techniques in Non-Life Insurance Models
1 Point Process Techniques in Non-Life Insurance Models Thomas Mikosch University of Copenhagen 1 Conference in Honor of Jan Grandell, Stockholm, June 13, 2008 1 2 What is a point process? 3 Consider the
BAYESIAN ANALYSIS OF AN AGGREGATE CLAIM MODEL USING VARIOUS LOSS DISTRIBUTIONS. by Claire Dudley
BAYESIAN ANALYSIS OF AN AGGREGATE CLAIM MODEL USING VARIOUS LOSS DISTRIBUTIONS by Claire Dudley A dissertation submitted for the award of the degree of Master of Science in Actuarial Management School
On the Optimality of Multiline Excess of Loss Covers. Jean-Frangois Walhin
On the Optimality of Multiline Excess of Loss Covers Jean-Frangois Walhin 231 ON THE OPTIMALITY OF MULTILINE EXCESS OF LOSS COVERS J.F. WALHIN lnstitut des Sciences Actuarielles, Universitd Catholique
Reinsurance 101: How it Works and the Impact on the Marketplace
Reinsurance 101: How it Works and the Impact on the Marketplace Kathleen A. McCullough Associate Professor and State Farm Professor Florida State University 2012 Oklahoma Domestic Conference May 23, 2012
Monte Carlo Simulation
1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: [email protected] web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging
Lloyd Spencer Lincoln Re
AN OVERVIEW OF THE PANJER METHOD FOR DERIVING THE AGGREGATE CLAIMS DISTRIBUTION Lloyd Spencer Lincoln Re Harry H. Panjer derives a recursive method for deriving the aggregate distribution of claims in
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
Chapter 2 Reinsurance Market Practices
Chapter 2 Reinsurance Market Practices This part describes the main characteristics of the reinsurance market. After recalling some of the institutional and legal context, we review the mechanisms of the
Modern Actuarial Risk Theory
Modern Actuarial Risk Theory Modern Actuarial Risk Theory by Rob Kaas University of Amsterdam, The Netherlands Marc Goovaerts Catholic University of Leuven, Belgium and University of Amsterdam, The Netherlands
GLMs: Gompertz s Law. GLMs in R. Gompertz s famous graduation formula is. or log µ x is linear in age, x,
Computing: an indispensable tool or an insurmountable hurdle? Iain Currie Heriot Watt University, Scotland ATRC, University College Dublin July 2006 Plan of talk General remarks The professional syllabus
Chapter 1. Introduction
Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset
An Extension Model of Financially-balanced Bonus-Malus System
An Extension Model of Financially-balanced Bonus-Malus System Other : Ratemaking, Experience Rating XIAO, Yugu Center for Applied Statistics, Renmin University of China, Beijing, 00872, P.R. China Phone:
A three dimensional stochastic Model for Claim Reserving
A three dimensional stochastic Model for Claim Reserving Magda Schiegl Haydnstr. 6, D - 84088 Neufahrn, [email protected] and Cologne University of Applied Sciences Claudiusstr. 1, D-50678 Köln
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA
REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São
Premium calculation. summer semester 2013/2014. Technical University of Ostrava Faculty of Economics department of Finance
Technical University of Ostrava Faculty of Economics department of Finance summer semester 2013/2014 Content 1 Fundamentals Insurer s expenses 2 Equivalence principles Calculation principles 3 Equivalence
THE USE OF STATISTICAL DISTRIBUTIONS TO MODEL CLAIMS IN MOTOR INSURANCE
THE USE OF STATISTICAL DISTRIBUTIONS TO MODEL CLAIMS IN MOTOR INSURANCE Batsirai Winmore Mazviona 1 Tafadzwa Chiduza 2 ABSTRACT In general insurance, companies need to use data on claims gathered from
The Study of Chinese P&C Insurance Risk for the Purpose of. Solvency Capital Requirement
The Study of Chinese P&C Insurance Risk for the Purpose of Solvency Capital Requirement Xie Zhigang, Wang Shangwen, Zhou Jinhan School of Finance, Shanghai University of Finance & Economics 777 Guoding
Statistical Analysis of Life Insurance Policy Termination and Survivorship
Statistical Analysis of Life Insurance Policy Termination and Survivorship Emiliano A. Valdez, PhD, FSA Michigan State University joint work with J. Vadiveloo and U. Dias Session ES82 (Statistics in Actuarial
Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk
Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk Jose Blanchet and Peter Glynn December, 2003. Let (X n : n 1) be a sequence of independent and identically distributed random
Property & Casualty Simulation Game. Reinsurance. Peter Liebwein Keith Purvis. riva 2000-2005 Version 2.1E
Property & Casualty Simulation Game Reinsurance Peter Liebwein Keith Purvis riva 2000-2005 Version 2.1E Contents Reinsurance Basics 2 What is Reinsurance?...2 Why Do Insurance Companies Need Reinsurance?...2
THE REINSURANCE PRINCIPLES
THE REINSURANCE PRINCIPLES Contents 1. Concepts of Insurance and Reinsurance 2. Functions of Reinsurance 3. Types & structures of Reinsurance 4. Introduction to Pricing 5. Introduction to Portfolio Strategy
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania Oriana Zacaj Department of Mathematics, Polytechnic University, Faculty of Mathematics and Physics Engineering
Modern Actuarial Risk Theory
Modern Actuarial Risk Theory Modern Actuarial Risk Theory by Rob Kaas University of Amsterdam, The Netherlands Marc Goovaerts Catholic University of Leuven, Belgium and University of Amsterdam, The Netherlands
SOA Health 2007 Spring Meeting Valuation and Reserving Techniques
SOA Health 2007 Spring Meeting Valuation and Reserving Techniques Property & Casualty Reserving Techniques Theresa Bourdon, FCAS, MAAA CAS Statement of Principles Regarding P&C Loss and Loss Adjustment
Ruin Probabilities with Dependent Claims
Ruin Probabilities with Dependent Claims Emiliano A. Valdez, PhD, FSA, AIAA and Kelvin Mo School of Actuarial Studies Faculty of Commerce and Economics The University of New South Wales Sydney, Australia
MINIMUM SOLVENCY MARGIN OF A GENERAL INSURANCE COMPANY: PROPOSALS AND CURIOSITIES ROBERTO DARIS GIANNI BOSI
Insurance Convention 1998 General & ASTIN Colloquium MINIMUM SOLVENCY MARGIN OF A GENERAL INSURANCE COMPANY: PROPOSALS AND CURIOSITIES ROBERTO DARIS GIANNI BOSI 1998 GENERAL INSURANCE CONVENTION AND ASTIN
Survival Analysis of Left Truncated Income Protection Insurance Data. [March 29, 2012]
Survival Analysis of Left Truncated Income Protection Insurance Data [March 29, 2012] 1 Qing Liu 2 David Pitt 3 Yan Wang 4 Xueyuan Wu Abstract One of the main characteristics of Income Protection Insurance
Supplement to Call Centers with Delay Information: Models and Insights
Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS
Applied Probability Trust 2 October 2013 UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS YANG YANG, Nanjing Audit University, and Southeast University KAIYONG WANG, Southeast
Marshall-Olkin distributions and portfolio credit risk
Marshall-Olkin distributions and portfolio credit risk Moderne Finanzmathematik und ihre Anwendungen für Banken und Versicherungen, Fraunhofer ITWM, Kaiserslautern, in Kooperation mit der TU München und
On the mathematical theory of splitting and Russian roulette
On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing
A Unifying Pricing Theory for Insurance and Financial Risks: Applications for a Unified Risk Management
A Unifying Pricing Theory for Insurance and Financial Risks: Applications for a Unified Risk Management Alejandro Balbás 1 and José Garrido 1,2 1 Department of Business Administration University Carlos
AN ACTUARIAL INDEX OF THE RIGHT-TAIL RISK *
AN ACTUARIAL INDE OF THE RIGHT-TAIL RISK * Shaun Wang ABSTRACT A common characteristic for many insurance risks is the right-tail risk, representing low-frequency, large-loss events. In this paper I propose
HOMEOWNERS WARRANTY AND REINSURANCE. Specialties IDI Business Unit Stéphane AMILHAU
HOMEOWNERS WARRANTY AND REINSURANCE Specialties IDI Business Unit Stéphane AMILHAU Summary 1 SCOR Group 2 Homeowners warranty 3 Reinsurance 4 Conclusions 2 SCOR Group SCOR: Reinsurance Company CEO of the
Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
How To Become A Life Insurance Specialist
Institute of Actuaries of India Subject ST2 Life Insurance For 2015 Examinations Aim The aim of the Life Insurance Specialist Technical subject is to instil in successful candidates principles of actuarial
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
Session 106 PD, Reinsurance for Capital Management of Health Insurance Business. Moderator/Presenter: Michael David Mulcahy, FSA, MAAA
Session 106 PD, Reinsurance for Capital Management of Health Insurance Business Moderator/Presenter: Michael David Mulcahy, FSA, MAAA Presenters: Rob Healy Katrina E. Spillane, FSA, MAAA Brad Quinn Collateralized
Basel II: Operational Risk Implementation based on Risk Framework
Systems Ltd General Kiselov 31 BG-9002 Varna Tel. +359 52 612 367 Fax +359 52 612 371 email [email protected] WEB: www.eurorisksystems.com Basel II: Operational Risk Implementation based on Risk
How To Calculate Spread Loss In Germany
The World of Structured Reinsurance Case Study Spread Loss Alexander Gollin, Advanced Solutions 4º Encontro de Resseguro Rio de Janeiro, 15th April 2015 01 02 General Overview 03 14 Case Study 15 15 Compliance
Exam C, Fall 2006 PRELIMINARY ANSWER KEY
Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14
UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency.
UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Candidate no Exam in: STK 4540 Non-Life Insurance Mathematics Day of examination: December, 9th, 2015 Examination hours: 09:00 13:00 This
The future of (Life) Reinsurance Evolution or Revolution?
The future of (Life) Reinsurance Evolution or Revolution? Alexandra Field RGA International Frauengruppe - SAV Arbeitsgruppentagung 28.08.2015, Olten Content A. Life reinsurance in the past and up to now
References. Importance Sampling. Jessi Cisewski (CMU) Carnegie Mellon University. June 2014
Jessi Cisewski Carnegie Mellon University June 2014 Outline 1 Recall: Monte Carlo integration 2 3 Examples of (a) Monte Carlo, Monaco (b) Monte Carlo Casino Some content and examples from Wasserman (2004)
Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach
Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach Refik Soyer * Department of Management Science The George Washington University M. Murat Tarimcilar Department of Management Science
SMIB A PILOT PROGRAM SYSTEM FOR STOCHASTIC SIMULATION IN INSURANCE BUSINESS DMITRII SILVESTROV AND ANATOLIY MALYARENKO
SMIB A PILOT PROGRAM SYSTEM FOR STOCHASTIC SIMULATION IN INSURANCE BUSINESS DMITRII SILVESTROV AND ANATOLIY MALYARENKO ABSTRACT. In this paper, we describe the program SMIB (Stochastic Modeling of Insurance
Operational Risk. Operational Risk in Life Insurers. Operational Risk similarities with General Insurance? unique features
Operational Risk in Life Insurers Nick Dexter, KPMG Patrick Kelliher, Scottish Widows Life Operational Risk Working Party Workshop E02 Operational Risk similarities with General Insurance? Multiple perils
