Lecture Notes 1. Brief Review of Basic Probability

Size: px
Start display at page:

Download "Lecture Notes 1. Brief Review of Basic Probability"

Transcription

1 Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very quick review.. Random Variables A random variable is a map X from a set Ω (equipped with a probability P ) to R. We write P (X A) = P ({ω Ω : X(ω) A}) and we write X P to mean that X has distribution P. function (cdf) of X is F X (x) = F (x) = P (X x). If X is discrete, its probability mass function (pmf) is The cumulative distribution p X (x) = p(x) = P (X = x). If X is continuous, then its probability density function function (pdf) satisfies P (X A) = p X (x)dx = p(x)dx A A and p X (x) = p(x) = F (x). The following are all equivalent: X P, X F, X p. Suppose that X P and Y Q. We say that X and Y have the same distribution if P (X A) = Q(Y A) for all A. In that case we say that X and Y are equal in distribution and we write X d = Y. Lemma X d = Y if and only if F X (t) = F Y (t) for all t.

2 .2 Expected Values The mean or expected value of g(x) is { g(x)p(x)dx if X is continuous E (g(x)) = g(x)df (x) = g(x)dp (x) = j g(x j)p(x j ) if X is discrete. Recall that:. E( k j= c jg j (X)) = k j= c je(g j (X)). 2. If X,..., X n are independent then ( n ) E X i = i= i E (X i ). 3. We often write µ = E(X). 4. σ 2 = Var (X) = E ((X µ) 2 ) is the Variance. 5. Var (X) = E (X 2 ) µ If X,..., X n are independent then ( n ) Var a i X i = i= i a 2 i Var (X i ). 7. The covariance is Cov(X, Y ) = E((X µ x )(Y µ y )) = E(XY ) µ X µ Y and the correlation is ρ(x, Y ) = Cov(X, Y )/σ x σ y. Recall that ρ(x, Y ). The conditional expectation of Y given X is the random variable E(Y X) whose value, when X = x is E(Y X = x) = y p(y x)dy where p(y x) = p(x, y)/p(x). 2

3 The Law of Total Expectation or Law of Iterated Expectation: E(Y ) = E [ E(Y X) ] = E(Y X = x)p X (x)dx. The Law of Total Variance is Var(Y ) = Var [ E(Y X) ] + E [ Var(Y X) ]. The moment generating function (mgf) is M X (t) = E ( e tx). If M X (t) = M Y (t) for all t in an interval around 0 then X d = Y. Exercise: show that M (n) X (t) t=0 = E (X n )..3 Transformations Let Y = g(x). Then F Y (y) = P(Y y) = P(g(X) y) = A(y) p X (x)dx where Then p Y (y) = F Y (y). If g is monotonic, then where h = g. A y = {x : g(x) y}. p Y (y) = p X (h(y)) dh(y) dy Example 2 Let p X (x) = e x for x > 0. Hence F X (x) = e x. Let Y = g(x) = log X. Then and p Y (y) = e y e ey for y R. F Y (y) = P (Y y) = P (log(x) y) = P (X e y ) = F X (e y ) = e ey Example 3 Practice problem. Let X be uniform on (, 2) and let Y = X 2. Find the density of Y. 3

4 Let Z = g(x, Y ). For exampe, Z = X + Y or Z = X/Y. Then we find the pdf of Z as follows:. For each z, find the set A z = {(x, y) : g(x, y) z}. 2. Find the CDF F Z (z) = P (Z z) = P (g(x, Y ) z) = P ({(x, y) : g(x, y) z}) = p X,Y (x, y)dxdy. A z 3. The pdf is p Z (z) = F Z (z). Example 4 Practice problem. Let (X, Y ) be uniform on the unit square. Let Z = X/Y. Find the density of Z..4 Independence X and Y are independent if and only if for all A and B. P(X A, Y B) = P(X A)P(Y B) Theorem 5 Let (X, Y ) be a bivariate random vector with p X,Y (x, y). X and Y are independent iff p X,Y (x, y) = p X (x)p Y (y). X,..., X n are independent if and only if P(X A,..., X n A n ) = n P(X i A i ). Thus, p X,...,X n (x,..., x n ) = n i= p X i (x i ). If X,..., X n are independent and identically distributed we say they are iid (or that they are a random sample) and we write X,..., X n P or X,..., X n F or X,..., X n p..5 Important Distributions X N(µ, σ 2 ) if i= p(x) = σ 2π e (x µ)2 /(2σ2). If X R d then X N(µ, Σ) if ( p(x) = (2π) d/2 Σ exp ) 2 (x µ)t Σ (x µ). 4

5 X χ 2 p if X = p j= Z2 j where Z,..., Z p N(0, ). X Bernoulli(θ) if P(X = ) = θ and P(X = 0) = θ and hence p(x) = θ x ( θ) x x = 0,. X Binomial(θ) if p(x) = P(X = x) = ( ) n θ x ( θ) n x x x {0,..., n}. X Uniform(0, θ) if p(x) = I(0 x θ)/θ..6 Sample Mean and Variance The sample mean is and the sample variance is X = X i, n S 2 = n i (X i X) 2. Let X,..., X n be iid with µ = E(X i ) = µ and σ 2 = Var(X i ) = σ 2. Then E(X) = µ, Theorem 6 If X,..., X n N(µ, σ 2 ) then (a) X N(µ, σ2 n ) i Var(X) = σ2 n, E(S2 ) = σ 2. (b) (n )S2 σ 2 χ 2 n (c) X and S 2 are independent.7 Delta Method If X N(µ, σ 2 ), Y = g(x) and σ 2 is small then To see this, note that Y N(g(µ), σ 2 (g (µ)) 2 ). Y = g(x) = g(µ) + (X µ)g (µ) + 5 (X µ)2 g (ξ) 2

6 for some ξ. Now E((X µ) 2 ) = σ 2 which we are assuming is small and so Y = g(x) g(µ) + (X µ)g (µ). Thus Hence, E(Y ) g(µ), Var(Y ) (g (µ)) 2 σ 2. g(x) N ( g(µ), (g (µ)) 2 σ 2). 6

7 Appendix: Common Distributions Discrete Uniform X U (,..., N) X takes values x =, 2,..., N P (X = x) = /N E (X) = x xp (X = x) = x x N = N E (X 2 ) = x x2 P (X = x) = x x2 N = N Binomial X Bin(n, p) X takes values x = 0,,..., n P (X = x) = ( ) n x p x ( p) n x Hypergeometric X Hypergeometric(N, M, K) P (X = x) = (M x )( N M K x ) ( N K) Geometric X Geom(p) P (X = x) = ( p) x p, x =, 2,... E (X) = x x( p)x = p x Poisson X Poisson(λ) P (X = x) = e λ λ x x! x = 0,, 2,... E (X) = Var (X) = λ N(N+) = (N+) 2 2 N(N+)(2N+) 6 d ( ( dp p)x ) = p p =. p 2 p M X (t) = x=0 etx e λ λ x = e λ (λe t ) x x! x=0 = e λ e λet = e λ(et ). x! 7

8 E (X) = λe t e λ(et ) t=0 = λ. Use mgf to show: if X Poisson(λ ), X 2 Poisson(λ 2 ), independent then Y = X + X 2 Poisson(λ + λ 2 ). Multinomial Distribution The multivariate version of a Binomial is called a Multinomial. Consider drawing a ball from an urn with has balls with k different colors labeled color, color 2,..., color k. Let p = (p, p 2,..., p k ) where j p j = and p j is the probability of drawing color j. Draw n balls from the urn (independently and with replacement) and let X = (X, X 2,..., X k ) be the count of the number of balls of each color drawn. We say that X has a Multinomial (n, p) distribution. The pdf is ( ) n p(x) = p x... p x k k x,..., x. k Continuous Distributions Normal X N(µ, σ 2 ) p(x) = 2πσ exp{ 2σ 2 (x µ) 2 }, x R mgf M X (t) = exp{µt + σ 2 t 2 /2}. E (X) = µ Var (X) = σ 2. e.g., If Z N(0, ) and X = µ + σz, then X N(µ, σ 2 ). Show this... Proof. M X (t) = E ( e tx) = E ( e t(µ+σz)) = e tµ E ( e tσz) = e tµ M Z (tσ) = e tµ e (tσ)2/2 = e tµ+t2 σ 2 /2 which is the mgf of a N(µ, σ 2 ). 8

9 Gamma Alternative proof: F X (x) = P (X x) = P (µ + σz x) = P ( ) x µ = F Z σ ( ) x µ p X (x) = F X(x) = p Z σ σ { = exp ( ) } 2 x µ 2π 2 σ σ { = exp ( ) } 2 x µ, 2πσ 2 σ which is the pdf of a N(µ, σ 2 ). X Γ(α, β). p X (x) = Γ(α)β α x α e x/β, x a positive real. Γ(α) = 0 x α e x/β dx. β α Important statistical distribution: χ 2 p = Γ( p 2, 2). χ 2 p = p i= X2 i, where X i N(0, ), iid. Exponential X exp(β) p X (x) = β e x/β, x a positive real. exp(β) = Γ(, β). ( Z x µ ) σ e.g., Used to model waiting time of a Poisson Process. Suppose N is the number of phone calls in hour and N P oisson(λ). Let T be the time between consecutive phone calls, then T exp(/λ) and E (T ) = (/λ). If X,..., X n are iid exp(β), then i X i Γ(n, β). Memoryless Property: If X exp(β), then P (X > t + s X > t) = P (X > s). 9

10 Multivariate Normal Distribution Let Y R d. Then Y N(µ, Σ) if ( p(y) = exp ) (2π) d/2 Σ /2 2 (y µ)t Σ (y µ). Then E(Y ) = µ and cov(y ) = Σ. The moment generating function is ( ) M(t) = exp µ T t + tt Σt. 2 Theorem 7 (a). If Y N(µ, Σ), then E(Y ) = µ, cov(y ) = Σ. (b). If Y N(µ, Σ) and c is a scalar, then cy N(cµ, c 2 Σ). (c). Let Y N(µ, Σ). If A is p n and b is p, then AY + b N(Aµ + b, AΣA T ). Theorem 8 Suppose that Y N(µ, Σ). Let ( ) Y Y =, µ = Y 2 ( µ µ 2 ), Σ = ( Σ Σ 2 Σ 2 Σ 22 where Y and µ are p, and Σ is p p. (a). Y N p (µ, Σ ), Y 2 N n p (µ 2, Σ 22 ). (b). Y and Y 2 are independent if and only if Σ 2 = 0. (c). If Σ 22 > 0, then the condition distribution of Y given Y 2 is ). Y Y 2 N p (µ + Σ 2 Σ 22 (Y 2 µ 2 ), Σ Σ 2 Σ 22 Σ 2 ). Lemma 9 Let Y N(µ, σ 2 I), where Y T = (Y,..., Y n ), µ T = (µ,..., µ n ) and σ 2 > 0 is a scalar. Then the Y i are independent, Y i N (µ, σ 2 ) and Y 2 σ 2 Theorem 0 Let Y N(µ, Σ). Then: (a). Y T Σ Y χ 2 n(µ T Σ µ). (b). (Y µ) T Σ (Y µ) χ 2 n(0). = Y T Y σ 2 χ 2 n ( µ T µ σ 2 ). 0

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Aggregate Loss Models

Aggregate Loss Models Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

PSTAT 120B Probability and Statistics

PSTAT 120B Probability and Statistics - Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: Fang-I CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will

More information

Poisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0.

Poisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0. Chapter 5 Poisson Processes 5.1 Exponential Distribution The gamma function is defined by Γ(α) = t α 1 e t dt, α >. Theorem 5.1. The gamma function satisfies the following properties: (a) For each α >

More information

STAT 3502. x 0 < x < 1

STAT 3502. x 0 < x < 1 Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

Exponential Distribution

Exponential Distribution Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

More information

Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

More information

( ) is proportional to ( 10 + x)!2. Calculate the

( ) is proportional to ( 10 + x)!2. Calculate the PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

32. PROBABILITY P(A B)

32. PROBABILITY P(A B) 32. PROBABILITY 32. Probability 1 Revised September 2011 by G. Cowan (RHUL). 32.1. General [1 8] An abstract definition of probability can be given by considering a set S, called the sample space, and

More information

( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x

( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: krzysio@krzysio.net Posted September 21,

More information

Some probability and statistics

Some probability and statistics Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,

More information

Probability Calculator

Probability Calculator Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Probability Distribution

Probability Distribution Lecture 4 Probability Distribution Continuous Case Definition: A random variable that can take on any value in an interval is called continuous. Definition: Let Y be any r.v. The distribution function

More information

Lecture 21. The Multivariate Normal Distribution

Lecture 21. The Multivariate Normal Distribution Lecture. The Multivariate Normal Distribution. Definitions and Comments The joint moment-generating function of X,...,X n [also called the moment-generating function of the random vector (X,...,X n )]

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) = . A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by

i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter

More information

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1

ECE302 Spring 2006 HW5 Solutions February 21, 2006 1 ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

Tenth Problem Assignment

Tenth Problem Assignment EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,

1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35, 1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly

More information

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Generating Random Variables and Stochastic Processes 1 Generating U(0,1) Random Variables The ability to generate U(0, 1) random variables

More information

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process LECTURE 16 Readings: Section 5.1 Lecture outline Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process Number of successes Distribution of interarrival times The

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 c 2010 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used to generate random

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ( c Robert J. Serfling Not for reproduction or distribution) We have seen how to summarize a data-based relative frequency distribution by measures of location and spread, such

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

An axiomatic approach to capital allocation

An axiomatic approach to capital allocation An axiomatic approach to capital allocation Michael Kalkbrener Deutsche Bank AG Abstract Capital allocation techniques are of central importance in portfolio management and risk-based performance measurement.

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1 Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Probability for Estimation (review)

Probability for Estimation (review) Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear

More information

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

More information

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS 6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

More information

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf AMS 3 Joe Mitchell Eamples: Joint Densities and Joint Mass Functions Eample : X and Y are jointl continuous with joint pdf f(,) { c 2 + 3 if, 2, otherwise. (a). Find c. (b). Find P(X + Y ). (c). Find marginal

More information

GLM I An Introduction to Generalized Linear Models

GLM I An Introduction to Generalized Linear Models GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial

More information

Measurements of central tendency express whether the numbers tend to be high or low. The most common of these are:

Measurements of central tendency express whether the numbers tend to be high or low. The most common of these are: A PRIMER IN PROBABILITY This handout is intended to refresh you on the elements of probability and statistics that are relevant for econometric analysis. In order to help you prioritize the information

More information

How To Find Out How Much Money You Get From A Car Insurance Claim

How To Find Out How Much Money You Get From A Car Insurance Claim Chapter 11. Poisson processes. Section 11.4. Superposition and decomposition of a Poisson process. Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/18 Superposition

More information