Ribbon Silicon for Cost Reduction in Photovoltaics. Advantages and Challenges

Size: px
Start display at page:

Download "Ribbon Silicon for Cost Reduction in Photovoltaics. Advantages and Challenges"

Transcription

1 Ribbon Silicon for Cost Reduction in Photovoltaics Advantages and Challenges Giso Hahn University of Konstanz Photos: Light (greek) Volt: Alessandro Volta Photovoltaics Electricity from (sun)light

2 UKN Zakopane

3 Outline - Why photovoltaics? - A short history of PV - How does it work? - Why ribbon silicon? What is it? - Material properties and solar cell results - Summary

4 Motivation Present CO 2 and Temperature - Link between T and [CO 2 ] - Since a stable T (Holocene) - (when) does T follow increase of [CO 2 ]? [ [

5 Motivation Limitation of fossile fuels ( Hubbert-Peak ) [after: M. King Hubbert, Science, February 4, 1949] Our ignorance is not so vast as our failure to use what we know. M. King Hubbert

6 Motivation Examples of PV Applications

7 A Short History Of PV 1839: Alexandre Edmond Becquerel discovers interaction between light and electrons 1886: Heinrich Hertz and Wilhelm Hallwachs: systematic investigations 1905: Albert Einstein explains photoelectric effect and quantum nature of light (Nobel prize 1921) 1954: Daryl Chapin, Calvin Fuller, Gerald Pearson fabricate first (Si) solar cell (η = 6%) 1958: First application in Vanguard satellite (space) 1973: Oil crisis, ideas for terrestrial use 1990: 1000 roofs program (Germany), sunshine program (Japan) 2000: Law for renewable energies (EEG) in Germany, market stimulation programs 2006: PV electricity in Germany for the first time cheaper than conventional electricity (temporarily!)

8 PV: Operation Principle Crystalline Si Solar Cell photon Absorption in c-si Ag n + emitter (P) p base (B) Al ε charge carriers (electron hole pairs) - - L diff µm L diff 1/α(600nm) 2 µm 1/α(1000nm) 100 µm = D τ diffusion constant D lifetime τ of minority carriers Absorption in c-si: Absorption α dependent on λ, 1/α(600nm) 2 µm, 1/α(1000nm) 100 µm usable spectrum nm high diffusion length L diff high lifetime τ of electrons low losses (recombination) high material quality necessary [A. Götzberger: Sonnenenergie, Teubner, Stuttgart 1995]

9 PV: Operation Principle Generation of Charge Carriers in Semiconductors by Absorption of Light (Photo Effect, Einstein) C E g band gap energy E g [unknown artist: Konstanz] Excess energy: Thermalisation (heat) E ph < E g : Transmission

10 Use Of Spectrum Si Solar Cell [S. Glunz, DPG-Meeting 2004] - Losses due to thermalisation and transmission - Maximum efficiency η max, thermodyn 30% (realised: 24.7%, 4 cm 2 ) [J. Zhao et al., Appl. Phys. Lett. 73, 1998, 1991]

11 PV Production Technologies absolute relative sold mo odule power [MWp] CIS CdTe a-si ribbon-si multi-si mono-si chnology [% %] te CIS CdTe a-si asi ribbon-si multi-si mono-si [ : PV News, 2003, : Photon] - Trend from mono- to multicrystalline t lli Si - (still) low market share increase for thin film technologies (CdTe, a-si, CIS) - Crystalline Si dominates short/medium term

12 From Sand To Solar Cells [Bayer Solar AG] Wire Table Column

13 Cz Si Production Czochralski mono-si (~2 m length) Necking (to prevent forming of dislocations) [ - high quality (single crystal) - more losses (square shped wafers) - higher h costs

14 Si Losses Si Losses (mc Ingot) Ingot Column 30% Column Wafer 34% Process 4% Data for 2008 wire: 120 µm (kerf loss 160 µm) Thickness wafer: ~200 µm Total losses: 68%! [D. Sarti et al, Sol. En. Mat. & Sol. Cells 72 (2002) 27]

15 Si Module Costs Ingot based crystalline Si Module Cost Distribution - Higher module efficiencies (e.g. back contacted cells) - New fabrication methods - Lower Si consumption per W p (thinner wafers and wires, larger ingots) - Alternative Si feedstock ( Solar Grade Si) - Avoiding kerf losses (ribbon Si) - Higher efficiencies (better understanding of material, novel processing steps) [after: C. del Canizo et al., Prog. Photovolt: Res. Appl., 2009]

16 Ribbon Si Techniques Methode year Jahr Dendritic web DW M Stepanov S M Edge-defined film-fed growth EFG M Horizontal ribbon growth HRG M Ribbon-against-drop RAD M Ribbon-to-ribbon RTR M Silicon on ceramic SOC M Capillary action shaping technique CAST M Contiguous capillary coating CCC M Inverted Stepanov IS M Roller quenching RQ M Edge supported pulling ESP M Low angle silicon sheet growth LASS M Interface-controlled crystallization ICC M Supported web SW M Ramp assisted foil casting technique RAFT M Silicon-Film TM SF M Ribbon growth on substrate RGS M Horizontal supported web HSW M String ribbon SR M Two shaping elements TSE M Silicon sheets from powder SSP M Hoxan cast ribbon HCR M Hoxan spin cast HSC M3 1991

17 Ribbon Si Techniques Edge-defined Film-fed Growth (EFG) Commercialised 1994 Schott Solar

18 Ribbon Si Techniques String Ribbon (SR) Commercialised 2001 Evergreen Solar Inc. Similar crystal quality as EFG, elongated crystals, SR: less complicated technique, lower throughput

19 Ribbon Si Techniques Pulling Velocity: Vertical Ribbon Techniques (EFG, SR) v p,max ( W + ) 5 1 σε d KmT m = L ρ m Wd 1/ 2 L : latent heat of fusion ρ m : Si density at melting point T m σ : Stefan-Boltzmann constant ε : emissivity of crystal K m : thermal conductivity of crystal at T m W : ribbon width d : ribbon thickness Max. 8 cm/min In production: 1-2 cm/min (internal stresses)

20 Ribbon Si Techniques Ribbon Growth on Substrate (RGS) casting frame (open) gassing R&D phase ECN + SolarWorld (Bayer AG) Substrate plates Very high throughput, small crystals, more defects

21 Ribbon Si Techniques Pulling Velocity: Horizontal Ribbon Techniques (RGS) v p 4α Kms = ΔT α t dlρ ( 2 K ) m m α : effective coefficient i of heat transfer s : length of liquid/solid interface (in pulling direction) ΔT : temperature gradient between melt and substrate [, A. Schönecker, J. Phys.: Condensed Matter 16 (2004) R1615] In production: 650 cm/min

22 Ribbon Si Techniques Properties material V p [cm/min] width [cm] throughput [cm 2 /min] thickness [µm] EFG x12,5 ~ SR 1-2 4x8 ~ RGS (15.6) 6500(10140) ~300 material crystals resistivity [Ωcm] [O i ] [10 cm ] [C s ] [10 cm ] L diff as grown [µm] EFG cm 2-4 (p) < SR cm 2-5 (p) < RGS <mm 3 (p)

23 Defects in Ribbon Si TEM Studies in RGS 1 µm grain boundaries (GB), dislocations (D), stress fields around O-precipitates (P)

24 Defects in Ribbon Si TEM Studies in RGS Decorated Dislocation (O) Clean Dislocation 100 nm Decorated dislocations more detrimental (more recombination active)

25 Defects in Ribbon Si Current Distribution in RGS Material quality - Inhomogeneous - Spatially resolved characterisation! image: 1x1 cm 2

26 Gettering & Hydrogenation (Theory) Gettering Hydrogenation E 1 2 E CB 3 VB DL SL p-si Al x 1) Freeing of metal impurity (thermally, ~ C) 2) Diffusion in wafer 3) Capture at gettering site (higher solubility) Energy levels in middle of band gap most detrimental (deep levels) H-atoms: energy level of defect shifted Deep level (highly recombination active) shallow level (less recombination active) Less recombination: removal of impurities (gettering) & shift of defect levels in band gap (hydrogenation)

27 Gettering & Hydrogenation (Exp.) EFG as grown Typical behavior: - elongated areas of high τ (> 50 µs) - wide areas of lower τ (~ 1 µs) P-gettering + hydrogenation - SiN:H (800 C, 1 s): poor areas > 10 µs - MIRHP (H-plasma): poor areas 10 µs T (350 C, 60 min) too low for MIRHP? SiN:H based cell process necessary! [M. Kaes et al., Proc. 31st IEEE PVSC, 923] [M. Kaes et al., Proc. 20th EC PVSEC, 1063]

28 Synchrotron Investigations Precipitation Kinetics of Transition Metals in mc-si Formation kinetics of metal clusters dependant on crystallization and chemical species Slow crystallization (ingot) larger clusters, fast crystallization (ribbon) smaller clusters [T. Buonassisi i et al., Progr. Photovolt: Res. Appl ]

29 Synchrotron Investigations XAFS (X-ray absorption fine structure) Gettering efficiency highly dependent on elemental composition of precipitate (dissolution kinetics) FeSi 2 : easily dissolvable Fe 2 O 3 : hardly dissolvable [T. Buonassisi i et al., Progr. Photovolt: Res. Appl ]

30 Efficiencies & Si Consumption Industrial cell process: EFG, SR 15-16%, RGS 13% Lab cell process: EFG, SR 18%, RGS 14-15% EFG, SR of higher but more inhomogeneous quality Industrial-type process material Thickness [µm] η [%] g Si /W p mc-si ingot ~250 ~ EFG SR RGS 300 (150) 13 (11 * ) 5.4 (3.2) Less g Si /W p = lower cost/w p? p yield, plant utilization, etc. Energy Payback Time p * : first try Assumptions: ribbon Si: 100% Si usage, record values, mc-si ingot: average value [ et al., Proc. 4 th WC PEC, Waikoloa 2006, 972]

31 Summary & Outlook Summary -PV one form of electricity generation in future renewable energy mix - history of PV, current market situation, future trends (Si) -module costs wafer dominated d - Si ribbon production techniques (EFG, SR, RGS) - highest throughput for RGS, still R&D, pilot production - higher defect densities in ribbon Si optimised/new gettering and hydrogenation steps - cell efficiencies (lab + industrial process) - better Si usage (g/w p ) Outlook - use full potential for cost reduction in photovoltaics by e.g. ribbon Si - reaching grid parity (short term: southern Europe, mid term: central Europe) - more research and understanding necessary to exploit full potential!

32 Co-workers: S. Seren, M. Käs, P. Geiger, J. Junge, U. Hess, (UKN) T. Buonassisi (MIT) A. Schönecker, (RGS Development) A. Metz, H. Nagel (Schott Solar) Thank you for your Attention! Greenpeace

Photovoltaic Power: Science and Technology Fundamentals

Photovoltaic Power: Science and Technology Fundamentals Photovoltaic Power: Science and Technology Fundamentals Bob Clark-Phelps, Ph.D. Evergreen Solar, Inc. Renewable Energy Seminar, Nov. 2, 2006 Photovoltaic Principle Energy Conduction Band electron Energy

More information

Fundamentals of Photovoltaic Materials

Fundamentals of Photovoltaic Materials Fundamentals of Photovoltaic Materials National Solar Power Reasearch Institute, Inc. 12/21/98-1 - 12/21/98 Introduction Photovoltaics (PV) comprises the technology to convert sunlight directly into electricity.

More information

What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun.

What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is the solar industry? The solar industry is

More information

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely ELG4126: Photovoltaic Materials Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely Introduction A material or device that is capable of converting the energy contained

More information

Silicon Wafer Solar Cells

Silicon Wafer Solar Cells Silicon Wafer Solar Cells Armin Aberle Solar Energy Research Institute of Singapore (SERIS) National University of Singapore (NUS) April 2009 1 1. PV Some background Photovoltaics (PV): Direct conversion

More information

Developments in Photoluminescence Characterisation for Silicon PV

Developments in Photoluminescence Characterisation for Silicon PV Developments in Photoluminescence Characterisation for Silicon PV School of Photovoltaic and Solar Energy Engineering Bernhard Mitchell 1, Thorsten Trupke 1,2, Jürgen W. Weber 2, Johannes Greulich 3, Matthias

More information

Thin Is In, But Not Too Thin!

Thin Is In, But Not Too Thin! Thin Is In, But Not Too Thin! K.V. Ravi Crystal Solar, Inc. Abstract The trade-off between thick (~170 microns) silicon-based PV and thin (a few microns) film non-silicon and amorphous silicon PV is addressed

More information

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE Photovoltaics Report Freiburg, December 11, 2012 www.ise.fraunhofer.de CONTENT Introduction Executive Summary PV Market Solar Cells / Modules / System

More information

Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon)

Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon) Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon) Nigel Mason SMEET II Workshop, London 27 Feb 2013 content Brief introduction to Solar PV Technologies Part I - Crystalline

More information

The Current status of Korean silicon photovoltaic industry and market. 2011. 3.17 Sangwook Park LG Electronics Inc.

The Current status of Korean silicon photovoltaic industry and market. 2011. 3.17 Sangwook Park LG Electronics Inc. The Current status of Korean silicon photovoltaic industry and market 2011. 3.17 Sangwook Park LG Electronics Inc. contents 1.Introduction (World PV Market) 2.Korean PV market 3.Photovoltaics in LG Electronics

More information

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,

More information

Welcome to SCHOTT Solar

Welcome to SCHOTT Solar SolarInnovativ Thüringen Welcome to SCHOTT Solar Europe's largest producer of PV solar electricity components EFG, ein kostengünstiges Produktionsverfahren für Si-Wafer Dr. Ingo A. Schwirtlich SolarInnovativ

More information

Wafer-based silicon PV technology Status, innovations and outlook

Wafer-based silicon PV technology Status, innovations and outlook Wafer-based silicon PV technology Status, innovations and outlook Wim Sinke ECN Solar Energy, Utrecht University & European PV Technology Platform www.ecn.nl Contents Wafer-based silicon photovoltaics

More information

Silicon Dioxide Layer Key to High Efficiency Crystalline Solar Cells

Silicon Dioxide Layer Key to High Efficiency Crystalline Solar Cells 11760 Sorrento Valley Road, Suite E San Diego, CA 92121 858.259.1220 / 858.259.0123 fax www.rasirc.com Silicon Dioxide Layer Key to High Efficiency Crystalline Solar Cells Wet Thermal Oxide Films enable

More information

PV Energy Payback. by Justine Sanchez. Single-Crystalline

PV Energy Payback. by Justine Sanchez. Single-Crystalline Single-Crystalline PV Energy Payback by Justine Sanchez Photovoltaic technology is a fantastic miracle of science that silently converts sunlight into streaming electrons that can be used to do work. While

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG PHOTOVOLTAICS REPORT Prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG Freiburg, 4 November 2015 www.ise.fraunhofer.de CONTENT Introduction Executive Summary Topics:

More information

PV-FZ Silicon Wafers for High Efficiency Solar Cells

PV-FZ Silicon Wafers for High Efficiency Solar Cells Note relaunched January 2014, replacing PV-FZ Silicon Wafers for High Efficiency Solar Cells, September 2010 APPLICATION NOTE PV-FZ Silicon Wafers for High Efficiency Solar Cells PV-FZ monocrystalline

More information

Solar Solutions and Large PV Power Plants. Oscar Araujo Business Development Director - Americas

Solar Solutions and Large PV Power Plants. Oscar Araujo Business Development Director - Americas Solar Solutions and Large PV Power Plants Oscar Araujo Business Development Director - Americas Solar Business of Schneider Electric The Solar Business of Schneider Electric is focused on designing and

More information

Electricity from PV systems how does it work?

Electricity from PV systems how does it work? Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant

More information

MORE POWER. A BETTER INVESTMENT.

MORE POWER. A BETTER INVESTMENT. SUNPOWERCORP.COM US HEADQUARTERS SunPower Corporation 3939 N. 1st Street San Jose, California 95134 USA 1-800-SUNPOWER sunpowercorp.com MORE POWER. A BETTER INVESTMENT. Established Incorporated in 1985

More information

Design of inductors and modeling of relevant field intensity

Design of inductors and modeling of relevant field intensity 3. Growth of shaped Si single crystals (FZ) Design of inductors and modeling of relevant field intensity Main cut Schematic of inductor for large square FZ crystals z-component of the field intensity for

More information

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar Light management for photovoltaics Ando Kuypers, TNO Program manager Solar Global energy consumption: 500 ExaJoule/Year Solar irradiation on earth sphere: 5.000.000 ExaJoule/year 2 Capturing 0,01% covers

More information

The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006

The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006 The Status and Outlook for the Photovoltaics Industry David E. Carlson March 14, 2006 Outline of the Talk The PV Market The Major Players Different Types of Solar Cells Field Installations Performance

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

Renewable energy technology forecast: what can we expect from the technology evolution?

Renewable energy technology forecast: what can we expect from the technology evolution? Renewable energy technology forecast: what can we expect from the technology evolution? Wolfram Krewitt DLR Institute of Technical Thermodynamics Systems Analysis and Technology Assessment Stuttgart NEEDS

More information

Characterization and Qualitative Assessment of Silicon Wafers with Photoluminescence Imaging at Room Temperature

Characterization and Qualitative Assessment of Silicon Wafers with Photoluminescence Imaging at Room Temperature Characterization and Qualitative Assessment of Silicon Wafers with Photoluminescence Imaging at Room Temperature SSW: B. Birkmann, A. Seidl, Chr. Lemke, M. Müller Business Unit/Department 2 Agenda - Motivation:

More information

Photovoltaik und globale Energieversorgung

Photovoltaik und globale Energieversorgung 11/05/2011 EKZ Elektrizitätswerke des Kantons Zürich 1 Photovoltaik und globale Energieversorgung Arnulf Jäger-Waldau European Commission, DG JRC, Ispra Institute for Energy Renewable Energies Disclaimer

More information

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

More information

Photovoltaic System Technology

Photovoltaic System Technology Photovoltaic System Technology Photovoltaic Cells What Does Photovoltaic Mean? Solar electricity is created using photovoltaic cells (or PV cells). The word photovoltaic is made up of two words: photo

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

EPIA ROADMAP EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION

EPIA ROADMAP EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION EPIA ROADMAP EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION FOREWORD The favourable conditions created recently by the White Paper and the RES Directive will help Photovoltaic (PV) Solar Electricity to accelerate

More information

Crystalline Silicon Modules: The Brick Stones for a Photovoltaic Electricity Supply

Crystalline Silicon Modules: The Brick Stones for a Photovoltaic Electricity Supply Crystalline Silicon Modules: The Brick Stones for a Photovoltaic Electricity Supply Institute for Photovoltaics, University of Stuttgart May 2013 [email protected] Overview 1. PV-Installations

More information

Thin Film Solar Cells based on CIS

Thin Film Solar Cells based on CIS Thin Film Solar Cells based on CIS Research for production of cheap and efficient solar modules Marika Edoff, Ångström Solar Center, Uppsala University, Sweden Email: [email protected] 1 partners

More information

EMERGING POTENTIAL FOR SOLAR ENERGY

EMERGING POTENTIAL FOR SOLAR ENERGY EMERGING POTENTIAL FOR SOLAR ENERGY Wacker Chemie AG, February, 2012 CREATING TOMORROW'S SOLUTIONS DISCLAIMER The information contained in this presentation is for background purposes only and is subject

More information

Solar energy: prepare for impact. Wim Sinke ECN Solar Energy, Utrecht University & European Photovoltaic Technology Platform

Solar energy: prepare for impact. Wim Sinke ECN Solar Energy, Utrecht University & European Photovoltaic Technology Platform Solar energy: prepare for impact Wim Sinke ECN Solar Energy, Utrecht University & European Photovoltaic Technology Platform Content Solar energy for heat, electricity and fuels Solar electricity: what

More information

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION Olivier Palais, Damien Barakel, David Maestre, Fabrice Gourbilleau and Marcel Pasquinelli 1 Outline Photovoltaic today

More information

THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE

THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE 5th World Conference on Photovoltaic Energy Conversion, 6-1 September 21, Valencia, Spain THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE Y.

More information

Optimization and Modeling. of Photovoltaic Silicon. Crystallization Processes

Optimization and Modeling. of Photovoltaic Silicon. Crystallization Processes ISSCG 14 Dalian August 1-7, 2010 Optimization and Modeling of Photovoltaic Silicon Crystallization Processes Georg Müller Jochen Friedrich Fraunhofer Institute IISB, Erlangen (Germany) 1 Photovoltaic Power

More information

Industrial n-type solar cells with >20% cell efficiency

Industrial n-type solar cells with >20% cell efficiency Industrial n-type solar cells with >20% cell efficiency I.G. Romijn, J. Anker, A.R. Burgers, A. Gutjahr, B. Heurtault, M. Koppes, E. Kossen, M. Lamers, D.S. Saynova and C.J.J. Tool ECN Solar Energy, P.O.

More information

Cell-to-Module Gains and Losses in Crystalline Silicon PV. Andrew Gabor Gabor Photovoltaics Consulting, LLC July 10, 2013 - Intersolar NA

Cell-to-Module Gains and Losses in Crystalline Silicon PV. Andrew Gabor Gabor Photovoltaics Consulting, LLC July 10, 2013 - Intersolar NA Cell-to-Module Gains and Losses in Crystalline Silicon PV Andrew Gabor Gabor Photovoltaics Consulting, LLC July 10, 2013 - Intersolar NA 1 Some material sourced from 2 Outline Background Loss/Gain Types

More information

27th European Photovoltaic Solar Energy Conference and Exhibition ENERGY PAYBACK TIME AND CARBON FOOTPRINT OF ELKEM SOLAR SILICON

27th European Photovoltaic Solar Energy Conference and Exhibition ENERGY PAYBACK TIME AND CARBON FOOTPRINT OF ELKEM SOLAR SILICON ENERGY PAYBACK TIME AND CARBON FOOTPRINT OF ELKEM SOLAR SILICON Ronny Glöckner Elkem Solar AS, Fiskaaveien 100, N-4675 Kristiansand, Norway [email protected] Mariska de Wild-Scholten SmartGreenScans,

More information

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process Lynne Michaelson, Krystal Munoz, Jonathan C. Wang, Y.A. Xi*, Tom Tyson, Anthony Gallegos Technic Inc.,

More information

Solar PV Cells Free Electricity from the Sun?

Solar PV Cells Free Electricity from the Sun? Solar PV Cells Free Electricity from the Sun? An Overview of Solar Photovoltaic Electricity Carl Almgren and George Collins( editor) Terrestrial Energy from the Sun 5 4 3 2 1 0.5 Electron-Volts per Photon

More information

Solar Energy. Solar Energy range. NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus

Solar Energy. Solar Energy range. NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus Solar Energy Solar Energy range NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus Moving from hydrocarbon dependency to renewable energy The use of solar energy glass and the NSG Group

More information

Solar power Availability of solar energy

Solar power Availability of solar energy Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called

More information

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.

More information

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Applied Surface Science 186 2002) 453±457 Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Lianne M. Doeswijk a,*, Hugo H.C. de Moor b, Horst Rogalla a, Dave

More information

COMPETITIVE SOLAR TECHNOLOGIES

COMPETITIVE SOLAR TECHNOLOGIES COMPETITIVE SOLAR TECHNOLOGIES June 25, 2008 The eventual market will be driven by the levelized cost of energy. At this early development stage, competition is measured on the basis of technology and

More information

ASI OEM Outdoor Solar Modules

ASI OEM Outdoor Solar Modules SOLAR PHOTOVOLTAICS ASI OEM OUTDOOR E ASI OEM Outdoor Solar Modules for innovative autarchic electronic devices More Energy Double-stacked cells Stable performance Reliability and Quality Made in Germany

More information

Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon

Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon Latifa Sabri 1, Mohammed Benzirar 2 P.G. Student, Department of Physics, Faculty of Sciences

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

Clean, Sustainable Energy from the Sun Now, and for Our Children s Future

Clean, Sustainable Energy from the Sun Now, and for Our Children s Future Clean, Sustainable Energy from the Sun Now, and for Our Children s Future An Industry Leader NovaSolar is an industry leader in manufacturing thin-film silicon based solar panels and constructing large

More information

Solar Power Optimization. another source of conflict. The world has a rapidly growing population that is estimated will reach ten

Solar Power Optimization. another source of conflict. The world has a rapidly growing population that is estimated will reach ten Solar Power Optimization Some claim our next global conflicts will be for food and water, but the supply of energy will be another source of conflict. The world has a rapidly growing population that is

More information

Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems

Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems 1 Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

More information

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG PHOTOVOLTAICS REPORT Prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG Freiburg, 6 June 2016 www.ise.fraunhofer.de CONTENT Introduction Executive Summary Topics: PV

More information

Technology Advantage

Technology Advantage Technology Advantage 2 FIRST SOLAR TECHNOLOGY ADVANTAGE 3 The Technology Advantage Cadmium Telluride (CdTe) photovoltaic (PV) technology continues to set performance records in both research and real-world

More information

New materials for PV Mirjam Theelen

New materials for PV Mirjam Theelen New materials for Mirjam Theelen 2 A little bit about myself Born in Eindhoven 2001-2007 Study chemistry in Nijmegen Solid State Chemistry Physical Chemistry 2007-present Scientist at TNO (Eindhoven) Research

More information

Applied Physics of solar energy conversion

Applied Physics of solar energy conversion Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor

More information

Spectral Characterisation of Photovoltaic Devices Technical Note

Spectral Characterisation of Photovoltaic Devices Technical Note Spectral Characterisation of Photovoltaic Devices Technical Note Introduction to PV This technical note provides an overview of the photovoltaic (PV) devices of today, and the spectral characterisation

More information

Solar power for sustainable energy

Solar power for sustainable energy Solar power for sustainable energy Prepared by: Ahmed Al Busaidi, Oman Water Society Antonio Palacios, Inabensa Oman Eng. Narineh Simonian, Inabensa Oman Index 1 Introduction to Solar technology and different

More information

Arizona Institute for Renewable Energy & the Solar Power Laboratories

Arizona Institute for Renewable Energy & the Solar Power Laboratories Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State

More information

Materials and Technologies for Renewable Energy. ENEA R&D activities on PV. Anna De Lillo

Materials and Technologies for Renewable Energy. ENEA R&D activities on PV. Anna De Lillo Italian National Agency for New Technologies, Energy and Sustainable Economic Development Materials and Technologies for Renewable Energy ENEA R&D activities on PV Anna De Lillo ENEA UTT-RINN Castel Romano,

More information

Solar Energy Engineering

Solar Energy Engineering Online Training Modules in Photovoltaics Solar Energy Engineering Starting June 2, 2014 the University of Freiburg in cooperation with Fraunhofer will be offering free special training modules in Solar

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

INTRODUCTION TO PHOTOVOLTAIC SOLAR ENERGY

INTRODUCTION TO PHOTOVOLTAIC SOLAR ENERGY Chapter 1. INTRODUCTION TO PHOTOVOLTAIC SOLAR ENERGY Miro Zeman Delft University of Technology 1.1 Introduction to energy consumption and production Any change that takes place in the universe is accompanied

More information

From Nano-Electronics and Photonics to Renewable Energy

From Nano-Electronics and Photonics to Renewable Energy From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy

More information

THE FUTURE OF THE SOLAR INDUSTRIE

THE FUTURE OF THE SOLAR INDUSTRIE THE FUTURE OF THE SOLAR INDUSTRIE Eicke R. Weber Fraunhofer Institute for Solar Energy Systems ISE and University of Freiburg, Germany Ecosummit 2015 Berlin, May 20, 2015 Fraunhofer ISE Research for the

More information

Photovoltaic and Photoelectrochemical Solar Cells

Photovoltaic and Photoelectrochemical Solar Cells Photovoltaic and Photoelectrochemical Solar Cells EDDIE FOROUZAN, PH.D. ARTIN ENGINEERING AND CONSULTING GROUP, INC. 7933 SILVERTON AVE. #715 SAN DIEGO, CA 92128 PSES San Diego Chapter 2012-02-10 History

More information

Global Market Outlook for Photovoltaics until 2012 Facing a sunny future

Global Market Outlook for Photovoltaics until 2012 Facing a sunny future > Competitiveness Global Market Outlook for Photovoltaics until 1 Facing a sunny future 1 Global Market Outlook for Photovoltaics until 1 Facing a sunny future Demand side The solar PV market has been

More information

A Thesis Presented to the Academic Faculty. Ben M. Damiani

A Thesis Presented to the Academic Faculty. Ben M. Damiani INVESTIGATION OF LIGHT INDUCED DEGRADATION IN PROMISING PHOTOVOLTAIC GRADE SILICON AND DEVELOPMENT OF POROUS SILICON ANTI-REFLECTION COATINGS FOR SILICON SOLAR CELLS A Thesis Presented to the Academic

More information

R&D from material preparation up to next generation manufacturing: opportunities for local companies

R&D from material preparation up to next generation manufacturing: opportunities for local companies R&D from material preparation up to next generation manufacturing: opportunities for local companies Prof. Christophe Ballif EPFL,IMT, PV-Lab and CSEM CSEM, PV-center 2000 Neuchâtel PV industry Ultra-low

More information

Irradiance. Solar Fundamentals Solar power investment decision making

Irradiance. Solar Fundamentals Solar power investment decision making Solar Fundamentals Solar power investment decision making Chilean Solar Resource Assessment Antofagasta and Santiago December 2010 Edward C. Kern, Jr., Ph.D., Inc. Global Solar Radiation Solar Power is

More information

Staff: 1277 including students and student assistants Annual Budget: 86,1 million euros, including investments. (December 2014)

Staff: 1277 including students and student assistants Annual Budget: 86,1 million euros, including investments. (December 2014) Fraunhofer Institute for Solar Energy Systems ISE A short overview The Institute The Fraunhofer Institute for Solar Energy Systems ISE is committed to promoting sustainable, economic, safe and socially

More information

S Tile : a new player in the photovoltaic market in Europe. Press file

S Tile : a new player in the photovoltaic market in Europe. Press file S Tile : a new player in the photovoltaic market in Europe Press file Feb. 2013 Page 1 sur 11 SUMMARY The company S Tile has been created in 2007 in Poitiers, to develop a new process of solar cell manufacturing.

More information

Development of High-Speed High-Precision Cooling Plate

Development of High-Speed High-Precision Cooling Plate Hironori Akiba Satoshi Fukuhara Ken-ichi Bandou Hidetoshi Fukuda As the thinning of semiconductor device progresses more remarkably than before, uniformity within silicon wafer comes to be strongly required

More information

Solar Power for Agriculture and Our Experiences at the Middlesex County EARTH Center Rutgers Cooperative Extension William T. Hlubik Agricultural and Resource Management Agent Rutgers Cooperative Extension

More information

High power picosecond lasers enable higher efficiency solar cells.

High power picosecond lasers enable higher efficiency solar cells. White Paper High power picosecond lasers enable higher efficiency solar cells. The combination of high peak power and short wavelength of the latest industrial grade Talisker laser enables higher efficiency

More information

c- Si Metrology: Perspec;ves from Across the Supply Chain

c- Si Metrology: Perspec;ves from Across the Supply Chain SOLARWORLD AMERICAS 2015 Bjoern Seipel c- Si Metrology: Perspec;ves from Across the Supply Chain Feedstock, crystalliza1on, and wafer PVMC mee;ng 2015, SFO America s largest PV manufacturer since 1975

More information

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008 Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

More information

Crystalline Silicon Terrestrial Photovoltaic Cells Supply Chain Procurement Specification Guideline

Crystalline Silicon Terrestrial Photovoltaic Cells Supply Chain Procurement Specification Guideline Crystalline Silicon Terrestrial Photovoltaic Cells Supply Chain Procurement Specification Guideline A study report prepared for by Mani G. Tamizh-Mani Arizona State University SEMI Workshop ASU Polytechnic,

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Future Business Opportunities Emerging Technologies & New Markets

Future Business Opportunities Emerging Technologies & New Markets Transforming Scotland Solar can no longer be ignored with Solar Future Business Opportunities Emerging Technologies & New Markets Ray Noble STA Solar PV Specialist National Solar Centre Associate Co-Chair

More information

ANALYSIS 2: Photovoltaic Glass Replacement

ANALYSIS 2: Photovoltaic Glass Replacement ANALYSIS 2: Photovoltaic Glass Replacement Problem Identification Bridgeside II is designed to accommodate 80 percent lab space and 20 percent office space. Laboratory equipment can consume a considerable

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei [email protected] Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

Optical Disc and Solar Annual Press/Analyst Conference - March 26, 2010

Optical Disc and Solar Annual Press/Analyst Conference - March 26, 2010 SMART SOLUTIONS TO DRIVE THE FUTURE Optical Disc and Solar Annual Press/Analyst Conference - Dr. - Ing. Stefan Rinck AG Optical Disc & Solar - 2 - Optical Disc - Blu-ray Excellent starting position for

More information

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007 DOE Solar Energy Technologies Program Peer Review Evaluation of Nanocrystalline Silicon Thin Film by Near-Field Scanning Optical Microscopy AAT-2-31605-05 Magnus Wagener and George Rozgonyi North Carolina

More information

CONCENTRATED PHOTOVOLTAIC AND SOLAR PHOTOVOLTAIC GLOBAL MARKET (2009-2014)

CONCENTRATED PHOTOVOLTAIC AND SOLAR PHOTOVOLTAIC GLOBAL MARKET (2009-2014) CONCENTRATED PHOTOVOLTAIC AND SOLAR PHOTOVOLTAIC GLOBAL MARKET (2009-2014) R e p o r t D e s c r i p t i o n T a b l e o f C o n t e n t s L i s t o f T a b l e s S a m p l e T a b l e s R e l a t e d

More information

LONGTERM EXPERIENCE WITH PV POWER PLANTS IN GERMANY

LONGTERM EXPERIENCE WITH PV POWER PLANTS IN GERMANY LONGTERM EXPERIENCE WITH PV POWER PLANTS IN GERMANY Dr. Christian Reise Fraunhofer Institute for Solar Energy Systems ISE Freiburg, Germany Solar Operations & Maintenance Milan, October 9 th, 2013 The

More information

Energia Solar Fotovoltaica, MC Brito Introduction, 9/29/2009

Energia Solar Fotovoltaica, MC Brito Introduction, 9/29/2009 Brief history of photovoltaics PV market PV in Portugal (Summary of this course) Brief history of photovoltaics 1839: Edmund Becquerel, a French experimental physicist, discovered the photovoltaic effect.

More information