Project Overview. Collabora'on Mee'ng with Op'mis, Sept. 2011, Rome
|
|
|
- Ambrose Wilkinson
- 10 years ago
- Views:
Transcription
1 Project Overview Collabora'on Mee'ng with Op'mis, Sept. 2011, Rome
2 Cloud-TM at a glance "#$%&'$()!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&!"'!()*+!!!!!!!!!!!!!!!!!!!,-./ !("*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&7"7#7"7!("*+!!!!!!!!!!!!!!!!!!!89:!;62!("$+! "$*+',%!,**$-.&#%*$)! )6/-/!8/46</=!"#$%&!"'!()*+! /0$#1*&)! >0/4!?@<9!ABCB!2/!D6E!ABCF! "$*2$#33')! >)GH"&*HABBIHJ!K!LMN95OP9!C7A! 40$%5'$!.&6*$3#1*&)! 3QRSTTUUU75-/@:2479@!
3 Cloud computing: the vision Cloud computing is at the peak of its hype
4 Cloud computing: (some) pitfalls Lack of programming models effec'vely hiding the issues of: concurrency distribu'on fault- tolerance elas'city Complexity Lack of effec've tools to automate elas'c scaling: manual monitoring expensive and error- prone automa'c resource provisioning tools s'll in their infancy Data consistency in dynamic systems is extremely challenging: no one size fits all solu'on
5 Key Question How to remove these roadblocks and materialize the Cloud vision? SIMPLIFYING THE DEVELOPMENT AND ADMINISTRATION OF CLOUD APPLICATIONS
6 Project Goals Develop an open- source middleware for the Cloud: 1. Providing a simple and intui've programming model: hide complexity of distribu'on, elas'city, fault- tolerance 2. Minimizing administra'on and monitoring costs: automate elas'c provisioning based on QoS/cost constraints 3. Minimize opera'onal costs via self- tuning adap'ng consistency mechanisms to maximize efficiency
7 The Cloud-TM Solution but first some background
8 From Transactional Memories Transac'onal Memories (TM): replace locks with atomic transac'ons in the programming language hide away synchroniza'on issues from the programmer avoid deadlocks, priority inversions, debugging nightmare simpler to reason about, verify, compose simplify development of parallel applica8ons
9 to Distributed Transactional Memories... Distributed Transac'onal Memories (DTM): extends TM abstrac'on over the boundaries of a single machine: enhance scalability ensure fault- tolerance minimize communica'on overhead via: specula'on batching consistency ac'ons at commit- 'me
10 to the Cloud-TM Programming Paradigm Elas'c scale- up and scale- down of the DTM plauorm: data distribu'on policies minimizing reconfigura'on overhead auto- scaling based on user defined QoS & cost constraints Transparent support for fault- tolerance via data replica'on: self- tuning of consistency protocols driven by workload changes Language level support for: transparent support of object- oriented domain model (incl. search) highly scalable abstrac'ons parallel transac'on nes'ng in distributed environments
11 Platform s architecture
12 Architecture Overview 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
13 Key Enabling Technologies Integra'on/extension of mainstream open source projects: leverage Red Hat s exper'se avoid reinven'ng the wheel focus on innova'on maximize project s visibility facilitate exploita'on of project s results provide a robust ini'al prototype
14 CLOUD-TM DATA PLATFORM
15 Reconfigurable Distributed STM 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
16 Reconfigurable Distributed STM (1) Infinispan was selected as reference plauorm: open source project led by JBoss in- memory transac'onal data grid key- value store API par'al and full replica'on
17 Some users of Infinispan Using Infinispan Today
18 Reconfigurable Distributed STM (2) Infinispan is being extended to support: addi'onal mechanisms for: data replica'on/distribu'on local concurrency control support for heterogeneous persistence storages online reconfigura'on mechanisms, e.g.: replica'on protocol switching dynamic data placement
19 Reconfigurable Storage System 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
20 Reconfigurable Storage System Plug- in based architecture suppor'ng heterogeneous persistent storages: local file systems cloud storage services (e.g. S3) Cassandra storage solu'ons developed by FP7 projects (TClouds)
21 Data Platform Programming API 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
22 Object Grid Mapper Two approaches are being explored to map a OO domain to the key/value model: JPA compliant API: Pro: widely adopted industry standard Con: constraints imposed by standard compliance Domain Modelling Language (DML) approach: Pro: increased flexibility Con: non- standard approach
23 Search API Support for JPA Query Language Integra'on with: Hibernate Search: OO query Apache Lucene: full text query 0$%5"5(5,-./)0%+1%'22'("3).-4!"#$%&'($)*+%$ *+%$ -B,B,-FGH 3+&?$%($% "&9$:$5)8)5$'%37$5 5$'%37)(+ 0$%5"5(5)"&(+!"#$%&'($) 6$'%37 5$'%37$5)8)"&9$:$5 5(+%$9)"& 9"5(%"#<($9) 4&!&"50'& 4&!&"50'& 4&!&"50'& 4&!&"50'& 4&!&"50'& 6$'%37)$&1"&$ '&9)'11%$1'("+& B#C$3(8D%"9)E'00$% Joins, aggrega'ons via Teiid: data virtualiza'on system allowing using data from mul'ple, heterogeneous data stores. ;$""9
24 Distributed Execution Framework Two main APIs: extension of Java 5 Concurrency APIs: scheduling and execu'on of tasks across the plauorm thread synchroniza'on mechanisms, e.g.: semaphores, queues, barriers concurrent, transac'onal data structures, e.g.: sets, hashmaps Map/reduce variant using data stored in the in- memory transac'onal data grid
25 AUTONOMIC MANAGER
26 Autonomic Manager 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%) 1st Annual Review, 4/7/2011, Bruxelles, Belgium 26
27 Self-tuning in babel! The Cloud- TM plauorm is an ecosystem of components using diverse technologies: JAVA, OCCI, OVF, Unix- dialects each with his own: interfaces parameters key performance indicators objec've func'ons Self- op'miza'on is already a challenge on his own: self- op'mizing a babel of components is impossible!
28 Generic Tunable Component Interface Abstrac'on layer hiding heterogeneity from Autonomic Manager XML encoding of metadata describing tuning op'ons and hints on rela'ons among op'ons: parameter types and ranges parameters to be considered KPIs parameters whose sejngs can affect KPI u'lity func'ons to use to self- tune each component
29 QoS/Cost specification API 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
30 QoS/Cost specification API Allow applica'ons for specifying agreements with the Cloud- TM plauorm concerning: QoS and cost constraints, e.g.: avg. transac'on execu'on 'me<1sec max opera'onal cost<100 /month applica'ons obliga'ons, e.g.: CPU 'me per transac'on<200msec transac'on conten'on probability<10e- 5 Reuse/extension of open source tools developed by recent FP7 projects: WS Agreement WSAG4J
31 Workload & QoS monitor 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%) 1st Annual Review, 4/7/2011, Bruxelles, Belgium 31
32 Workload & QoS monitor Efficient dissemina'on of monitoring data is essen'al in large scale systems Cloud- TM s monitoring framework is based on Lajce: monitoring framework developed in RESERVOIR differen'ated channels and specialized transport mechanisms: IP mul'cast, Pub/sub, etc extensions to enhance: portability across heterogeneous OSs/VMs efficiency in WAN/large datacenter sejngs
33 Workload Analyzer 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
34 Workload Analyzer.)&/-)"+$:*"-(6'&.)&/-)"+ 45"&"4#'&(6"#()*.)&/-)"+ 0)*(#)&!"#"$"%%&'%"#()* "*+$,(-#'&(*%.)&/-)"+$ "*+ &'7)8&4'7$87"%'$+'3"*+ 9&'+(4#()* :+"9#"#()* 0"*"%'& 1)2$3)*(#)&(*%$"*+$ $"-'&#$*)#(,(4"#()* 1)2$79'4(,(4"#()* "*+$ "-'&#$4)*,(%8&"#()*$
35 Adaptation Manager 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)
36 Adaptation Manager
37 Key Project Phases Ini'al Pilot Applica'ons Demonstra'on Prototype of Distributed STM & Persistent Storage Final Pilot Applica'ons Final Clout- TM Prototype Prototype of the Autonomic manager Evalua'on YEAR1 YEAR2 YEAR3
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan
Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management
Data Center Evolu.on and the Cloud. Paul A. Strassmann George Mason University November 5, 2008, 7:20 to 10:00 PM
Data Center Evolu.on and the Cloud Paul A. Strassmann George Mason University November 5, 2008, 7:20 to 10:00 PM 1 Hardware Evolu.on 2 Where is hardware going? x86 con(nues to move upstream Massive compute
Return on Experience on Cloud Compu2ng Issues a stairway to clouds. Experts Workshop Nov. 21st, 2013
Return on Experience on Cloud Compu2ng Issues a stairway to clouds Experts Workshop Agenda InGeoCloudS SoCware Stack InGeoCloudS Elas2city and Scalability Elas2c File Server Elas2c Database Server Elas2c
Chapter 3. Database Architectures and the Web Transparencies
Week 2: Chapter 3 Chapter 3 Database Architectures and the Web Transparencies Database Environment - Objec
PROJECT PORTFOLIO SUITE
ServiceNow So1ware Development manages Scrum or waterfall development efforts and defines the tasks required for developing and maintaining so[ware throughout the lifecycle, from incep4on to deployment.
SDN- based Mobile Networking for Cellular Operators. Seil Jeon, Carlos Guimaraes, Rui L. Aguiar
SDN- based Mobile Networking for Cellular Operators Seil Jeon, Carlos Guimaraes, Rui L. Aguiar Background The data explosion currently we re facing with has a serious impact on current cellular networks
Big Data. The Big Picture. Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas
Big Data The Big Picture Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas What is Big Data? Big Data gets its name because that s what it is data that
Scaling IP Mul-cast on Datacenter Topologies. Xiaozhou Li Mike Freedman
Scaling IP Mul-cast on Datacenter Topologies Xiaozhou Li Mike Freedman IP Mul0cast Applica0ons Publish- subscribe services Clustered applica0ons servers Distributed caching infrastructures IP Mul0cast
Towards a simple programming model in Cloud Computing platforms
Towards a simple programming model in Cloud Computing platforms Jorge Martins, João Pereira, Sérgio M. Fernandes, João Cachopo IST / INESC-ID {jorge.martins,joao.d.pereira,sergio.fernandes,joao.cachopo}@ist.utl.pt
Phone Systems Buyer s Guide
Phone Systems Buyer s Guide Contents How Cri(cal is Communica(on to Your Business? 3 Fundamental Issues 4 Phone Systems Basic Features 6 Features for Users with Advanced Needs 10 Key Ques(ons for All Buyers
Cloud Compu)ng in Educa)on and Research
Cloud Compu)ng in Educa)on and Research Dr. Wajdi Loua) Sfax University, Tunisia ESPRIT - December 2014 04/12/14 1 Outline Challenges in Educa)on and Research SaaS, PaaS and IaaS for Educa)on and Research
Key Challenges in Cloud Computing to Enable Future Internet of Things
The 4th EU-Japan Symposium on New Generation Networks and Future Internet Future Internet of Things over "Clouds Tokyo, Japan, January 19th, 2012 Key Challenges in Cloud Computing to Enable Future Internet
Project Por)olio Management
Project Por)olio Management Important markers for IT intensive businesses Rest assured with Infolob s project management methodologies What is Project Por)olio Management? Project Por)olio Management (PPM)
Experiments on cost/power and failure aware scheduling for clouds and grids
Experiments on cost/power and failure aware scheduling for clouds and grids Jorge G. Barbosa, Al0no M. Sampaio, Hamid Harabnejad Universidade do Porto, Faculdade de Engenharia, LIACC Porto, Portugal, [email protected]
BSC vision on Big Data and extreme scale computing
BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,
Solving today's integra@on challenges with Oracle SOA Suite, and Oracle Coherence
Solving today's integra@on challenges with Oracle SOA Suite, and Oracle Coherence Asaf Lev Sales Consul@ng [email protected] Agenda Industry Trends Oracle SOA Suite Oracle Coherence Oracle Service Bus
Telephone Related Queries (TeRQ) IETF 85 (Atlanta)
Telephone Related Queries (TeRQ) IETF 85 (Atlanta) Telephones and the Internet Our long- term goal: migrate telephone rou?ng and directory services to the Internet ENUM: Deviated significantly from its
Effec%ve AX 2012 Upgrade Project Planning and Microso< Sure Step. Arbela Technologies
Effec%ve AX 2012 Upgrade Project Planning and Microso< Sure Step Arbela Technologies Why Upgrade? What to do? How to do it? Tools and templates Agenda Sure Step 2012 Ax2012 Upgrade specific steps Checklist
Introduc8on to Apache Spark
Introduc8on to Apache Spark Jordan Volz, Systems Engineer @ Cloudera 1 Analyzing Data on Large Data Sets Python, R, etc. are popular tools among data scien8sts/analysts, sta8s8cians, etc. Why are these
League of Legends: Scaling to Millions of Ninjas, Yordles, and Wizards
League of Legends: Scaling to Millions of Ninjas, Yordles, and Wizards Speaker Introduc=on Sco> Delap Scalability Architect, Riot Games, Inc. [email protected] @sco>delap Randy Stafford Consul=ng Architect,
Cloudian The Storage Evolution to the Cloud.. Cloudian Inc. Pre Sales Engineering
Cloudian The Storage Evolution to the Cloud.. Cloudian Inc. Pre Sales Engineering Agenda Industry Trends Cloud Storage Evolu4on of Storage Architectures Storage Connec4vity redefined S3 Cloud Storage Use
XTM Web 2.0 Enterprise Architecture Hardware Implementation Guidelines. A.Zydroń 18 April 2009. Page 1 of 12
XTM Web 2.0 Enterprise Architecture Hardware Implementation Guidelines A.Zydroń 18 April 2009 Page 1 of 12 1. Introduction...3 2. XTM Database...4 3. JVM and Tomcat considerations...5 4. XTM Engine...5
SLA BASED SERVICE BROKERING IN INTERCLOUD ENVIRONMENTS
SLA BASED SERVICE BROKERING IN INTERCLOUD ENVIRONMENTS Foued Jrad, Jie Tao and Achim Streit Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany {foued.jrad, jie.tao, achim.streit}@kit.edu
OS/Run'me and Execu'on Time Produc'vity
OS/Run'me and Execu'on Time Produc'vity Ron Brightwell, Technical Manager Scalable System SoAware Department Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
Chapter Outline. Chapter 2 Distributed Information Systems Architecture. Middleware for Heterogeneous and Distributed Information Systems
Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Geb. 36, Raum 329 Tel. 0631/205 3275 [email protected] Chapter 2 Architecture Chapter Outline Distributed transactions (quick
Understanding Cloud Compu2ng Services. Rain in business success with amazing solu2ons in Cloud technology
Understanding Cloud Compu2ng Services Rain in business success with amazing solu2ons in Cloud technology What is Cloud Compu2ng? Cloud compu2ng encompasses various services and ac2vi2es carried out over
Modernizing EDI: How to Cut Your Migra6on Costs by Over 50%
Modernizing EDI: How to Cut Your Migra6on Costs by Over 50% EDI Moderniza6on: Before and ABer External Loca;ons, Partners, and Services Customers Suppliers / Service Providers Cloud/SaaS Applica;ons &
Distributed systems Lecture 6: Elec3ons, consensus, and distributed transac3ons. Dr Robert N. M. Watson
Distributed systems Lecture 6: Elec3ons, consensus, and distributed transac3ons Dr Robert N. M. Watson 1 Last 3me Saw how we can build ordered mul3cast Messages between processes in a group Need to dis3nguish
Manjrasoft Market Oriented Cloud Computing Platform
Manjrasoft Market Oriented Cloud Computing Platform Aneka Aneka is a market oriented Cloud development and management platform with rapid application development and workload distribution capabilities.
The Service Revolution software engineering without programming languages
The Service Revolution software engineering without programming languages Gustavo Alonso Institute for Pervasive Computing Department of Computer Science Swiss Federal Institute of Technology (ETH Zurich)
Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS
Copyright 2014 Splunk Inc. Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS Dritan Bi=ncka BD Solu=ons Architecture Disclaimer During the course of this presenta=on, we may make forward looking statements
Infinispan in 50 minutes. Sanne Grinovero
Infinispan in 50 minutes Sanne Grinovero Who s this guy? Sanne Grinovero Senior Software Engineer at Red Hat Hibernate team lead of Hibernate Search Hibernate OGM Infinispan Search, Query and Lucene integrations
DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing WHAT IS CLOUD COMPUTING? 2
DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing Slide 1 Slide 3 A style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet.
Challenges and Opportunities for formal specifications in Service Oriented Architectures
ACSD ATPN Xi an China June 2008 Challenges and Opportunities for formal specifications in Service Oriented Architectures Gustavo Alonso Systems Group Department of Computer Science Swiss Federal Institute
Using RDBMS, NoSQL or Hadoop?
Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest
OpenNebula Leading Innovation in Cloud Computing Management
OW2 Annual Conference 2010 Paris, November 24th, 2010 OpenNebula Leading Innovation in Cloud Computing Management Ignacio M. Llorente DSA-Research.org Distributed Systems Architecture Research Group Universidad
Saving Time and Money with Web Based Benefits Administra9on and Consolidated Billing
Saving Time and Money with Web Based Benefits Administra9on and Consolidated Billing Compliancy Group Webinar 11/11/14 NOTICE: Proprietary and Confiden)al. This material is proprietary to Benera)on, LLC.
Challenges in Hybrid and Federated Cloud Computing
Cloud Day 2011 KTH-SICS Cloud Innovation Center and EIT ICT Labs Kista, Sweden, September 14th, 2011 Challenges in Hybrid and Federated Cloud Computing Ignacio M. Llorente Project Director Acknowledgments
Clusters in the Cloud
Clusters in the Cloud Dr. Paul Coddington, Deputy Director Dr. Shunde Zhang, Compu:ng Specialist eresearch SA October 2014 Use Cases Make the cloud easier to use for compute jobs Par:cularly for users
Data Stream Algorithms in Storm and R. Radek Maciaszek
Data Stream Algorithms in Storm and R Radek Maciaszek Who Am I? l Radek Maciaszek l l l l l l Consul9ng at DataMine Lab (www.dataminelab.com) - Data mining, business intelligence and data warehouse consultancy.
Neil Stobart Cloudian Inc. CLOUDIAN HYPERSTORE Smart Data Storage
Neil Stobart Cloudian Inc. CLOUDIAN HYPERSTORE Smart Data Storage Storage is changing forever Scale Up / Terabytes Flash host/array Tradi/onal SAN/NAS Scalability / Big Data Object Storage Scale Out /
The Development of Cloud Interoperability
NSC- JST Workshop The Development of Cloud Interoperability Weicheng Huang Na7onal Center for High- performance Compu7ng Na7onal Applied Research Laboratories 1 Outline Where are we? Our experiences before
Manjrasoft Market Oriented Cloud Computing Platform
Manjrasoft Market Oriented Cloud Computing Platform Innovative Solutions for 3D Rendering Aneka is a market oriented Cloud development and management platform with rapid application development and workload
Big Data, Deep Learning and Other Allegories: Scalability and Fault- tolerance of Parallel and Distributed Infrastructures.
Big Data, Deep Learning and Other Allegories: Scalability and Fault- tolerance of Parallel and Distributed Infrastructures Professor of Computer Science UC Santa Barbara Divy Agrawal Research Director,
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Cloud Based Tes,ng & Capacity Planning (CloudPerf)
Cloud Based Tes,ng & Capacity Planning (CloudPerf) Joan A. Smith Emory University Libraries [email protected] Frank Owen Owenworks Inc. [email protected] Full presenta,on materials and CloudPerf screencast
Introduction to Cloud Computing
Introduction to Cloud Computing Cloud Computing I (intro) 15 319, spring 2010 2 nd Lecture, Jan 14 th Majd F. Sakr Lecture Motivation General overview on cloud computing What is cloud computing Services
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Enterprise Data Center Networks
Enterprise Data Center Networks Isabelle Guis Big Switch Networks Vice President of Outbound Marketing ONF Market Education Committee Chair 1 This Session Objectives Leave with an understanding of Data
Architec;ng Splunk for High Availability and Disaster Recovery
Copyright 2014 Splunk Inc. Architec;ng Splunk for High Availability and Disaster Recovery Dritan Bi;ncka BD Solu;on Architecture Disclaimer During the course of this presenta;on, we may make forward- looking
Ibis: Scaling Python Analy=cs on Hadoop and Impala
Ibis: Scaling Python Analy=cs on Hadoop and Impala Wes McKinney, Budapest BI Forum 2015-10- 14 @wesmckinn 1 Me R&D at Cloudera Serial creator of structured data tools / user interfaces Mathema=cian MIT
WSO2 Message Broker. Scalable persistent Messaging System
WSO2 Message Broker Scalable persistent Messaging System Outline Messaging Scalable Messaging Distributed Message Brokers WSO2 MB Architecture o Distributed Pub/sub architecture o Distributed Queues architecture
159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354
159.735 Final Report Cluster Scheduling Submitted by: Priti Lohani 04244354 1 Table of contents: 159.735... 1 Final Report... 1 Cluster Scheduling... 1 Table of contents:... 2 1. Introduction:... 3 1.1
White Paper: 1) Architecture Objectives: The primary objective of this architecture is to meet the. 2) Architecture Explanation
White Paper: 1) Architecture Objectives: The primary objective of this architecture is to meet the following requirements (SLAs). Scalability and High Availability Modularity and Maintainability Extensibility
Best Prac*ces for Deploying Oracle So6ware on Virtual Compute Appliance
Best Prac*ces for Deploying Oracle So6ware on Virtual Compute Appliance CON7484 Jeff Savit Senior Technical Product Manager Oracle VM Product Management October 1, 2014 Safe Harbor Statement The following
Maximize strategic flexibility by building an open hybrid cloud Gordon Haff
red hat open hybrid cloud Whitepaper Maximize strategic flexibility by building an open hybrid cloud Gordon Haff EXECUTIVE SUMMARY Choosing how to build a cloud is perhaps the biggest strategic decision
Interna'onal Standards Ac'vi'es on Cloud Security EVA KUIPER, CISA CISSP [email protected] HP ENTERPRISE SECURITY SERVICES
Interna'onal Standards Ac'vi'es on Cloud Security EVA KUIPER, CISA CISSP [email protected] HP ENTERPRISE SECURITY SERVICES Agenda Importance of Common Cloud Standards Outline current work undertaken Define
Range of Organiza7onal Approaches
Status of Design and Implementa7on Plan for UH System and Mānoa Organiza7onal Changes and Consolida7ons to Improve the Efficiency and Effec7veness of Support Services Presenta7on to UH Board of Regents
Migration Scenario: Migrating Batch Processes to the AWS Cloud
Migration Scenario: Migrating Batch Processes to the AWS Cloud Produce Ingest Process Store Manage Distribute Asset Creation Data Ingestor Metadata Ingestor (Manual) Transcoder Encoder Asset Store Catalog
Business Analysis Standardization A Strategic Mandate. John E. Parker CVO, Enfocus Solu7ons Inc.
Business Analysis Standardization A Strategic Mandate John E. Parker CVO, Enfocus Solu7ons Inc. Agenda What is Business Analysis? Why Business Analysis is Important? Why Standardization of Business Analysis
C-DAX: A Cyber-Secure Data and Control Cloud for Power Grids C-DAX Consortium
C-DAX: A Cyber-Secure Data and Control Cloud for Power Grids C-DAX Consortium C- DAX is funded by the European Union's Seventh Framework Programme (FP7- ICT- 2011-8) under grant agreement n 318708 C-DAX
Software design (Cont.)
Package diagrams Architectural styles Software design (Cont.) Design modelling technique: Package Diagrams Package: A module containing any number of classes Packages can be nested arbitrarily E.g.: Java
Introduc)on to the MapReduce Paradigm and Apache Hadoop. Sriram Krishnan [email protected]
Introduc)on to the MapReduce Paradigm and Apache Hadoop Sriram Krishnan [email protected] Programming Model The computa)on takes a set of input key/ value pairs, and Produces a set of output key/value pairs.
Capitalize on your carbon management solu4on investment
Capitalize on your carbon management solu4on investment Best prac4ce guide for implemen4ng carbon management so9ware Carbon Disclosure Project +44 (0) 20 7970 5660 [email protected] www.cdproject.net
Omni Channel in Retail The TIBCO Retail Platform
Omni Channel in Retail The TIBCO Retail Platform Japinder Singh Head of Global Solution Consulting Fast Data Summit Frankfurt 29 th October 2015 Copyright 2000-2014 TIBCO Software Inc. TIBCO Fast Data
EAI. Op'mizing your integra'on cost. Sunil Kumar Pandey Persistent Systems Ltd. Session: 20188
EAI Op'mizing your integra'on cost Sunil Kumar Pandey Persistent Systems Ltd. Session: 20188 EAI need and challenges Mergers and acquisi'ons have become more common than ever before. Current economic situa'on
Big Data Processing Experience in the ATLAS Experiment
Big Data Processing Experience in the ATLAS Experiment A. on behalf of the ATLAS Collabora5on Interna5onal Symposium on Grids and Clouds (ISGC) 2014 March 23-28, 2014 Academia Sinica, Taipei, Taiwan Introduction
Blue Medora VMware vcenter Opera3ons Manager Management Pack for Oracle Enterprise Manager
Blue Medora VMware vcenter Opera3ons Manager Management Pack for Oracle Enterprise Manager Oracle WebLogic J2EE on VMware Monitoring 203 Blue Medora LLC All rights reserved WebLogic on VMware Management
Mission. To provide higher technological educa5on with quality, preparing. competent professionals, with sound founda5ons in science, technology
Mission To provide higher technological educa5on with quality, preparing competent professionals, with sound founda5ons in science, technology and innova5on, commi
