Re: Deep Geologic Repository Project for Low and Intennediate Level Waste SUSTAINABLE NUCLEAR POWER AND NUCLEAR WASTE DISPOSAL

Size: px
Start display at page:

Download "Re: Deep Geologic Repository Project for Low and Intennediate Level Waste SUSTAINABLE NUCLEAR POWER AND NUCLEAR WASTE DISPOSAL"

Transcription

1 XYLENE POWER LTD Kennedy Road, Sharon, Ontario LOG 1VO June J Dr. Stella Swanson Chair, Joint Review Panel Deep Geologic Repository Project C/O Canadian Nuclear Safety Commission 280 Slater Street Ottawa, Ontario KIP 5S9 Re: Deep Geologic Repository Project for Low and Intennediate Level Waste SUSTAINABLE NUCLEAR POWER AND NUCLEAR WASTE DISPOSAL Dear Dr. Swanson: Due to rapid accumulation of carbon dioxide in the Earth's atmosphere mankind will need to increasingly rely upon nuclear energy. Hence the entire nuclear energy cycle, including both energy production and waste disposal, must be made sustainable. Further, the amount of installed nuclear generation on Earth may easily increase by two orders of magnitude and may run for over 20,000 years, so over that period the background radiation contribution due to long lived nuclear waste may increase by five orders of magnitude. Hence dilution of radio isotope waste is not a sustainable solution to radio isotope pollution. The issues that must be faced are: 1) Safe and economical interim storage of the present inventory of nuclear waste. In this respect recent events at Fukushima Daiichi have clearly demonstrated that the existing inventories of radio toxic materials should be moved to dry storage locations that are far from any large body of water and that are high above local water tables; 2) Change in nuclear reactor design from slow neutrons to fast neutrons so that the prime energy source is the relatively plentiful uranium isotope U-238 instead of the relatively rare uranium isotope U-235; 3) Recycling of spent CANDU fuel to convert the highly toxic long lived trans uranium actinides into short lived radio isotopes that rapidly decay into stable non-toxic isotopes; 1

2 4) Recycling of irradiated nuclear reactor materials such as nickel, zirconium and carbon to both reduce the cost of new nuclear reactors and to minimize the mass and volume of radio toxic material in storage; 5) Recovery oftritium/helium-3 for sale to third parties to both earn income and to reduce the mass and volume of radio toxic material in storage; 6) Development of safe, economic, accessible and reliable storage for radio isotopes with halflives less than 30 years such that after 300 years the stored material, storage containers and storage space can all be reused; 7) Development of a safe, economical and reliable methodology for concentration, isolation and storage of long lived low atomic weight isotopes such as Ca-41 and CI-36 that have no present or foreseeable future value for recycling. The storage methodology should recognize that dilution is not a solution to pollution and that these isotopes are highly mobile in water. eg Dry storage in triple sealed porcelain containers; 8) Modification of nuclear generating station designs to minimize future production of long lived low atomic weight isotopes such as Ca-41 and CI-36. Unfortunately, the present NWMO and OPG plans for the Bruce DGR fail to address the aforementioned issues and are implicitly based on three false assumptions. FALSE ASSUMPTIONS BY NWMO/OPG: 1) The first false assumption is that future nuclear reactors will be assembled by skilled tradesmen using the same methodology as was used three to four decades ago for assembly of the the existing CANDU reactors. 2) The second false assumption is that non-accessible burial of unprocessed nuclear waste is a sustainable activity and is acceptable to the Canadian population; 3) The third false assumption is that the electricity rate payers are indifferent to: a) the cost of DGRs, b) the cost of labor in nuclear reactor construction and c) the cost of expensive non-recycled nuclear fuel and nuclear reactor materials. INVALID CONCLUSIONS FLOWING FROM FALSE ASSUMPTIONS BY NWMO/OPG: 1) For worker safety the materials used in nuclear reactor construction need to initially be non-radioactive; 2) When a nuclear reactor reaches the end of its useful working life its radio active components are not recyclable; 3) All radioactive waste material should be permanently consigned to a DGR; 4) The DGRs should be inaccessible after closure and hence should to be located far below the surrounding water table. 5) The DGRs should rely primarily on the character of the surrounding rock to minimize the rate of diffusion of water soluble material from the DGR into the surrounding environment; 2

3 6) Dilution of radio toxic material is considered by NWMO/OPG to be an acceptable solution to pollution. I suggest to the Joint Review Panel that the aforementioned implicit assumptions by NWMO/OPG are all wrong and that the related conclusions are also all wrong. CORRECTED ASSUMPTIONS AND RESULTING CONCLUSIONS: 1) I have worked on both advanced microprocessor based equipment control systems and on the design of liquid sodium cooled fast neutron reactors, as described at and surrounding Nuclear related web pages. The assumption that the cores of new nuclear reactors will be assembled by skilled tradesmen is not valid because during the last thirty years there have been major advances in robotic assembly technology and because during the same period a sufficient inventory of radioactive material has accumulated to justify radioactive material recycling. 2) With robotic assembly it does not matter if the reactor materials are initially radio active. New fast neutron reactor modules are intended for robotic assembly; 3) Hence neutron irradiated nickel, uranium, plutonium, zirconium, and transuranium actinides can all be recycled. 4) Hence the DGRs should remain permanently accessible to permit on-going safety inspections, risk mitigation and material recycling. The DGRs will use robotic technology developed by and for the mining industry; 5) In order to inexpensively exclude water from an accessible DGR the elevation of the DGR storage vaults should be high above the local water table; 6) The DGR should use engineered containers, gravity drainage to sumps, access for risk mitigation and remote monitoring, in addition to the quality of the surrounding rock, to prevent stored radio isotopes entering the surrounding environment; 7) The DGR storage vaults should be about 400 m below grade to provide certain containment of long lived radio isotopes through numerous glaciations; 8) The DGR should be formed in stable high density granite to provide a combination of durability, water exclusion, and safe access for thousands of years; 9) Recycling of spent CANDU fuel involves trans-uranium actinide fission in a fast neutron reactor. As compared to the present CANDU process the spent fuel toxicity lifetime is reduced 1000 fold and the energy per kg available from natural uranium is increased 100 fold; 10) The fast neutron reactor fuel cycle allows for major material, labor and DGR cost savings for the benefit of the electricity rate payer; 11) A potential supplier of liquid sodium cooled fast neutron reactors is GE-Hitachi; 12) Recent political polls indicate that at least one third of the Ontario voters are opposed to the present projected electricity price increases and are seeking electricity price mitigation; 13) Contrary to claims by the NWMO there is no evidence that any permanent community in Canada is in favor of high level non-accessible nuclear waste burial 3

4 in that community. The majority of witnesses from the Bruce area before the Joint Review Panel are opposed to the present NWMO/OPG Bruce DGR plans. 14) Any location that is naturally sufficiently dry for safe storage oflong lived nuclear waste does not have sufficient ground water to support a permanent conununity. Specifically I state that: 1) As fossil fuels are phased out most of the energy requirements that fossil fuels presently meet must be met by nuclear energy; 2) As a result of this increased dependence on nuclear energy the public will become less tolerant of present technical incompetence and wasteful practices at OPG and the NWMO; 3) The public will insist, if only as a cost saving measure, that expensive materials such as nickel, zirconium, and uranium, that contribute significantly to the overall cost of nuclear energy, be recycled. Hence for worker safety nuclear reactor modules will be robot assembled; 4) The informed public will demand fission of trans-uranium actinides to prevent long term pollution of drinking water; 5) In the future mankind will have no practical alternative to liquid metal cooled fast neutron reactors operating with U-238 for fossil fuel displacement, due to depletion of the U-235 resource. Note that the deuterium-tritium-lithiurn fusion fuel cycle is also a liquid metal cooled fast neutron process. 6) The relatively high coolant temperature of a liquid metal cooled fast neutron reactor allows heat dissipation via evaporation of water instead of by direct lake water cooling, and thus greatly reduces the impact of nuclear power on marine species. 7) Nuclear reactor designs should be modified to minimize formation of Ca-41, CI 36 and C-14; 8) With respect to existing CANDU reactors reasonable efforts should be taken to recover tritiumlhelium-3 for resale. POTENTIAL NUCLEAR WASTE STORAGE LOCATION: From a geophysical perspective by far the best nuclear waste storage location in Canada is Jersey Emerald. Jersey Emerald is a 5 million square foot naturally dry depleted Canadian hard rock mine with about 10 km of main access truck tunnels, 12 foot to 60 foot high internal storage vaults and geology that is uniquely suitable for storage of radio isotopes and/or other highly toxic material. The Jersey Emerald workings are 200 m to 600 m below grade but are more than 300 m above the surrounding water table. The lower portions of Jersey Emerald are in extremely dense water tight granite. Jersey Emerald was a critical source of zinc, lead and tungsten during WWII but was closed in 1972 due to low commodity prices. Today Jersey Emerald is likely the most safe and secure facility in North America for nuclear material storage. 4

5 In 2013 Jersey Emerald and the surrounding property and mineral rights were available for purchase at a price that is a small fraction of the projected cost of the Bruce DGRs. In August 2013 both the NWMO and OPG failed to even inspect Jersey Emerald when it was available to them, free and clear, complete with 4000 hectares of assembled surrounding property, including both surface and mineral rights, for $67.5 million. For an estimated additional $100 million NWMO/OPG could have acquired an additional 16,000 hectare exclusion zone, giving NWMO/OPG title to everything within an 8 kin radius of Jersey Emerald. The failure of both NWMO and OPG to place a $2 million dollar purchase deposit on the Jersey Emerald property prior to December 13, 2013 will likely go down in history as the worst ever management decision in the Canadian nuclear power history. This matter appears to be indicative of incompetence and/or corruption within the senior managements of both OPG and the NWMO. NUCLEAR WASTE CATEGORlES: The Joint Review Panel is presently charged with making decisions relating to disposal of Low Level Nuclear Waste (LLW) and Intermediate Level Nuclear Waste (ILW). The NWMO presently has responsibility for disposal of High Level Waste (HLW), which in Canada is spent CANDU reactor fuel. However, if a fast neutron reactor is used to convert spent CANDU reactor fuel into LLWand ILW then it appears that the Joint Review Panel will also be responsible for disposal of that waste. The issue of who is responsible for HLW while it is in the process of being converted to fast neutron reactor fuel remains to be resolved. LLW: Low level waste (LLW), consisting of isotopes with half lives of less than 30 years, is from an engineering perspective simple to deal with. The LLW can be safely isolated in engineered containers that are stored for 300 years in a gravity drained depleted hard rock mine that is high above the local water table. Thus stored the LLW will spontaneously decay into stable isotopes. HLW: High level waste (HLW), which in Canada is spent fuel from CANDU reactors, is highly radio toxic due to its plutonium and trans-uranium actinide content. The NWMO currently plans to bury untreated HLW in copper containers. In my view the present NWMO plan is complete foolishness. Using proven technology HLW can be converted into fuel for liquid sodium cooled fast neutron breeder reactors. Such reactors fission the HLW atoms so that they become LLW atoms which are simple to deal with from a disposal perspective. Furthermore, fast neutron reactors multiply by 100 fold the useful energy obtainable per kg of natural uranium as compared to a CANDU reactor. 5

6 The existing inventory ofhlw could be interim stored at Jersey Emerald and then chemically processed at Trail, BC which is about 40 km away. Trail has a long history of bulk chemical processing of highly toxic materials. ILW: All nuclear power technologies produce some intermediate level waste (ILW). The main source ofthis ILW is exposure of reactor component materials to the intense particle and radiation fluxes present inside a nuclear reactor. This ILW is the most difficult nuclear waste to deal with in the long term and deserves the full attention of the Joint Review Panel on an element by element basis. I refer to a letter dated May 30, 2014 from Allen Webster ofopg to the Chair of the Joint Review Panel. His letter has about 235 pages of attachments. I refer to attachment #1 pages 3, 4, 5, 6. The identified ILW problem isotopes are Ni-59, Ni-63, Cl-36, Ca-41 Zr-93INb-93m, Nb 94, and C-14. NICKEL: Nickel is an essential and relatively expensive component of all steels that have useful strength at high temperatures. Nickel is a relatively rare element. It constitutes about 10% of common stainless steel alloys and constitutes as much as 70% of alloys used in construction of steam generators. When steel is recycled a primary objective is recovery of the nickel content. A nuclear generating station typically contains hundreds of tons of nickel, which accounts for a significant fraction of the total facility cost. The isotopes Ni-59 and Ni-63 arise as a result of neutron absorption by the stable nickel isotopes Ni-58 and Ni-62. Ni-59 has a tabulated half life of 80,000 years. Ni-63 has a tabulated halflife of 92 years Future displacement of fossil fuels with nuclear power will require much more nickel. From a nickel conservation perspective it makes little sense to irradiate fresh nickel and then 60 years later to permanently bury that irradiated nickel. It makes much more sense to recycle irradiated nickel into future nuclear reactors. Such recycling may require a dedicated steel mill facility. However, the major point is that metal alloys with significant radioactive nickel content should be interim stored in a safe, accessible, high and dry location, such as Jersey Emerald or another comparable naturally dry mine, until the inventory of these irradiated alloys is sufficient to justify the dedicated steel mill facility required to process these alloys into new nuclear reactor components. CALCIUM: Calcium is a substantial component of concrete and mortar. The isotope Ca-41, which has a half life of 80,000 years, arises as a result of neutron absorption by the stable isotope Ca-40. In the presence of water and carbon dioxide calcium forms water soluble 6

7 Ca(HC03)2. Isolating radioactive calcium from the environment for a million years means excluding it from water and carbon dioxide for that period. That is a daunting task. Unless extreme care is used over a protracted period ultimately Ca-41 will find its way into the environment. With respect to the existing Ca-4l the best that we can do for now is to make suitably engineered containers that, if undisturbed and stored in a naturally dry location, such as Jersey Emerald, will likely last over 10,000 years. However, at some point in the distant future someone is going to have to deal with the stored Ca-41. Right now the only alternate solution to the Ca-41 problem is dilution. That in effect is what will happen if the Ca-41 is buried in the proposed Bruce DGR. We should avoid producing more Ca-41. That means that new nuclear reactor designs should not rely on concrete for peripheral neutron absorption. Adding more non-concrete neutron shielding will likely increase the initial cost of new nuclear reactors, but so be it. The Joint Review Panel should recommend that the CNSC ensure that Ca-41 formation is negligible in new Canadian nuclear reactor designs. CHLORINE: In the CANDU reactor chlorine occurs as a component of chlorinated hydrocarbons used to in sealing and insulating materials. Neutron absorption by the stable isotope CI-35 results in CI-36, which has a halflife of 308,000 years. Fortunately, as compared to the masses of nickel and calcium, the chlorine content of a CANDU reactor is relatively small. However, chlorine has the chemical property that it forms water soluble salts with a large number of elements. The best that we can do with respect to existing Cl-36 is to chemically bind it to sodium or lithium and then encase that salt in a sealed container that is engineered to last over 10,000 years. At some time in the distant future someone will have to deal with the stored CI-36. The only alternate disposal methodology is dilution which will occur if the CI-36 is buried in the proposed Bruce DGR. We can minimize the CI-36 formation problem in the future by changing from CANDU reactors to liquid metal cooled fast neutron reactors that do not use chlorinated materials anywhere near the neutron flux. In tills respect it would be helpful for the Joint Review Panel to recommend that the CNSC ensure that in new Canadian nuclear reactors there is no chlorine in the proximity of the neutron flux. ZIRCONIUM: Zirconium is extensively used for fuel tubes and moderator isolation tubes in CANDU reactors due to its relatively low neutron absorption cross section. Zirconium has many stable and short lived isotopes. However, the troublesome isotope is Zr-93, which has a half life of about 1,500,000 years. Zr-93 arises both as a result of neutron absorption by the stable isotope Zr-92 and as a fission product. The decay product of Zr-93 is Nb-93m, which has a half life of 13.6 years. Its decay product is stable Nb-93. 7

8 The real issue with zirconium is that it is an essential alloy component of fuel for liquid sodium cooled fast neutron reactors. The zirconium prevents formation of a low melting temperature plutonium-iron eutectic. In a fast neutron flux Zr-93 becomes Zr-94 which is a stable isotope. For this reason neutron irradiated zirconium should not be buried. It should be stored in a safe accessible high and dry location, such as Jersey Emerald, until it is required as a fuel alloy component for fast neutron reactors. That date may be only a few years hence. Under no circumstances should irradiated zirconium be stored or buried where it is not easily accessible. NIOBIUM: In CANDU reactors a small fraction of the fuel tube weight is niobium. Neutron absorption by the stable isotope Nb-93 results in Nb-94 which has a half life of about 20,000 years. The simplest way to deal with Nb-94 is to leave it alloyed with its host zirconium and to use it as a component of fast neutron reactor fuel. In a fast neutron flux Nb-94 becomes Nb-95, which has a halflife of 35 days and decays into stable Mo-95. CARBON: In nuclear reactors carbon occurs as a small component of steel, and as a component of: hydrocarbon seals, electrical insulation, thermal insulation, vibration isolators and neutron reflectors. Neutron absorption by the stable isotope C-13 results in C-14 which has a half life of about 5730 years. Natural decay of C-14 to inconsequential levels takes over 50,000 years. A basic problem is that in the presence of water carbon containing compounds gradually deteriorate into carbon dioxide (C02) gas and methane (CH4) gas. These gases are difficult to contain. The C02 gas goes into solution in surrounding water where it combines with any nearby calcium: oxide, hydroxide or carbonate to form Ca(HC03)2 which is highly water soluble and which diffuses everywhere. The CH4 gas mixes with other natural sources of CH4 and becomes natural gas. In the atmosphere CH4 combines with 02 to form more C02. For the foreseeable future the C-14 problem can be mitigated by storing carbon containing ILW in containers in a dry, dark and low temperature environment, such as Jersey Emerald, so that the carbon remains chemically bound to other elements and does not react with air or ground water. In the long term mankind will likely have to rely on careful containment to keep the local C-14 concentration at an acceptable level. A challenging problem in nuclear reactors is the use of graphite (C) or boron carbide (B4C) as a neutron reflector. The carbon in the neutron reflector is exposed to an intense neutron flux which will gradually produce C-14. The alternative is to make the reactor physically twice as large and rely upon a uranium blanket for peripheral neutron absorption. This issue of C-14 formation might in the long term become a public health issue. In my view the best interim solution is to recycle the irradiated carbon so that the 8

9 total amount of irradiated carbon is minimized and the C-14 remains chemically bound in a stable compound such as B4C from which oxygen and water are carefully excluded. If C-14 is placed in the Bruce DGR it will eventually dilute into the environment. To minimize the environmental load carbon used in neutron reflector applications should be recycled. SUMMARY: I have set out herein appropriate methodologies for dealing with the dominant long lived ILW radio nuclei that arise out of the operation of nuclear reactors. The current OPGINWMO plan for the Bruce DGR does not adequately address material recycling. Of particular concern is inattention to recycling of nickel, zirconium and neutron reflector carbon. There is no mention of recovery of of tritiumlhelium-3. As of the Joint Review Panel hearing dates in the autumn of2013, the "expert" offered by the NWMO had no knowledge of the critical role of zirconium in fast neutron reactor fuel or of the related fuel processing chemistry. This issue reveals an unacceptable level of technical incompetence in the managements of both the NWMO and OPG. A major concern about the proposed Bruce DGR is that it is far below rather than far above the local water table, which makes long term water exclusion and long term access for safety confirmation, remedial action and material recycling prohibitively expensive. Another significant issue is lack of explicit recognition of reactor design changes that should be immediately implemented to minimize formation of problem ILW isotopes. In short it is my recommendation that the Joint Review Panel reject the proposed Bruce DGR site and instruct both OPG and NWMO to choose an alternate DGR site in granite that is high above the local water table and hence is much more suitable for storage of nuclear wastes in a manner that safely and inexpensively permits on-going inspection, risk mitigation and radioactive material recycling. I further recommend that the Joint Review Panel address the issue of reactor design modification to minimize future formation ofca-41 and CI-36. I further recommend that the Joint Review Panel instruct OPG and Bruce Power to recover for resale to third parties the tritium/helium-3 that OPG currently plans to place in the proposed Bruce DGR. Sincerely, Charles Rhodes. P.Eng., B.Sc., M.A.Sc., PhD. Chief Engineer 9

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

APPENDIX CC NUCLEAR WASTE STORAGE

APPENDIX CC NUCLEAR WASTE STORAGE APPENDIX CC NUCLEAR WASTE STORAGE APPENDIX CC NUCLEAR WASTE STORAGE MICHIEL P.H. BRONGERS 1 SUMMARY Nuclear wastes are generated from spent nuclear fuel, dismantled weapons, and products such as radio

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Developing a Safety Case for Ontario Power Generation s L&ILW Deep Geologic Repository

Developing a Safety Case for Ontario Power Generation s L&ILW Deep Geologic Repository Developing a Safety Case for Ontario Power Generation s L&ILW Deep Geologic Repository T. Kempe, P. Gierszewski, R. Heystee, M. Jensen and H. Leung Ontario Power Generation, Canada NEA/EC/IAEA Symposium

More information

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Jon Carmack Deputy National Technical Director Fuel Cycle Technology Advanced Fuels Program February 27, 2011 The Evolution of Nuclear Power

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information

N O T E S. Environmental Forensics. Identification of Natural Gas Sources using Geochemical Forensic Tools. Dispute Scenarios

N O T E S. Environmental Forensics. Identification of Natural Gas Sources using Geochemical Forensic Tools. Dispute Scenarios Environmental Forensics N O T E S V o l u m e 2 9 Identification of Natural Gas Sources using Geochemical Forensic Tools By Paul Boehm, Ph.D. and Tarek Saba, Ph.D. F o r m o r e i n f o r m a t i o n o

More information

HOW IT WORKS ELECTRICITY GENERATION

HOW IT WORKS ELECTRICITY GENERATION 10 2 ELECTRICITY IN ONTARIO Ontario gets its electricity from a mix of energy sources. About half of our electricity comes from nuclear power. The remainder comes from a mix of hydroelectric, coal, natural

More information

Specimen Paper. Chemistry 1F. Time allowed! 60 minutes

Specimen Paper. Chemistry 1F. Time allowed! 60 minutes Centre Number Surname Candidate Number Specimen Paper For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Foundation Tier Question 1 Mark Science

More information

Hazard Classification of the Remote Handled Low Level Waste Disposal Facility

Hazard Classification of the Remote Handled Low Level Waste Disposal Facility 1 Hazard Classification of the Remote Handled Low Level Waste Disposal Facility Abstract Boyd D. Christensen Battelle Energy Alliance, Idaho National Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415 208

More information

HOW DOES A NUCLEAR POWER PLANT WORK?

HOW DOES A NUCLEAR POWER PLANT WORK? HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does

More information

DRAFT Milestones and Recommendations: Fuel Cycle OECD/IEA 2010

DRAFT Milestones and Recommendations: Fuel Cycle OECD/IEA 2010 DRAFT Milestones and Recommendations: Fuel Cycle 1 OECD/IEA 2010 Fuel cycle: - established technologies for all steps of the NFC, though R&D can help improve technologies, reduce costs, Front end: uranium

More information

Q1 2014. Environmental Emissions Data for Pickering Nuclear ONTARIO POWER GENERATION ONT

Q1 2014. Environmental Emissions Data for Pickering Nuclear ONTARIO POWER GENERATION ONT OVERVIEW This quarterly report summarizes s environmental emissions data for the year-to-date, including: Radioactive Effluents: Releases to air and water, including discharges to the municipal sewage

More information

Closing the CANDU Fuel Cycle

Closing the CANDU Fuel Cycle WiN Canada Conference 2013 Closing the CANDU Fuel Cycle with Modified PUREX Recycling CANDU Spent Fuel Authors Juhx Pellazar Jinah Kim Alexander Koven Sameena Mulam (Presenter) Marty Tzolov Leon Wu Closing

More information

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado 1 Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Introduction Some radioactive isotopes formed billions of years ago have half- lives so long that they are

More information

EXAMPLE EXERCISE 4.1 Change of Physical State

EXAMPLE EXERCISE 4.1 Change of Physical State EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid

More information

The Fuel Cycle R&D Program. Systems Analysis

The Fuel Cycle R&D Program. Systems Analysis The Fuel Cycle R&D Program Systems Analysis Bradley Williams Systems Analysis Federal Program Manager Office of Systems Engineering and Integration Office of Nuclear Energy U.S. Department of Energy July

More information

AS COMPETITION PAPER 2007 SOLUTIONS

AS COMPETITION PAPER 2007 SOLUTIONS AS COMPETITION PAPER 2007 Total Mark/50 SOLUTIONS Section A: Multiple Choice 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C 1 Section B: Written Answer Question 9. A mass M is attached to the end of a horizontal

More information

Master Degree in Nuclear Engineering: Academic year 2007-2008

Master Degree in Nuclear Engineering: Academic year 2007-2008 Master Degree in Nuclear Engineering: Academic year 2007-2008 Number of students 2007-2008: University Politehnica Bucharest Total: 17 Language: Romanian For further information: www.cne.pub.ro Dates Title

More information

Nuclear Power s Role in Enhancing Energy Security in a Dangerous World Al Shpyth, B.A., M.E.S. Director, Government Relations Cameco Corporation

Nuclear Power s Role in Enhancing Energy Security in a Dangerous World Al Shpyth, B.A., M.E.S. Director, Government Relations Cameco Corporation Nuclear Power s Role in Enhancing Energy Security in a Dangerous World Al Shpyth, B.A., M.E.S. Director, Government Relations Cameco Corporation Introduction: Should we be concerned about energy security?

More information

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch6&7 Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following does NOT change the form of existing rock? a. tremendous pressure c.

More information

Unit 6 The Mole Concept

Unit 6 The Mole Concept Chemistry Form 3 Page 62 Ms. R. Buttigieg Unit 6 The Mole Concept See Chemistry for You Chapter 28 pg. 352-363 See GCSE Chemistry Chapter 5 pg. 70-79 6.1 Relative atomic mass. The relative atomic mass

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Security and Safeguards Considerations in Radioactive Waste Management. Canadian Nuclear Safety Commission

Security and Safeguards Considerations in Radioactive Waste Management. Canadian Nuclear Safety Commission Security and Safeguards Considerations in Radioactive Waste Management Raoul Awad Director General, Directorate of Security and Safeguards Canadian Nuclear Safety Commission Radioactive Waste Management

More information

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES Question1 Read the following article from the Fremont Gazette and answer the questions that follow. (a) Identify and describe TWO water-related environmental

More information

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I A.S. Gerasimov, G.V. Kiselev, L.A. Myrtsymova State Scientific Centre of the Russian Federation Institute of Theoretical

More information

The Physics of Energy sources Nuclear Reactor Practicalities

The Physics of Energy sources Nuclear Reactor Practicalities The Physics of Energy sources Nuclear Reactor Practicalities B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Reactor 1 Commonalities between reactors All reactors will have the same

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson Lesson Title The Chemistry of Climate Change Length of Lesson 180 min Created By David Wilson Subject Physical Science / Chemistry / Organic Chemistry Grade Level 8-12 State Standards 2c, 4d / 2a, 4d /

More information

Chapter 6 Impact of Fukushima Daiichi Accident on Japan s Nuclear Fuel Cycle and Spent Fuel Management

Chapter 6 Impact of Fukushima Daiichi Accident on Japan s Nuclear Fuel Cycle and Spent Fuel Management Chapter 6 Impact of Fukushima Daiichi Accident on Japan s Nuclear Fuel Cycle and Spent Fuel Management Joonhong Ahn Abstract This chapter briefly summarizes the current status of spent nuclear fuel and

More information

Operating Performance: Accident Management: Severe Accident Management Programs for Nuclear Reactors REGDOC-2.3.2

Operating Performance: Accident Management: Severe Accident Management Programs for Nuclear Reactors REGDOC-2.3.2 Operating Performance: Accident Management: Severe Accident Management Programs for Nuclear Reactors REGDOC-2.3.2 September 2013 Accident Management: Severe Accident Regulatory Document REGDOC-2.3.2 Canadian

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS

SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS LEARNING OBJECTIVES By the end of this section, participants will be able to: Identify three types of packaging for radioactive

More information

IBC 2100. Nuclear Energy Liability Exclusion. Explained

IBC 2100. Nuclear Energy Liability Exclusion. Explained IBC 2100 Nuclear Energy Liability Exclusion Explained By Colleen DeMerchant Assistant Manager Nuclear Insurance Association of Canada June 22, 2005 Nuclear Energy Liability Exclusion (IBC 2100 CGL form)

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Chemical Building Blocks: Chapter 3: Elements and Periodic Table Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

ADVANCED NUCLEAR ENERGY SYSTEM FOR THE TWENTY-FIRST CENTURY

ADVANCED NUCLEAR ENERGY SYSTEM FOR THE TWENTY-FIRST CENTURY ADVANCED NUCLEAR ENERGY SYSTEM FOR THE TWENTY-FIRST CENTURY Yoon Il Chang Argonne National Laboratory 9700 South Cass Avenue Argonne, IL USA 60439 ychang@anl.gov ABSTRACT The world needs more energy to

More information

Specimen Paper. Time allowed! 60 minutes

Specimen Paper. Time allowed! 60 minutes Centre Number Surname Candidate Number Specimen Paper For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Foundation Tier Question 1 Mark Chemistry

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

Subject: Technical Letter 22 April 1977 Removal of Water Supply Contaminants -- Copper and Zinc

Subject: Technical Letter 22 April 1977 Removal of Water Supply Contaminants -- Copper and Zinc STATE OF ILLINOIS Department of Registration and Education JOAN G. ANDERSON DIRECTOR. SPRINGFIELD BOARD OF NATURAL RESOURCES AND CONSERVATION JOAN G. ANDERSON CHAIRMAN BIOLOGY THOMAS PARK CHEMISTRY H.

More information

OPG READY TO DELIVER REFURBISHMENT OF DARLINGTON NUCLEAR STATION OPG also planning continued operation of Pickering Station

OPG READY TO DELIVER REFURBISHMENT OF DARLINGTON NUCLEAR STATION OPG also planning continued operation of Pickering Station OPG READY TO DELIVER REFURBISHMENT OF DARLINGTON NUCLEAR STATION OPG also planning continued operation of Pickering Station Toronto - Ontario Power Generation (OPG) is ready to deliver on the Government

More information

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator R. Gupta and M.Harrison, Brookhaven National Laboratory A. Zeller, Michigan State University

More information

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation David Wang STS.092 Plutonium vs. Uranium: The Road Less Traveled In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation treaties, where the news, everyday,

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Composition of nucleus. Priority Vocabulary: Electron, Proton, Neutron, Nucleus, Isotopes, Atomic Number, Atomic Mass, Element, Electron Shell,

Composition of nucleus. Priority Vocabulary: Electron, Proton, Neutron, Nucleus, Isotopes, Atomic Number, Atomic Mass, Element, Electron Shell, Lake County, Lakeview, 9 th grade, Physical Science, Brent Starr Standard: H1P1 Explain how atomic structure is related to the properties of elements and their position in the Periodic Table. Explain how

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

RC-17. Alejandro V. Nader National Regulatory Authority Montevideo - Uruguay

RC-17. Alejandro V. Nader National Regulatory Authority Montevideo - Uruguay RC-17 Radiation Protection in Waste Management and Disposal Implementing the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Alejandro V. Nader

More information

RADON AND HEALTH. INFORMATION SHEET October 2002. What is radon and where does it come from?

RADON AND HEALTH. INFORMATION SHEET October 2002. What is radon and where does it come from? INFORMATION SHEET October 2 FINAL RADON AND HEALTH What is radon and where does it come from? Radon is a natural radioactive gas without odour, colour or taste. It cannot be detected without special equipment.

More information

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I PREPARED BY: NICOLE HELDT SCHOOL OF SCIENCE, HEALTH, AND PROFESSIONAL STUDIES SCIENCE DEPARTMENT

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

Categorisation of Active Material from PPCS Model Power Plants

Categorisation of Active Material from PPCS Model Power Plants SESE-IV Categorisation of Active Material from PPCS Model Power Plants Robin Forrest, Neill Taylor and Raul Pampin Euratom/UKAEA Fusion Association Culham Science Centre This work was funded jointly by

More information

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and

More information

University of Pittsburgh Safety Manual Subject: COMBUSTIBLE METALS. EH&S Guideline Number: 02-005. Effective Date 09/10/13.

University of Pittsburgh Safety Manual Subject: COMBUSTIBLE METALS. EH&S Guideline Number: 02-005. Effective Date 09/10/13. Page 1 of 7 These guidelines provide requirements for all University faculty, staff, and students using, handling, or storing combustible metals. These requirements are established to ensure faculty, staff

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com

Generation IV Fast Reactors. Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Generation IV Fast Reactors Dr Richard Stainsby AMEC Richard.Stainsby@amec.com Contents The Generation IV international research programme on advanced reactors The case for fast reactors The technology:

More information

Fuel Cycle R&D to Safeguard Advanced Ceramic Fuel Skills Strategic Options

Fuel Cycle R&D to Safeguard Advanced Ceramic Fuel Skills Strategic Options Fuel Cycle R&D to Safeguard Advanced Ceramic Fuel Skills Strategic Options Fuel Cycle R&D to Safeguard Advanced Ceramic Fuel Skills The Nuclear Renaissance and Fuel Cycle Research and Development Nuclear

More information

Potassium-Argon (K-Ar) Dating

Potassium-Argon (K-Ar) Dating Potassium-Argon (K-Ar) Dating K-Ar Dating In 10,000 K atoms: 9326 39 K 673 41 K 1 40 K Potassium Decay Potassium Decay Potassium Decay Argon About 1% of atmosphere is argon Three stable isotopes of argon

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Regulatory Requirements and Licensing of OPG s DGR Project

Regulatory Requirements and Licensing of OPG s DGR Project Regulatory Requirements and Licensing of OPG s DGR Project OPG s Deep Geologic Repository Project for Low and Intermediate Level Radioactive Waste Presentation to Joint Review Panel July 18, 2012 nuclearsafety.gc.ca

More information

Prospect of Hitachi Nuclear Business (Boiling Water Reactor)

Prospect of Hitachi Nuclear Business (Boiling Water Reactor) Prospect of Hitachi Nuclear Business (Boiling Water Reactor) 42 Prospect of Hitachi Nuclear Business (Boiling Water Reactor) Masahito Yoshimura Shoichiro Kinoshita Hiroshi Arima Nobuo Tada OVERVIEW: To

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called...

Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... KNOWLEDGE: K1.01 [2.7/2.8] B558 Fission fragments or daughters that have a substantial neutron absorption cross section and are not fissionable are called... A. fissile materials. B. fission product poisons.

More information

[]n. Craving energy. Oil and gas formation. Oil and gas formation. Resources: Fossil Fuels. Supplying our energy needs: Source of energy in the US

[]n. Craving energy. Oil and gas formation. Oil and gas formation. Resources: Fossil Fuels. Supplying our energy needs: Source of energy in the US Craving energy Supplying our energy needs: Source of energy in the US Resources: Fossil Fuels Energy consumption in the US Reading: Ch 13 Oil and gas formation Oil and gas formation 1. Need accumulation

More information

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai, Ch1 1) Which of the following underlined items is not an intensive property? A) A chemical reaction requires 3.00 g of oxygen. B) The density of helium at 25 C is 1.64 10-4 g/cm3. C) The melting point

More information

Transport and chemistry of fission products (TRAFI)

Transport and chemistry of fission products (TRAFI) Transport and chemistry of fission products (TRAFI) SAFIR2014 Interim seminar, Espoo, 22.03.2013 Teemu Kärkelä, Ari Auvinen, Jarmo Kalilainen, Pekka Rantanen, Melany Gouello VTT Technical Research Centre

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

FACTS ABOUT CLIMATE CHANGE

FACTS ABOUT CLIMATE CHANGE FACTS ABOUT CLIMATE CHANGE 1. What is climate change? Climate change is a long-term shift in the climate of a specific location, region or planet. The shift is measured by changes in features associated

More information

Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Provisional Translation Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report of Japan for the Second Review Meeting October 2005 Government

More information

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY Introduction Canadians are among the highest energy consumers in the world. Why? (list 3 possible reasons) Northern climate/very cold temperatures

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

hij GCSE Science / Chemistry Higher Tier Unit 1 Chemistry SPECIMEN MARK SCHEME Version 1.0

hij GCSE Science / Chemistry Higher Tier Unit 1 Chemistry SPECIMEN MARK SCHEME Version 1.0 hij GCSE Science / Chemistry Higher Tier Unit Chemistry SPECIMEN MARK SCHEME Version.0 Copyright 20 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company

More information

V K Raina. Reactor Group, BARC

V K Raina. Reactor Group, BARC Critical facility for AHWR and PHWRs V K Raina Reactor Group, BARC India has large reserves of Thorium Critical facility Utilisation of Thorium for power production is a thrust area of the Indian Nuclear

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Cost Comparison of Spent Fuel Storage and Deep Geological Disposal

Cost Comparison of Spent Fuel Storage and Deep Geological Disposal Unstable, Carbon Constrained dworld Cost Comparison of Spent Fuel Storage and Deep Geological Disposal GMS Abingdon Ltd gmsabingdon@btinternet.com Two Assertions That the costs of storing spent fuel above

More information

KS3 Science: Chemistry Contents

KS3 Science: Chemistry Contents summary KS3 Science MyWorks Guide Chemistry KS3 Science: Chemistry Mini zes: 40 Super zes: 5 Extension zes: 4 Skills zes: 6 TOTAL 54 What are MyWorks zes? MyWorks zes are short individual learning tasks

More information

WASTE STREAM 2F35 Excellox-Type Transport Flasks and French-Design Dry Flasks

WASTE STREAM 2F35 Excellox-Type Transport Flasks and French-Design Dry Flasks SITE SITE OWR WASTE CUSTODIAN WASTE TYPE Sellafield Nuclear Decommissioning Authority Sellafield Limited LLW WASTE VOLUMES Stocks: At 1.4.2013... Future arisings - Total future arisings: 45.4 m³ Comment

More information

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Development of large-scale storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Yoshimi Okada 1, Mitsunori Shimura 2 Principal researcher, Technology Development Unit, Chiyoda

More information

Environmental Benefits of Pervious Concrete

Environmental Benefits of Pervious Concrete Environmental Benefits of Pervious Concrete Concrete Can Be Recycled When the time comes to demolish a concrete structure or pavement, the material need not be wasted. It can be crushed and used as aggregate,

More information

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Science Tutorial TEK 6.9C: Energy Forms & Conversions Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed?

Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed? Did You Know? Because natural gas is colorless, odorless, and tasteless, mercaptan (a chemical that smells like sulfur) is added before distribution, to give it a distinct unpleasant odor (it smells like

More information

ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12

ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12 ANALYZING ENERGY Lesson Concepts: Students will analyze the advantages and disadvantages of nine different energy sources. They will use their knowledge to predict what would happen if the world did not

More information

NUCLEAR RESEARCH AT INP-ALMATY:

NUCLEAR RESEARCH AT INP-ALMATY: NUCLEAR RESEARCH AT INP-ALMATY: Science, Technology, Safety, Security, Cooperation 9 th APCTP-BLTP JINR Joint Workshop at Kazakhstan Almaty, June 27 July 4, 2015 Petr Chakrov Institute of Nuclear Physics

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

Introduction to Waste Treatment Technologies. Contents. Household waste

Introduction to Waste Treatment Technologies. Contents. Household waste Contents Introduction to waste treatment technologies 3 Section 1: The treatment of recyclable waste 4 Bulking facilities 5 Materials Reclamation Facility (MRF) 6 Reuse and recycling centres 8 Composting

More information

Nuclear Waste A Guide to Understanding Where We've Been and Where We're Going

Nuclear Waste A Guide to Understanding Where We've Been and Where We're Going Nuclear Waste A Guide to Understanding Where We've Been and Where We're Going National Conference of State Legislatures The presentation was created by the National Conference of State Legislatures and

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Comparison of natural radioactivity removal methods for drinking water supplies: A review

Comparison of natural radioactivity removal methods for drinking water supplies: A review Comparison of natural radioactivity removal methods for drinking water supplies: A review E. Esmeray, M. E. Aydin Selcuk University Environmental Engineering Department, Konya Turkey e-mail: eesmeray@selcuk.edu.tr

More information

Description of Thermal Oxidizers

Description of Thermal Oxidizers Description of Thermal Oxidizers NESTEC, Inc. is a full service equipment supplier specializing in solutions for plant emission problems. The benefit in working with NESTEC, Inc. is we bring 25+ years

More information

Legrand's environmental commitments

Legrand's environmental commitments 128 Av. du Maréchal-de-Lattre-de-Tassigny 87045 Limoges Cedex - France Tel.: 05 55 06 87 87 - Fax: 05 55 06 88 88 i Your usual Sales office Website www.legrand.fr Product Environmental Profile plate and

More information

THE DECOMMISSIONING OF COMMERCIAL MAGNOX GAS XA9848063 COOLED REACTOR POWER STATIONS IN THE UNITED KINGDOM

THE DECOMMISSIONING OF COMMERCIAL MAGNOX GAS XA9848063 COOLED REACTOR POWER STATIONS IN THE UNITED KINGDOM THE DECOMMISSIONING OF COMMERCIAL MAGNOX GAS XA9848063 COOLED REACTOR POWER STATIONS IN THE UNITED KINGDOM G. HOLT Magnox Electric pic, Berkeley Centre, Berkeley, Gloucestershire, United Kingdom Abstract

More information

Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188

Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188 Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188 Introduction The Powder River Coal is classified as sub-bituminous ranked coal. Coal rank is

More information

RADIOACTIVE WASTE: THE PROBLEM AND ITS MANAGEMENT

RADIOACTIVE WASTE: THE PROBLEM AND ITS MANAGEMENT International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 1, Jan-Feb 2016, pp. 89-96, Article ID: IJARET_07_01_011 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=1

More information

REGULATION. Regulation for the System of Accounting for and Control of Nuclear Material and Application of Additional Protocol (FANR-REG-10) Version 0

REGULATION. Regulation for the System of Accounting for and Control of Nuclear Material and Application of Additional Protocol (FANR-REG-10) Version 0 REGULATION Regulation for the System of Accounting for and Control of Nuclear Material and Application of Additional Protocol (FANR-REG-10) Version 0 Federal Authority for Nuclear Regulation (FANR) P.O.

More information

Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA

Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA Objective of this paper is to provide International Recommendations for Energy Statistics (IRES) with

More information

Energy from the Sun. Objectives: Materials:

Energy from the Sun. Objectives: Materials: AK Target grades: 3-5 AK GLEs: Reading [3] 1.4.1 [4/5] 2.4.1 [3] 1.6.1 [3] 1.6.2 [4/5] 2.6.2 Set up time: 15 minutes Class time: About one class session Overview: The teacher will provide a basic summary

More information