1 Genzyme Corp., Framingham, MA, 2 Positive Probability Ltd, Isleham, U.K.
|
|
|
- Leo Edwards
- 10 years ago
- Views:
Transcription
1 Overview Fast and Quantitative Analysis of Data for Investigating the Heterogeneity of Intact Glycoproteins by ESI-MS Kate Zhang 1, Robert Alecio 2, Stuart Ray 2, John Thomas 1 and Tony Ferrige 2. 1 Genzyme Corp., Framingham, MA, 2 Positive Probability Ltd, Isleham, U.K. Aim: To compare related probability-based methods for charge deconvolution including a novel methodology for the unambiguous analysis of highly complex ESI-MS data of large, heterogeneous glycoprotein samples. Methods: The methods compared were Bayesian transformations, maximum entropy and the novel ReSpect algorithm. Results: The ReSpect algorithm provided much cleaner and more highly resolved results that allowed unambiguous analysis of the data. Introduction The investigation of the heterogeneity of intact proteins larger than 20 kda has always been difficult by ESI-MS due to instrument resolution limits. With the latest generation of instruments (e.g. Qq-TOF), the resolution now exceeds 10,000 for MW less than 20 kda, provides a possible means of characterizing intact proteins. However, the characterization of larger glycoproteins, ~65 kda is still a challenge, since the traditional deconvolution algorithms often fail to resolve complex features in the data even when the ion intensity of the proteins is respectable. In the present study, data for human recombinant glycoproteins, which have MW of ~65 kda, were acquired by QSTAR and the data then processed using several charge deconvolution methods in an attempt to obtain detailed information on their glycosylation. The Algorithms a) Bayesian Transformation Advantage: Probability-based method. Superior to algebraic transformations. Disadvantages: Slow. No resolution enhancement. No error assessments. Prone to produce artefacts. b) Maximum Entropy Advantages: Mathematically plausible results often free of artefacts. Substantial gains in resolution. Disadvantages: Very slow. Works best with a section of the ESI-MS envelope because calibration errors reduce result quality. Extraneous signals - solvents and chemical noise - allow unwanted correlations and artifacts. The methods require a random number seed on which the quantified errors are dependent. c) ReSpect Advantages: Very fast. Gives the most plausible results based on the physics of the experiment. Results are virtually free of artifacts. Accommodates varying noise levels. Provides highly resolved zero-charge spectra and a single set of robust error assessments. Disadvantages: Slower than algebraic methods. The work described here is aimed at comparing the performance of Bayesian transformations, maximum entropy and the new ReSpect method for obtaining zero-charge spectra from complex ESI-MS data.
2 Experimental Conditions & Raw Data The glycoprotein samples A and B were dissolved in methanol/water (50/50) with 0.5% acetic acid at a concentration of 10 pmol/;l and infused into QSTAR at a flow rate of 2 ;l/min. The spectra were acquired using MCA mode. The data for the two samples were acquired under identical conditions. Glycoprotein A has a molecular weight around 65 kda and four N-linked glycosylation sites. Glycoprotein B is the recombinant form of the human glycoprotein A. Probably due to different buffer conditions, the S/N for the acquired spectrum of Glycoprotein A was inferior to that of Glycoprotein B. The processing parameters determined for Glycoprotein B were therefore used for processing both samples.the enhanced resolution of the QSTAR instrument gave a clear separation for many of the different combinations of glycoforms on the proteins. However, a close examination of the spectra showed that some peaks were broader than others, suggesting the presence of severely overlapped peaks. These data therefore represent a severe test for the different charge deconvolution methods. Data Processing 1. Data Preparation The different methods were presented with the same baseline corrected data so that the comparison was as objective as possible. The method employed used the novel Nadir baseline correction algorithm provided by Positive Probability Limited. Therefore, any differences between the results could not be attributed to different baseline corrections. The full spectra and the corresponding baseline corrected spectra are shown in Figures 1 & 2. Figure 3 shows the quality of the computed baseline for a single charge state ([M+20H] 20+ ) for Glycoprotein B. The peaks at m/z 3001, 3011 and 3021 are clearly broader and are indicative of severe peak overlap. Figure 1: Top: Glycoprotein A raw data; Bottom: Baseline corrected with Nadir.
3 Figure 2: Top: Glycoprotein B raw data; Bottom: Baseline corrected with Nadir. Figure 3: Black: Glycoprotein B (M+20H) 20+ ; Red: Baseline computed by Nadir. Note: The peaks at m/z 3001, 3011 & 3021 are broad, indicating overlapped peaks.
4 2. Charge Deconvolution with Peak Model The charge deconvolutions were performed on both the whole data (m/z ~ ) using an output mass range of kda and on a reduced range from m/z with an output range of kda. These experiments were performed to determine how the input parameters affected the results. Bayesian transformation: Does not require a user-set model. Maximum entropy: The peak model width was measured from the first peak of the most intense clusters. Output resolution was set to 2 Da/point so that the computation would not be excessively long. ReSpect: This used the same model width as for maximum entropy but with the shape parameters measured from the data included. The method first performs a spectral deconvolution that is then analyzed to compute the most probable zero-charge spectrum, along with the quantified mass errors. Output resolution limits do not apply. 3. Zero-charge Results Figure 4 compares the zero-charge results for Glycoprotein A for the different methods using all the data and an output mass range of kda. Expansions of the results for Glycoproteins A & B are compared in Figures 5 & 6 respectively. Also shown are the peak clusters of [M+20H] 20+ for each sample, to demonstrate the evidence for the found masses in the raw data. Figure 4: Zero-charge results for glycoprotein A. Data range m/z ~ ; Output mass range kda. Top: Bayesian transformation; Centre: Maximum entropy; Bottom: ReSpect.
5 Figure 5: Glycoprotein A results. Input raw data m/z ~ ; Output mass range kda. The raw data cluster (M+20H) 20+ is scaled to overlay the output mass range of the zero-charge spectra. Figure 6: Glycoprotein B results. Input raw data m/z ~ ; Output mass range kda. The raw data cluster (M+20H) 20+ is scaled to overlay the output mass range of the zero-charge spectra.
6 Figures 7 & 8 compare the results using the reduced data range from m/z Figure 7: Glycoprotein A results. Input raw data m/z ; Output mass range kda. The raw data cluster (M+20H) scaled to overlay the output mass range of the zero-charge spectra. Figure 8: Glycoprotein B results. Input raw data m/z ; Output mass range kda. The raw data cluster (M+20H) scaled to overlay the output mass range of the zero-charge spectra.
7 Data Analysis The well-resolved zero-charge spectra allow unambiguous identification of combinations of the different glycosylation on the four N-glycosylation sites of the proteins (Figs 9 & 10). It also illustrates the clear glycosylation difference for the two proteins. Table 1 shows the results interpretation for glycoprotein A. Figure 9: The zero-charge spectrum of glycoprotein A using all the data. Table 1: Glycoprotein A Results Found M* Predicted M Dif Proposed CHO Structures Core** Core+1Fuc Core+2Fuc Core+1Fuc+1Hex Core+1Fuc+1HexNAc Core+2Fuc+1Hex Core+1Fuc+2Hex Core+2Fuc+1HexNAc Core+2Fuc+2Hex Core+1Fuc+3Hex Core+1Fuc+2Hex+1HexNAc Core+3Fuc+2Hex Core+2Fuc+3Hex Core+1Fuc+4Hex Core+2Fuc+2Hex+1HexNAc Core+1Fuc+3Hex+1HexNAc Core+1Fuc+2Hex+2HexNAc *Calibrated masses; **Core = (HexNAc) 2 Hex 3
8 Discussion Figure 10: The mass differences in the zero-charge spectrum of glycoprotein B. Note: Spectrum using all the data (see Fig. 6). Bayesian transformation generates numerous harmonics and artefacts (Fig. 4) and there is no improvement in resolution (Figs 5 & 6). It is also clear that the method works poorly on low S/N data since there is substantial residual noise in the result compared with the data (Fig. 5). Although using a reduced data range would normally be beneficial, the smaller output window forces all the harmonics and artefacts into the result causing further degradation to the result (Figs 5 & 7). Maximum entropy provides substantial gains in resolution and fewer artefacts (Figs 5 & 6) but overlapped peaks are unresolved due to program model limitations and a small calibration error. The results are also compromised by using a global noise estimate and over- and under-deconvolution occurs. The smaller data and output ranges improves the resolution but overlapped peaks are still unresolved. A serious deficiency is that some peaks in the results are clearly displaced from their expected masses! ReSpect produces almost no artefacts, if any (Fig. 4). There are substantial gains in resolution and overlapped peaks are well resolved (Figs 5 & 6). The improvement is due to several program features that include the ability to accommodate a calibration error and the incorporation of the "rules of electrospray" so that only masses consistent with the physics of the experiment are reported - mathematically plausible masses inconsistent with the "rules" are not computed. The smaller output range cannot have any effect but the smaller data range improves the quality and resolution of the results (Figs 5-8).
9 Although not reported here, the mass errors assigned by maximum entropy were confusing as they were smaller than the observed peak displacements. Therefore, only a partial analysis was possible. Of the three methods, ReSpect produced the cleanest and most highly resolved results, allowing unambiguous data interpretation. Conclusions A comparison with existing methods has shown that the novel ReSpect algorithm provides a much more useful reconstructed zero-charge spectrum with very few (if any) artefacts and powerful resolution that allows unambiguous data analysis on complex ESI-MS data of heterogeneous glycoproteins. Nadir and ReSpect are trademarks of Positive Probability Limited, UK.
Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping
Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping For Conclusive Characterization of Biologics Deep Protein Characterization Is Crucial Pharmaceuticals have historically been small
Functional Data Analysis of MALDI TOF Protein Spectra
Functional Data Analysis of MALDI TOF Protein Spectra Dean Billheimer [email protected]. Department of Biostatistics Vanderbilt University Vanderbilt Ingram Cancer Center FDA for MALDI TOF
Q-TOF User s Booklet. Enter your username and password to login. After you login, the data acquisition program will automatically start.
Q-TOF User s Booklet Enter your username and password to login. After you login, the data acquisition program will automatically start. ~ 1 ~ This data acquisition window will come up after the program
Alignment and Preprocessing for Data Analysis
Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise
Learning Objectives:
Proteomics Methodology for LC-MS/MS Data Analysis Methodology for LC-MS/MS Data Analysis Peptide mass spectrum data of individual protein obtained from LC-MS/MS has to be analyzed for identification of
AB SCIEX TOF/TOF 4800 PLUS SYSTEM. Cost effective flexibility for your core needs
AB SCIEX TOF/TOF 4800 PLUS SYSTEM Cost effective flexibility for your core needs AB SCIEX TOF/TOF 4800 PLUS SYSTEM It s just what you expect from the industry leader. The AB SCIEX 4800 Plus MALDI TOF/TOF
Micromass LCT User s Guide
Micromass LCT User s Guide 1) Log on to MassLynx with your username & password. 2) After you have logged in, the MassLynx software will automatically run. 3) After MassLynx has come up, open your project
Tutorial for Proteomics Data Submission. Katalin F. Medzihradszky Robert J. Chalkley UCSF
Tutorial for Proteomics Data Submission Katalin F. Medzihradszky Robert J. Chalkley UCSF Why Have Guidelines? Large-scale proteomics studies create huge amounts of data. It is impossible/impractical to
Application Note # LCMS-81 Introducing New Proteomics Acquisiton Strategies with the compact Towards the Universal Proteomics Acquisition Method
Application Note # LCMS-81 Introducing New Proteomics Acquisiton Strategies with the compact Towards the Universal Proteomics Acquisition Method Introduction During the last decade, the complexity of samples
Tutorial 9: SWATH data analysis in Skyline
Tutorial 9: SWATH data analysis in Skyline In this tutorial we will learn how to perform targeted post-acquisition analysis for protein identification and quantitation using a data-independent dataset
Pesticide Analysis by Mass Spectrometry
Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine
Mass Frontier 7.0 Quick Start Guide
Mass Frontier 7.0 Quick Start Guide The topics in this guide briefly step you through key features of the Mass Frontier application. Editing a Structure Working with Spectral Trees Building a Library Predicting
AMD Analysis & Technology AG
AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds
MultiQuant Software 2.0 for Targeted Protein / Peptide Quantification
MultiQuant Software 2.0 for Targeted Protein / Peptide Quantification Gold Standard for Quantitative Data Processing Because of the sensitivity, selectivity, speed and throughput at which MRM assays can
In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates
In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates Using the Explore Workflow on the AB SCIEX TripleTOF 5600 System A major challenge in proteomics
MASCOT Search Results Interpretation
The Mascot protein identification program (Matrix Science, Ltd.) uses statistical methods to assess the validity of a match. MS/MS data is not ideal. That is, there are unassignable peaks (noise) and usually
Using NIST Search with Agilent MassHunter Qualitative Analysis Software James Little, Eastman Chemical Company Sept 20, 2012.
Using NIST Search with Agilent MassHunter Qualitative Analysis Software James Little, Eastman Chemical Company Sept 20, 2012 Introduction Screen captures in this document were taken from MassHunter B.05.00
A Streamlined Workflow for Untargeted Metabolomics
A Streamlined Workflow for Untargeted Metabolomics Employing XCMS plus, a Simultaneous Data Processing and Metabolite Identification Software Package for Rapid Untargeted Metabolite Screening Baljit K.
SELDI-TOF Mass Spectrometry Protein Data By Huong Thi Dieu La
SELDI-TOF Mass Spectrometry Protein Data By Huong Thi Dieu La References Alejandro Cruz-Marcelo, Rudy Guerra, Marina Vannucci, Yiting Li, Ching C. Lau, and Tsz-Kwong Man. Comparison of algorithms for pre-processing
Copyright 2007 Casa Software Ltd. www.casaxps.com. ToF Mass Calibration
ToF Mass Calibration Essentially, the relationship between the mass m of an ion and the time taken for the ion of a given charge to travel a fixed distance is quadratic in the flight time t. For an ideal
Appendix 5 Overview of requirements in English
Appendix 5 Overview of requirements in English This document is a translation of Appendix 4 (Bilag 4) section 2. This translation is meant as a service for the bidder and in case of any differences between
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances TripleTOF 5600 + LC/MS/MS System with MasterView Software Adrian M. Taylor AB Sciex Concord, Ontario (Canada) Overview
Monoclonal Antibody Fragment Separation and Characterization Using Size Exclusion Chromatography Coupled with Mass Spectrometry
Monoclonal ntibody Fragment Separation and haracterization Using Size Exclusion hromatography oupled with Mass Spectrometry uthors Haiying hen Katherine McLaughlin Sepax Technologies, Inc. 5 Innovation
# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water
Application Notes # LCMS-35 esquire series Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water An LC-APCI-MS/MS method using an ion trap system
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis Stephen Lock AB SCIEX Warrington (UK) Overview A rapid, robust, sensitive and specific LC-MS/MS method has been developed for
Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference
Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Abstract The advantages of mass spectrometry (MS) in combination with gas
UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs
Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Stephen Lock 1 and Matthew Noestheden 2 1 AB SCIEX Warrington, Cheshire (UK), 2 AB SCIEX Concord, Ontario (Canada) Overview A rapid,
[ Care and Use Manual ]
PREP Calibration Mix DIOS Low i. Introduction Pre-packaged PREP Calibration Mixtures eliminate the need to purchase and store large quantities of the component calibration reagents, simplifying sample
泛 用 蛋 白 質 體 學 之 質 譜 儀 資 料 分 析 平 台 的 建 立 與 應 用 Universal Mass Spectrometry Data Analysis Platform for Quantitative and Qualitative Proteomics
泛 用 蛋 白 質 體 學 之 質 譜 儀 資 料 分 析 平 台 的 建 立 與 應 用 Universal Mass Spectrometry Data Analysis Platform for Quantitative and Qualitative Proteomics 2014 Training Course Wei-Hung Chang ( 張 瑋 宏 ) ABRC, Academia
Analyzing Small Molecules by EI and GC-MS. July 2014
Analyzing Small Molecules by EI and GC-MS July 2014 Samples Appropriate for GC-MS Volatile and semi-volatile organic compounds Rule of thumb,
MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics
MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics With Unique QTRAP and TripleTOF 5600 System Technology Targeted peptide quantification is a rapidly growing application
NUVISAN Pharma Services
NUVISAN Pharma Services CESI MS Now available! 1st CRO in Europe! At the highest levels of quality. LABORATORY SERVICES Equipment update STATE OF THE ART AT NUVISAN CESI MS Now available! 1st CRO in Europe!
PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW
OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental
Integrated Data Mining Strategy for Effective Metabolomic Data Analysis
The First International Symposium on Optimization and Systems Biology (OSB 07) Beijing, China, August 8 10, 2007 Copyright 2007 ORSC & APORC pp. 45 51 Integrated Data Mining Strategy for Effective Metabolomic
Preprocessing, Management, and Analysis of Mass Spectrometry Proteomics Data
Preprocessing, Management, and Analysis of Mass Spectrometry Proteomics Data M. Cannataro, P. H. Guzzi, T. Mazza, and P. Veltri Università Magna Græcia di Catanzaro, Italy 1 Introduction Mass Spectrometry
STANFORD UNIVERSITY MASS SPECTROMETRY 333 CAMPUS DR., MUDD 175 STANFORD, CA 94305-5080
Training on the ZQ Open access MS Questions? Contact Dr. Allis Chien [email protected] 650-723-0710 0710 STANFORD UNIVERSITY MASS SPECTROMETRY STANFORD UNIVERSITY MASS SPECTROMETRY 333 CAMPUS DR., MUDD
Application Note # LCMS-66 Straightforward N-glycopeptide analysis combining fast ion trap data acquisition with new ProteinScape functionalities
Application Note # LCMS-66 Straightforward N-glycopeptide analysis combining fast ion trap data acquisition with new ProteinScape functionalities Introduction Glycosylation is one of the most common and
Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance?
Optimization 1 Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance? Where to begin? 2 Sequence Databases Swiss-prot MSDB, NCBI nr dbest Species specific ORFS
Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays
Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays Scheduled MRM HR Workflow on the TripleTOF Systems Jenny Albanese, Christie Hunter AB SCIEX, USA Targeted quantitative
Mascot Search Results FAQ
Mascot Search Results FAQ 1 We had a presentation with this same title at our 2005 user meeting. So much has changed in the last 6 years that it seemed like a good idea to re-visit the topic. Just about
Quick Start Guide Chromeleon 7.2
Chromeleon 7.2 7229.0004 Revision 1.0 July 2013 Table of Contents 1 Introduction... 1 1.1 About this Document... 1 1.2 Other Documentation... 2 2 Using Chromeleon... 3 2.1 Overview... 3 2.2 Starting Chromeleon...
Tuning & Mass Calibration
Tuning & Mass Calibration 1 1 The Sample List Sample List Name Project Name 2 The sample list is the top level screen in the TurboMass Gold Software. Data storage is set up in PROJECT files and within
How To Use An Ionsonic Microscope
Sample Analysis Design Element2 - Basic Software Concepts Scan Modes Magnetic Scan (BScan): the electric field is kept constant and the magnetic field is varied as a function of time the BScan is suitable
Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software
Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software Mark Belmont and Alexander N. Semyonov, Thermo Fisher Scientific, Austin, TX, USA Ming Gu, Cerno Bioscience,
Retrospective Analysis of a Host Cell Protein Perfect Storm: Identifying Immunogenic Proteins and Fixing the Problem
Retrospective Analysis of a Host Cell Protein Perfect Storm: Identifying Immunogenic Proteins and Fixing the Problem Kevin Van Cott, Associate Professor Dept. of Chemical and Biomolecular Engineering Nebraska
Application Note # MT-90 MALDI-TDS: A Coherent MALDI Top-Down-Sequencing Approach Applied to the ABRF-Protein Research Group Study 2008
Bruker Daltonics Application Note # MT-90 MALDI-TDS: A Coherent MALDI Top-Down-Sequencing Approach Applied to the ABRF-Protein Research Group Study 2008 In the ABRF-PRG study 2008 [*] the ability to characterize
Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests
Application Note: 386 Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests Rosa Viner, Terry Zhang, Scott Peterman, and Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA,
Waters Core Chromatography Training (2 Days)
2015 Page 2 Waters Core Chromatography Training (2 Days) The learning objective of this two day course is to teach the user core chromatography, system and software fundamentals in an outcomes based approach.
STANDARD OPERATING PROCEDURES
PAGE: 1 of 33 CONTENTS 1.0 SCOPE AND APPLICATION 2.0 METHOD SUMMARY 3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE 4.0 INTERFERENCES AND POTENTIAL PROBLEMS 5.0 EQUIPMENT/APPARATUS 6.0 REAGENTS
Protein Prospector and Ways of Calculating Expectation Values
Protein Prospector and Ways of Calculating Expectation Values 1/16 Aenoch J. Lynn; Robert J. Chalkley; Peter R. Baker; Mark R. Segal; and Alma L. Burlingame University of California, San Francisco, San
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS Using PeakView Software with the XIC Manager to Get the Answers
Chemometric Analysis for Spectroscopy
Chemometric Analysis for Spectroscopy Bridging the Gap between the State and Measurement of a Chemical System by Dongsheng Bu, PhD, Principal Scientist, CAMO Software Inc. Chemometrics is the use of mathematical
Master course KEMM03 Principles of Mass Spectrometric Protein Characterization. Exam
Exam Master course KEMM03 Principles of Mass Spectrometric Protein Characterization 2010-10-29 kl 08.15-13.00 Use a new paper for answering each question! Write your name on each paper! Aids: Mini calculator,
RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH
RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH Cristiana C. Leandro 1, Peter Hancock 1, Christian Soulier 2, Françoise Aime 2 1 Waters Corporation, Manchester,
Application of TargetView software in the fragrance industry: Accurate identi cation of allergens with fast GC
Application Note: ANTV12 Application of TargetView software in the fragrance industry: Accurate identi cation of allergens with fast GC Introduction The need to screen consumer products for speci c organic
Effects of Intelligent Data Acquisition and Fast Laser Speed on Analysis of Complex Protein Digests
Effects of Intelligent Data Acquisition and Fast Laser Speed on Analysis of Complex Protein Digests AB SCIEX TOF/TOF 5800 System with DynamicExit Algorithm and ProteinPilot Software for Robust Protein
Extraction Heights for STIS Echelle Spectra
Instrument Science Report STIS 98-09 Extraction Heights for STIS Echelle Spectra Claus Leitherer and Ralph Bohlin March 1998 ABSTRACT The optimum extraction height (h) for STIS echelle spectra of 7 pixels
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;
Overview. Purpose. Methods. Results
A ovel Approach to Quantify Unbound Cisplatin, Carboplatin, and xaliplatin in Human Plasma Ultrafiltrate by Measuring Platinum-DDTC Complex Using LC/M/M Min Meng, Ryan Kuntz, Al Fontanet, and Patrick K.
1 st day Basic Training Course
DATES AND LOCATIONS 13-14 April 2015 Princeton Marriott at Forrestal, 100 College Road East, Princeton NJ 08540, New Jersey 16-17 April 2015 Hotel Nikko San Francisco 222 Mason Street, San Francisco, CA
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not
MassHunter for Agilent GC/MS & GC/MS/MS
MassHunter for Agilent GC/MS & GC/MS/MS Next Generation Data Analysis Software Presented by : Terry Harper GC/MS Product Specialist 1 Outline of Topics Topic 1: Introduction to MassHunter Topic 2: Data
Aiping Lu. Key Laboratory of System Biology Chinese Academic Society [email protected]
Aiping Lu Key Laboratory of System Biology Chinese Academic Society [email protected] Proteome and Proteomics PROTEin complement expressed by genome Marc Wilkins Electrophoresis. 1995. 16(7):1090-4. proteomics
The Scheduled MRM Algorithm Enables Intelligent Use of Retention Time During Multiple Reaction Monitoring
The Scheduled MRM Algorithm Enables Intelligent Use of Retention Time During Multiple Reaction Monitoring Delivering up to 2500 MRM Transitions per LC Run Christie Hunter 1, Brigitte Simons 2 1 AB SCIEX,
Analysis of Phthalate Esters in Children's Toys Using GC-MS
C146-E152 Analysis of Phthalate Esters in Children's Toys Using GC-MS GC/MS Technical Report No.4 Yuki Sakamoto, Katsuhiro Nakagawa, Haruhiko Miyagawa Abstract As of February 29, the US Consumer Product
Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19
Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide
Performance and advantages of qnmr measurements
Return to Web Version This is the first of a series of articles related to the launch of new organic CRMs certified by quantitative NMR under double accreditation. In this issue, we focus on CRMs intended
Electrospray Ion Trap Mass Spectrometry. Introduction
Electrospray Ion Source Electrospray Ion Trap Mass Spectrometry Introduction The key to using MS for solutions is the ability to transfer your analytes into the vacuum of the mass spectrometer as ionic
Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System
Investigating the use of the AB SCIEX TripleTOF 4600 LC/MS/MS System for High Throughput Screening of Synthetic Cannabinoids/Metabolites in Human Urine AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS
Mass Frontier Version 7.0
Mass Frontier Version 7.0 User Guide XCALI-97349 Revision A February 2011 2011 Thermo Fisher Scientific Inc. All rights reserved. Mass Frontier, Mass Frontier Server Manager, Fragmentation Library, Spectral
ProteinPilot Report for ProteinPilot Software
ProteinPilot Report for ProteinPilot Software Detailed Analysis of Protein Identification / Quantitation Results Automatically Sean L Seymour, Christie Hunter SCIEX, USA Pow erful mass spectrometers like
Introduction. What Can an Offline Desktop Processing Tool Provide for a Chemist?
Increasing Chemist Productivity in an Open-Access Environment Ryan Sasaki, Graham A. McGibbon, Steve Hayward Featuring ACD/Spectrus Processor and Aldrich Library for ACD/Labs Advanced Chemistry Development,
FTIR Instrumentation
FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection Evelyn Goh, Antonietta Gledhill Waters Pacific, Singapore, Waters Corporation, Manchester, UK A P P L I C AT
Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach
Outline Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain 2012 Presented By : KHALID ALKOBAYER Crowdsourcing and Crowdclustering
Correlation of the Mass Spectrometric Analysis of Heat-Treated Glutaraldehyde Preparations to Their 235nm / 280 nm UV Absorbance Ratio
an ABC Laboratories white paper Correlation of the Mass Spectrometric Analysis of Heat-Treated Glutaraldehyde Preparations to Their 235nm / 280 nm UV Absorbance Ratio A. Sen, R. Dunphy, L. Rosik Analytical
Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening
Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening Application Note Forensics Author Erin Shonsey Director of Research Alabama Department of Forensic Science Abstract
Building Agilent GC/MSD Deconvolution Reporting Libraries for Any Application Technical Overview
Building Agilent GC/MSD Deconvolution Reporting Libraries for Any Application Technical Overview Authors Xiaofei Ping Agilent Technologies (Shanghai) Co Ltd 412 Yinglun Road, Shanghai, 200131 P.R. China
Mass Spectrometry Signal Calibration for Protein Quantitation
Cambridge Isotope Laboratories, Inc. www.isotope.com Proteomics Mass Spectrometry Signal Calibration for Protein Quantitation Michael J. MacCoss, PhD Associate Professor of Genome Sciences University of
Agilent 6000 Series LC/MS Solutions CONFIDENCE IN QUANTITATIVE AND QUALITATIVE ANALYSIS
Agilent 6000 Series LC/MS Solutions CONFIDENCE IN QUANTITATIVE AND QUALITATIVE ANALYSIS AGILENT 6000 SERIES LC/MS SOLUTIONS UNRIVALED ACHIEVEMENT AT EVERY LEVEL The Agilent 6000 Series of LC/MS instruments
Application of Structure-Based LC/MS Database Management for Forensic Analysis
Cozette M. Cuppett and Michael P. Balogh Waters Corporation, Milford, MA USA Antony Williams, Vitaly Lashin and Ilya Troisky Advanced Chemistry Development, Toronto, ntario, Canada verview Application
Application Note # LCMS-62 Walk-Up Ion Trap Mass Spectrometer System in a Multi-User Environment Using Compass OpenAccess Software
Application Note # LCMS-62 Walk-Up Ion Trap Mass Spectrometer System in a Multi-User Environment Using Compass OpenAccess Software Abstract Presented here is a case study of a walk-up liquid chromatography
using ms based proteomics
quantification using ms based proteomics lennart martens Computational Omics and Systems Biology Group Department of Medical Protein Research, VIB Department of Biochemistry, Ghent University Ghent, Belgium
Background Information
1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software
Laboration 1. Identifiering av proteiner med Mass Spektrometri. Klinisk Kemisk Diagnostik
Laboration 1 Identifiering av proteiner med Mass Spektrometri Klinisk Kemisk Diagnostik Sven Kjellström 2014 [email protected] 0702-935060 Laboration 1 Klinisk Kemisk Diagnostik Identifiering av
Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction
Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)
Accurate calibration of on-line Time of Flight Mass Spectrometer (TOF-MS) for high molecular weight combustion product analysis
Accurate calibration of on-line Time of Flight Mass Spectrometer (TOF-MS) for high molecular weight combustion product analysis B. Apicella*, M. Passaro**, X. Wang***, N. Spinelli**** [email protected]
Tackling the data analysis challenge for characterisation of biotherapeutics
CASSS AT 2015 Berlin March 2015 1 Tackling the data analysis challenge for characterisation of biotherapeutics Carsten P Sönksen, Ph.D., Novo Nordisk Tackling the data analysis challenge 2 Personal background:
Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA)
Analytica Chimica Acta 401 (1999) 35 43 Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA) M. Statheropoulos a,, A. Pappa a, P. Karamertzanis a, H.L.C. Meuzelaar
VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)
INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY
Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische Chemie, Universitätsspital Zürich, CH-8091 Zürich, Schweiz
Toxichem Krimtech 211;78(Special Issue):324 Online extraction LC-MS n method for the detection of drugs in urine, serum and heparinized plasma Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische
ProteinScape. Innovation with Integrity. Proteomics Data Analysis & Management. Mass Spectrometry
ProteinScape Proteomics Data Analysis & Management Innovation with Integrity Mass Spectrometry ProteinScape a Virtual Environment for Successful Proteomics To overcome the growing complexity of proteomics
ProteinChip Energy Absorbing Molecules (EAM)
ProteinChip Energy Absorbing Molecules (EAM) Instruction Manual Catalog #C30-00001, #C30-00002, #C30-00003, #C30-00004 For technical support, call your local Bio-Rad office, or in the US, call 1-800-4BIORAD
MarkerView Software 1.2.1 for Metabolomic and Biomarker Profiling Analysis
MarkerView Software 1.2.1 for Metabolomic and Biomarker Profiling Analysis Overview MarkerView software is a novel program designed for metabolomics applications and biomarker profiling workflows 1. Using
