Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,
|
|
|
- Gwen Gaines
- 10 years ago
- Views:
Transcription
1 CHAPTER 13 Nonparametric and Distribution-Free Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence). Distribution-Free tests tests that make no assumptions about the sampled populations. Note. These terms, in practice, tend to be used interchangably, most often with both under the umbrella of nonparametric statistics. Advantages of nonparametric statistics (1) Allow for the testing of hypotheses that are not statements about population parameter values. (2) May be used when the form of the sampled population is unknown. (3) Tend to be computationally easier and more quickly applied than parametric procedures. (4) May be applied when the data being analyzed consist merely of rankings or classifications. Disadvantages of nonparametric statistics (1) The use of nonparametric procedures with data that can be handled with parametric procedures is a waste of time. (2) The application of some nonparametric tests may be laborious for large samples. 134
2 13. NONPARAMETRIC AND DISTRIBUTION-FREE STATISTICS 135 Wilcoxon Signed-Rank Test for Location for testing a null hypothesis about a population mean where neither z (small sample [n < 30] from a population that is grossly nonnormally distributed, so Central Limit Theorem does not apply) nor t (the sampled population does not su ciently approximate a normal population) is an appropriate test statistic. Test assumptions on the data: 1) Random variable 2) Continuous variable 3) Population symmetric about µ 4) At least an interval scale Calculations: 1) For H 0 : µ = µ 0, let d i = x i µ 0 For H 0 : µ 1 = µ 2, let d i = x 1,i x 2,i Eliminate cases where d i = 0, reducing n accordingly. 2) Rank the usable d i from the smallest absolute value to the largest absolute value. If two or more of the d i are equal, assign each tied value the mean of the rank positions the tied values occupy. 3) Assign each rank the sign of the d i that yields that rank. 4) Find T +, the sum of the ranks with positive signs, and T, the sum of the ranks with negative signs. Test statistic T : For H A : µ 6= µ 0, T is the smaller of T + and T For H A : µ < µ 0, T = T + For H A : µ > µ 0, T = T
3 NONPARAMETRIC AND DISTRIBUTION-FREE STATISTICS Example (13.4.1). Using the data on page 683 of the text, we test the hypotheses H 0 : µ = 5.05 H A : µ 6= 5.05 at the = 0.05 level of significance. The critical value in Table K for 2 =.025 and n = 15 is, by using.024, T = 25. We compute T + = 86 and T = 34, yielding T = 34. Since 34 > 25, we are unable to reject H 0. From Table K, we also get that p = 2(.0757) = This same data is used on pages of my SPSS manual, yielding the following output:
4 13. NONPARAMETRIC AND DISTRIBUTION-FREE STATISTICS 137 The Z is the standardized normal approximation to the test statistic, with p =.140 here. Mann-Whitney test for equal medians for two independent samples Assumptions: (1) Independent random samples of size m and n (2) At least ordinal scales (3) Continuous variables (4) Populations di er only with respect to medians We test the hypothesis against H 0 : M 1 = M 2 H A : M 1 6= M 2, H A : M 1 > M 2, or H A : M1 < M 2 with level of significance =.05. If the two populations are symmetric, so that within each population the mean and the median are the same, the conclusions we reach regarding the two population medians will also apply to the two populations means. Example (13.6.1). We will consider three cases, all with level of significance =.05: (a) H 0 : M X M Y H A : M X < M Y (b) H 0 : M X apple M Y H A : M X > M Y (c) H 0 : M X = M Y H A : M X 6= M Y
5 NONPARAMETRIC AND DISTRIBUTION-FREE STATISTICS Calculations: (1) Rank all variables from smallest to largest, yet keeping them separate. Handle ties as in Wilcoxon. See Table on page 692 of the text. (2) The test statistic is n(n + 1) T = S 2 where n is the number of sample X observations and S is the sum of the ranks assigned to the sample observations from the population X. The choice of which sample s values we label X is arbitrary. In this example, 15(16) T = 145 = (3) For (a), we reject H 0 since 25 < 45 with 45 the critical value obtained from Table L. For (b), we would reject H 0 if T > nm critical value = = 105. That is not the case here. For (c), we use =.025 in Table L to get critical values of 40 and = 110. We reject H 0 if T < 40 or T > 110. In our case, T < 40, so we reject H 0. (4) Since 22 < 25 < 30, we have.001 < p <.005 for the one-sided tests and.002 < p <.01 for the two-sided test. (5) Table L does not work for n or m greater than 20. In general, if nm apple 400 and mn + min(n, m) apple 220, the exact significance level is based on an 2 algorithm of Dineen and Blakesley. This is what is in Table L. Otherwise, we compute T mn/2 z = p, nm(n + m + 1)/12 which is distributed approximately as a standard normal distribution.
6 13. NONPARAMETRIC AND DISTRIBUTION-FREE STATISTICS 139 The SPSS output for this example is given below. The Asymp. Sig. is based on Z.
NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions
EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions
Tutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls [email protected] MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
Non-Parametric Tests (I)
Lecture 5: Non-Parametric Tests (I) KimHuat LIM [email protected] http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent
Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test
Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric
Rank-Based Non-Parametric Tests
Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Difference tests (2): nonparametric
NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge
Nonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
THE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON
CHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
Exact Nonparametric Tests for Comparing Means - A Personal Summary
Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola
Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures
Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:
Name: Date: Use the following to answer questions 3-4:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
Parametric and non-parametric statistical methods for the life sciences - Session I
Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute
1 Nonparametric Statistics
1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions
Research Methodology: Tools
MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 11: Nonparametric Methods May 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Non-Inferiority Tests for One Mean
Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random
Permutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
NCSS Statistical Software. One-Sample T-Test
Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,
The Friedman Test with MS Excel. In 3 Simple Steps. Kilem L. Gwet, Ph.D.
The Friedman Test with MS Excel In 3 Simple Steps Kilem L. Gwet, Ph.D. Copyright c 2011 by Kilem Li Gwet, Ph.D. All rights reserved. Published by Advanced Analytics, LLC A single copy of this document
MEASURES OF LOCATION AND SPREAD
Paper TU04 An Overview of Non-parametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the
Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples
Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
HYPOTHESIS TESTING WITH SPSS:
HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
Chapter G08 Nonparametric Statistics
G08 Nonparametric Statistics Chapter G08 Nonparametric Statistics Contents 1 Scope of the Chapter 2 2 Background to the Problems 2 2.1 Parametric and Nonparametric Hypothesis Testing......................
Nonparametric Statistics
Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric
Come scegliere un test statistico
Come scegliere un test statistico Estratto dal Capitolo 37 of Intuitive Biostatistics (ISBN 0-19-508607-4) by Harvey Motulsky. Copyright 1995 by Oxfd University Press Inc. (disponibile in Iinternet) Table
The Wilcoxon Rank-Sum Test
1 The Wilcoxon Rank-Sum Test The Wilcoxon rank-sum test is a nonparametric alternative to the twosample t-test which is based solely on the order in which the observations from the two samples fall. We
Stat 5102 Notes: Nonparametric Tests and. confidence interval
Stat 510 Notes: Nonparametric Tests and Confidence Intervals Charles J. Geyer April 13, 003 This handout gives a brief introduction to nonparametrics, which is what you do when you don t believe the assumptions
SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
Biostatistics: Types of Data Analysis
Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics [email protected] http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U Previous chapters of this text have explained the procedures used to test hypotheses using interval data (t-tests and ANOVA s) and nominal
Likert Scales. are the meaning of life: Dane Bertram
are the meaning of life: Note: A glossary is included near the end of this handout defining many of the terms used throughout this report. Likert Scale \lick urt\, n. Definition: Variations: A psychometric
Introduction. Chapter 14: Nonparametric Tests
2 Chapter 14: Nonparametric Tests Introduction robustness outliers transforming data other standard distributions nonparametric methods rank tests The most commonly used methods for inference about the
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
Multivariate Analysis of Ecological Data
Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology
t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected] www.excelmasterseries.com
Statistical tests for SPSS
Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
13: Additional ANOVA Topics. Post hoc Comparisons
13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
Parametric and Nonparametric: Demystifying the Terms
Parametric and Nonparametric: Demystifying the Terms By Tanya Hoskin, a statistician in the Mayo Clinic Department of Health Sciences Research who provides consultations through the Mayo Clinic CTSA BERD
NAG C Library Chapter Introduction. g08 Nonparametric Statistics
g08 Nonparametric Statistics Introduction g08 NAG C Library Chapter Introduction g08 Nonparametric Statistics Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Parametric and Nonparametric
Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217
Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing
Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions
Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals
STATISTICAL SIGNIFICANCE OF RANKING PARADOXES
STATISTICAL SIGNIFICANCE OF RANKING PARADOXES Anna E. Bargagliotti and Raymond N. Greenwell Department of Mathematical Sciences and Department of Mathematics University of Memphis and Hofstra University
Terminating Sequential Delphi Survey Data Collection
A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to
Non-Inferiority Tests for Two Means using Differences
Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous
One-Way Analysis of Variance (ANOVA) Example Problem
One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means
Introduction to Statistics and Quantitative Research Methods
Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.
TABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (One-way χ 2 )... 1 Test of Independence (Two-way χ 2 )... 2 Hypothesis Testing
UNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
The Variability of P-Values. Summary
The Variability of P-Values Dennis D. Boos Department of Statistics North Carolina State University Raleigh, NC 27695-8203 [email protected] August 15, 2009 NC State Statistics Departement Tech Report
Chapter 7 Section 7.1: Inference for the Mean of a Population
Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used
The Statistics Tutor s Quick Guide to
statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcp-marshallowen-7
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
Intro to Data Analysis, Economic Statistics and Econometrics
Intro to Data Analysis, Economic Statistics and Econometrics Statistics deals with the techniques for collecting and analyzing data that arise in many different contexts. Econometrics involves the development
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
Nonparametric statistics and model selection
Chapter 5 Nonparametric statistics and model selection In Chapter, we learned about the t-test and its variations. These were designed to compare sample means, and relied heavily on assumptions of normality.
Testing for differences I exercises with SPSS
Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the t-test and its non-parametric equivalents in their various forms. In SPSS, all these tests can
Permutation & Non-Parametric Tests
Permutation & Non-Parametric Tests Statistical tests Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?) Form a test statistic for which large values indicate
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
The Chi-Square Test. STAT E-50 Introduction to Statistics
STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,
Quantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
THE CERTIFIED SIX SIGMA BLACK BELT HANDBOOK
THE CERTIFIED SIX SIGMA BLACK BELT HANDBOOK SECOND EDITION T. M. Kubiak Donald W. Benbow ASQ Quality Press Milwaukee, Wisconsin Table of Contents list of Figures and Tables Preface to the Second Edition
A Survey Report on Non-Parametric Hypothesis Testing Including Kruskal-Wallis ANOVA and Kolmogorov Smirnov Goodness-Fit-Test
Research article A Survey Report on Non-Parametric Hypothesis Testing Including Kruskal-Wallis ANOVA and Kolmogorov Smirnov Goodness-Fit-Test Prof. (Dr.) Vishwa Nath Maurya Professor & Ex Principal, Shekhawati
StatCrunch and Nonparametric Statistics
StatCrunch and Nonparametric Statistics You can use StatCrunch to calculate the values of nonparametric statistics. It may not be obvious how to enter the data in StatCrunch for various data sets that
UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST
UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
How To Test For Significance On A Data Set
Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.
IBM SPSS Statistics for Beginners for Windows
ISS, NEWCASTLE UNIVERSITY IBM SPSS Statistics for Beginners for Windows A Training Manual for Beginners Dr. S. T. Kometa A Training Manual for Beginners Contents 1 Aims and Objectives... 3 1.1 Learning
Research Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
SPSS TUTORIAL & EXERCISE BOOK
UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
Non Parametric Inference
Maura Department of Economics and Finance Università Tor Vergata Outline 1 2 3 Inverse distribution function Theorem: Let U be a uniform random variable on (0, 1). Let X be a continuous random variable
Nonparametric and Distribution- Free Statistical Tests
20 Nonparametric and Distribution- Free Statistical Tests Concepts that you will need to remember from previous chapters SS total, SS group, SS error : Sums of squares of all scores, of group means, and
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
One-Way Analysis of Variance
One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
Analysis of Questionnaires and Qualitative Data Non-parametric Tests
Analysis of Questionnaires and Qualitative Data Non-parametric Tests JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Lecture SE 2013, Poznań Recalling Basics Measurment Scales Four scales
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
The Kruskal-Wallis test:
Graham Hole Research Skills Kruskal-Wallis handout, version 1.0, page 1 The Kruskal-Wallis test: This test is appropriate for use under the following circumstances: (a) you have three or more conditions
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%
Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the
Unit 27: Comparing Two Means
Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One
8 INTERPRETATION OF SURVEY RESULTS
8 INTERPRETATION OF SURVEY RESULTS 8.1 Introduction This chapter discusses the interpretation of survey results, primarily those of the final status survey. Interpreting a survey s results is most straightforward
P(every one of the seven intervals covers the true mean yield at its location) = 3.
1 Let = number of locations at which the computed confidence interval for that location hits the true value of the mean yield at its location has a binomial(7,095) (a) P(every one of the seven intervals
