Business Intelligence. 1. Introduction September, 2013.
|
|
|
- Dinah Little
- 10 years ago
- Views:
Transcription
1 Business Intelligence 1. Introduction September, 2013.
2 The content of the first lecture Introduction to data warehousing and business intelligence Star join 2
3 Data hierarchy Strategical data Operational planning data Operational data 3
4 The gap between existing data, information and knowledge about the business There are more and more data and information, but there is not enough time for their analysis Enterprises are overloaded with data, but there is not enough information to make decisions It is necessary to establish the processes that will collect data and transform them into information or knowledge 4
5 The gap between the data collected and used (symbolic image) The amount of data The data used in decision making Analyzed data Available data Knowledge gap Execution gap Time 5
6 The relational model can not provide the rich analytical capabilities that modern businesses require Edgar F. Codd (1994.): "Attempting to force one technology or tool to satisfy a particular need for which another tool is more effective and efficient is like attempting to drive a screw into a wall with a hammer when a screwdriver is at hand: the screw may eventually enter the wall but at what cost?" 6
7 The basic idea Database Data Warehouse 7
8 The basic idea - time-space trade off In computer science, time-space trade-off (compromise, balancing the consumption of time and space) is a situation in which memory consumption can be reduced at the expense of slower performance of the program and vice versa. Memory/disk consumption Faster query times 8
9 Once... 5MB IBM hard disc g. >1 t g. 1GB, IBM 3380 oko 250 kg $40,000. 9
10 Data Warehouse is A copy of transaction data specifically structured for query and analysis.(r. Kimball) A single, complete and consistent source of data obtained from a variety of sources and made available to end users in a way that they can understand and use in a business context. (B. Devlin) A data warehouse is a subject oriented, integrated, non volatile, time variant collection of data designed to support management's decision support needs. (B. Inmon) ZPR FER Zagreb Business Intelligence 2013/
11 ... subject oriented... Information systems are organized around applications eg. Insurance company's IS: Car insurance Health insurance Life insurance etc. In a DW, data is organized around major "subjects": Customer Insurance policy etc. Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process 11
12 ... Integrated... Data collected from multiple heterogeneous sources (relational databases, flat files, Internet,...) Cleaning and normalizing data (formats, nomenclatures, units of measurement, data types,...) m, ž 0, 1 m, f m, f male, female 12
13 ... non volatile... The data in the data warehouse are (conditionally speaking) non volatile What to do with the errors (changes) in a transactional system? INS SEL DEL SEL UPD SEL INS transactional system (incremental) loading DW SEL 13
14 ... time variant... All records have a timestamp Each unit of data in the data warehouse is correct (true) from a certain point in time Some records have a timestamp transactions, some are assigned a timestamp at the warehouse loading "a series of layers" Data are almost always analyzed in the context of time:: Current month's sales Quarterly sales compared to the previous year's quarterly sales etc. sales "of all times" mostly pointless 14
15 Differences between transactional systems and data warehouses (1) Transactional System Holds current data Detailed data Volatile date High transaction frequency Foreseeable usage patterns Oriented on daily operations and management of the business system DW Holds current and historical data Detailed and aggregated data (conditionally) Non-volatile data Medium to low transaction Frequency Unforeseeable usage patterns Oriented on data analysis 15
16 Differences between transactional systems and data warehouses(2) Transactional System Support for daily, operational decisions Supports a large number of operational users Extremely important availability The emphasis on data storage DW Supports strategic decisions Serves a small number of users, typically - decision makers Less important availability The emphasis on the information acquisition 16
17 A significant difference between transactional systems and data warehouses is the granularity of the data 17
18 Business Intelligence (1) The typical organization analyzes only "10%" of the data collected BI is a way to take advantage of the "remaining 90%" Data is a strategic asset Converting data into information Manage business information BI is not a product, it is a concept "business" should be taken in a broader sense, for example, education is a business The aim is to improve the business 18
19 Business Intelligence (2) Business intelligence (BI) is an umbrella term that includes the applications, infrastructure and tools, and best practices that enable access to and analysis of information to improve and optimize decisions and performance. Gartner Definition implies: BI is more than just tools - without the appropriate procedures and people tools themselves are of little worth The value of BI-I is realized in the profitable business decisions - if knowledge is not used in that sense, the procedures themselves are of little worth 19
20 Business Intelligence (3) BI includes a wide range of applications and technologies for gathering, storing, analyzing, and sharing information in order to make better business decisions BI applications include: decision support systems querying and reporting OLAP statistical analysis forecasting Data mining 20
21 Introduction to dimensional modeling - Star Join Poslovna inteligencija 21
22 In DW, data is stored in the dimensional model Dimensional model presents data in a simple, intuitive format that allows for efficient querying "Make everything as simple as possible, but not simpler" A. Einstein Dimensional model is not normalized Two models: Star Join Snowflake 22
23 Zvjezdasti model dimension dimension dimension keys dimension measures dimension fact table 23
24 Zvjezdasti model Dimensional and fact table are always always in a 1:N relationship ddate iddate day month year... 1 N N fexam iddate idstudent idteacher idcourse grade haspassed(0,1) N N 1 dstudent idstudent firstname lastname... dteacher idteacher firstname lastname dcourse idcourse coursename ECTS... 24
25 Fact table Fact table corresponds to a process being monitored in the data warehouse DW can have N fact tables Comprised of two sets of numerical attributes: Dimension table keys Measures Normalized (or nearly normalized - sometimes has derived attributes, such as price and pricevat) Often it is (almost) identical to the corresponding table in a relational database (but with substituted keys) A large number of records (10 5, 10 6, 10 7,...) One row (tuple) does not take up much space (normalized table, numerical attributes) 25
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
Data W a Ware r house house and and OLAP Week 5 1
Data Warehouse and OLAP Week 5 1 Midterm I Friday, March 4 Scope Homework assignments 1 4 Open book Team Homework Assignment #7 Read pp. 121 139, 146 150 of the text book. Do Examples 3.8, 3.10 and Exercise
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
Advanced Data Management Technologies
ADMT 2015/16 Unit 2 J. Gamper 1/44 Advanced Data Management Technologies Unit 2 Basic Concepts of BI and Data Warehousing J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Acknowledgements:
Data Warehouse Snowflake Design and Performance Considerations in Business Analytics
Journal of Advances in Information Technology Vol. 6, No. 4, November 2015 Data Warehouse Snowflake Design and Performance Considerations in Business Analytics Jiangping Wang and Janet L. Kourik Walker
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
BUILDING BLOCKS OF DATAWAREHOUSE G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT 1 Data Warehouse Subject Oriented Organized around major subjects, such as customer, product, sales. Focusing on
CHAPTER 3. Data Warehouses and OLAP
CHAPTER 3 Data Warehouses and OLAP 3.1 Data Warehouse 3.2 Differences between Operational Systems and Data Warehouses 3.3 A Multidimensional Data Model 3.4Stars, snowflakes and Fact Constellations: 3.5
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
Presented by: Jose Chinchilla, MCITP
Presented by: Jose Chinchilla, MCITP Jose Chinchilla MCITP: Database Administrator, SQL Server 2008 MCITP: Business Intelligence SQL Server 2008 Customers & Partners Current Positions: President, Agile
Methodology Framework for Analysis and Design of Business Intelligence Systems
Applied Mathematical Sciences, Vol. 7, 2013, no. 31, 1523-1528 HIKARI Ltd, www.m-hikari.com Methodology Framework for Analysis and Design of Business Intelligence Systems Martin Závodný Department of Information
OLAP. Business Intelligence OLAP definition & application Multidimensional data representation
OLAP Business Intelligence OLAP definition & application Multidimensional data representation 1 Business Intelligence Accompanying the growth in data warehousing is an ever-increasing demand by users for
Understanding Data Warehousing. [by Alex Kriegel]
Understanding Data Warehousing 2008 [by Alex Kriegel] Things to Discuss Who Needs a Data Warehouse? OLTP vs. Data Warehouse Business Intelligence Industrial Landscape Which Data Warehouse: Bill Inmon vs.
Data Warehousing and Data Mining
Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong [email protected] Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING Ramesh Babu Palepu 1, Dr K V Sambasiva Rao 2 Dept of IT, Amrita Sai Institute of Science & Technology 1 MVR College of Engineering 2 [email protected]
Customer Analysis - Customer analysis is done by analyzing the customer's buying preferences, buying time, budget cycles, etc.
Data Warehouses Data warehousing is the process of constructing and using a data warehouse. A data warehouse is constructed by integrating data from multiple heterogeneous sources that support analytical
Trivadis White Paper. Comparison of Data Modeling Methods for a Core Data Warehouse. Dani Schnider Adriano Martino Maren Eschermann
Trivadis White Paper Comparison of Data Modeling Methods for a Core Data Warehouse Dani Schnider Adriano Martino Maren Eschermann June 2014 Table of Contents 1. Introduction... 3 2. Aspects of Data Warehouse
Data Warehousing and Data Mining Introduction
Data Warehousing and Data Mining Introduction General introduction to DWDM Business intelligence OLTP vs. OLAP Data integration Methodological framework DW definition Acknowledgements: I am indebted to
Microsoft Data Warehouse in Depth
Microsoft Data Warehouse in Depth 1 P a g e Duration What s new Why attend Who should attend Course format and prerequisites 4 days The course materials have been refreshed to align with the second edition
8902 How to Generate Universes from SAP Sybase PowerDesigner. Revision: 27.08.2013
8902 How to Generate Universes from SAP Sybase PowerDesigner Revision: 27.08.2013 Objectives After reviewing this content, you will be able to: Explain Dimensional Modeling for Cubes in SAP Sybase PowerDesigner
Overview of Data Warehousing and OLAP
Overview of Data Warehousing and OLAP Chapter 28 March 24, 2008 ADBS: DW 1 Chapter Outline What is a data warehouse (DW) Conceptual structure of DW Why separate DW Data modeling for DW Online Analytical
What is Customer Relationship Management? Customer Relationship Management Analytics. Customer Life Cycle. Objectives of CRM. Three Types of CRM
Relationship Management Analytics What is Relationship Management? CRM is a strategy which utilises a combination of Week 13: Summary information technology policies processes, employees to develop profitable
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
Hybrid Support Systems: a Business Intelligence Approach
Journal of Applied Business Information Systems, 2(2), 2011 57 Journal of Applied Business Information Systems http://www.jabis.ro Hybrid Support Systems: a Business Intelligence Approach Claudiu Brandas
Sterling Business Intelligence
Sterling Business Intelligence Concepts Guide Release 9.0 March 2010 Copyright 2009 Sterling Commerce, Inc. All rights reserved. Additional copyright information is located on the documentation library:
Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach
2006 ISMA Conference 1 Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach Priya Lobo CFPS Satyam Computer Services Ltd. 69, Railway Parallel Road, Kumarapark West, Bangalore 560020,
Data Integration and ETL Process
Data Integration and ETL Process Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master studies, second
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Introduction to Data Warehousing. Ms Swapnil Shrivastava [email protected]
Introduction to Data Warehousing Ms Swapnil Shrivastava [email protected] Necessity is the mother of invention Why Data Warehouse? Scenario 1 ABC Pvt Ltd is a company with branches at Mumbai,
Reflections on Agile DW by a Business Analytics Practitioner. Werner Engelen Principal Business Analytics Architect
Reflections on Agile DW by a Business Analytics Practitioner Werner Engelen Principal Business Analytics Architect Introduction Werner Engelen Active in BI & DW since 1998 + 6 years at element61 Previously:
SAS BI Course Content; Introduction to DWH / BI Concepts
SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console
Data Warehouse Overview. Srini Rengarajan
Data Warehouse Overview Srini Rengarajan Please mute Your cell! Agenda Data Warehouse Architecture Approaches to build a Data Warehouse Top Down Approach Bottom Up Approach Best Practices Case Example
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
University of Gaziantep, Department of Business Administration
University of Gaziantep, Department of Business Administration The extensive use of information technology enables organizations to collect huge amounts of data about almost every aspect of their businesses.
Deductive Data Warehouses and Aggregate (Derived) Tables
Deductive Data Warehouses and Aggregate (Derived) Tables Kornelije Rabuzin, Mirko Malekovic, Mirko Cubrilo Faculty of Organization and Informatics University of Zagreb Varazdin, Croatia {kornelije.rabuzin,
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Big Data Analytics with IBM Cognos BI Dynamic Query IBM Redbooks Solution Guide
Big Data Analytics with IBM Cognos BI Dynamic Query IBM Redbooks Solution Guide IBM Cognos Business Intelligence (BI) helps you make better and smarter business decisions faster. Advanced visualization
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence. Module Curriculum
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence Module Curriculum This document addresses the content related abilities, with reference to the module.
Tiber Solutions. Understanding the Current & Future Landscape of BI and Data Storage. Jim Hadley
Tiber Solutions Understanding the Current & Future Landscape of BI and Data Storage Jim Hadley Tiber Solutions Founded in 2005 to provide Business Intelligence / Data Warehousing / Big Data thought leadership
What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research?
What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research? Emily Thomas Stony Brook University AIRPO Winter Workshop January 2006 Data to Information Historically
Speeding ETL Processing in Data Warehouses White Paper
Speeding ETL Processing in Data Warehouses White Paper 020607dmxwpADM High-Performance Aggregations and Joins for Faster Data Warehouse Processing Data Processing Challenges... 1 Joins and Aggregates are
Oracle OLAP 11g and Oracle Essbase
Oracle OLAP 11g and Oracle Essbase Mark Rittman, Director, Rittman Mead Consulting Who Am I? Oracle BI&W Architecture and Development Specialist Co-Founder of Rittman Mead Consulting Oracle BI&W Project
Business Intelligence: Effective Decision Making
Business Intelligence: Effective Decision Making Bellevue College Linda Rumans IT Instructor, Business Division Bellevue College [email protected] Current Status What do I do??? How do I increase
SENG 520, Experience with a high-level programming language. (304) 579-7726, [email protected]
Course : Semester : Course Format And Credit hours : Prerequisites : Data Warehousing and Business Intelligence Summer (Odd Years) online 3 hr Credit SENG 520, Experience with a high-level programming
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
<Insert Picture Here> Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option
Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option The following is intended to outline our general product direction. It is intended for
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
Why Business Intelligence
Why Business Intelligence Ferruccio Ferrando z IT Specialist Techline Italy March 2011 page 1 di 11 1.1 The origins In the '50s economic boom, when demand and production were very high, the only concern
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
Dimensional Modeling for Data Warehouse
Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or
A Survey on Data Warehouse Architecture
A Survey on Data Warehouse Architecture Rajiv Senapati 1, D.Anil Kumar 2 1 Assistant Professor, Department of IT, G.I.E.T, Gunupur, India 2 Associate Professor, Department of CSE, G.I.E.T, Gunupur, India
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE. Prepared by:
BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE Cerulium Corporation has provided quality education and consulting expertise for over six years. We offer customized solutions to
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University Given today s business environment, at times a corporate executive
The Benefits of Data Modeling in Business Intelligence
WHITE PAPER: THE BENEFITS OF DATA MODELING IN BUSINESS INTELLIGENCE The Benefits of Data Modeling in Business Intelligence DECEMBER 2008 Table of Contents Executive Summary 1 SECTION 1 2 Introduction 2
If you re serious about Business Intelligence, you need a BI Competency Centre
If you re serious about Business Intelligence, you need a BI Competency Centre Michael Gibson Data Warehouse Manager Deakin University > > > > > > > > > The traditional Project Implementation model Project
An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning
An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning Roelien Goede North-West University, South Africa Abstract The business intelligence industry is supported
MDM and Data Warehousing Complement Each Other
Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There
Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring
www.ijcsi.org 78 Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring Mohammed Mohammed 1 Mohammed Anad 2 Anwar Mzher 3 Ahmed Hasson 4 2 faculty
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Chapter 7 Multidimensional Data Modeling (MDDM)
Chapter 7 Multidimensional Data Modeling (MDDM) Fundamentals of Business Analytics Learning Objectives and Learning Outcomes Learning Objectives 1. To assess the capabilities of OLTP and OLAP systems 2.
Budgeting and Planning with Microsoft Excel and Oracle OLAP
Copyright 2009, Vlamis Software Solutions, Inc. Budgeting and Planning with Microsoft Excel and Oracle OLAP Dan Vlamis and Cathye Pendley [email protected] [email protected] Vlamis Software Solutions,
How To Model Data For Business Intelligence (Bi)
WHITE PAPER: THE BENEFITS OF DATA MODELING IN BUSINESS INTELLIGENCE The Benefits of Data Modeling in Business Intelligence DECEMBER 2008 Table of Contents Executive Summary 1 SECTION 1 2 Introduction 2
Semantic Data Modeling: The Key to Re-usable Data
Semantic Data Modeling: The Key to Re-usable Data Stephen Brobst Chief Technology Officer Teradata Corporation [email protected] 617-422-0800 Enterprise Information Management Data Modeling Not
ETL tools for Data Warehousing: An empirical study of Open Source Talend Studio versus Microsoft SSIS
ETL tools for Data Warehousing: An empirical study of Open Source Talend Studio versus Microsoft SSIS Ranjith Katragadda Unitech Institute of Technology Auckland, New Zealand Sreenivas Sremath Tirumala
The strategic importance of OLAP and multidimensional analysis A COGNOS WHITE PAPER
The strategic importance of OLAP and multidimensional analysis A COGNOS WHITE PAPER While every attempt has been made to ensure that the information in this document is accurate and complete, some typographical
Chapter 5. Learning Objectives. DW Development and ETL
Chapter 5 DW Development and ETL Learning Objectives Explain data integration and the extraction, transformation, and load (ETL) processes Basic DW development methodologies Describe real-time (active)
Migrating a Discoverer System to Oracle Business Intelligence Enterprise Edition
Migrating a Discoverer System to Oracle Business Intelligence Enterprise Edition Milena Gerova President Bulgarian Oracle User Group [email protected] Who am I Project Manager in TechnoLogica Ltd
DATA CUBES E0 261. Jayant Haritsa Computer Science and Automation Indian Institute of Science. JAN 2014 Slide 1 DATA CUBES
E0 261 Jayant Haritsa Computer Science and Automation Indian Institute of Science JAN 2014 Slide 1 Introduction Increasingly, organizations are analyzing historical data to identify useful patterns and
Dimodelo Solutions Data Warehousing and Business Intelligence Concepts
Dimodelo Solutions Data Warehousing and Business Intelligence Concepts Copyright Dimodelo Solutions 2010. All Rights Reserved. No part of this document may be reproduced without written consent from the
Data Warehousing & OLAP
Data Warehousing & OLAP Motivation: Business Intelligence Customer information (customer-id, gender, age, homeaddress, occupation, income, family-size, ) Product information (Product-id, category, manufacturer,
Data Warehousing. Read chapter 13 of Riguzzi et al Sistemi Informativi. Slides derived from those by Hector Garcia-Molina
Data Warehousing Read chapter 13 of Riguzzi et al Sistemi Informativi Slides derived from those by Hector Garcia-Molina What is a Warehouse? Collection of diverse data subject oriented aimed at executive,
Business Intelligence. 10. OLAP, KPI ETL December 2013.
Business Intelligence 10. OLAP, KPI ETL December 2013. Microsoft Analysis Services Poslovna inteligencija 2 Analysis Services freely available resources Analysis Services Tutorial: http://technet.microsoft.com/en-us/library/ms170208.aspx
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus I. Contact Information Professor: Joseph Morabito, Ph.D. Office: Babbio 419 Office Hours: By Appt. Phone: 201-216-5304 Email: [email protected]
Reverse Engineering in Data Integration Software
Database Systems Journal vol. IV, no. 1/2013 11 Reverse Engineering in Data Integration Software Vlad DIACONITA The Bucharest Academy of Economic Studies [email protected] Integrated applications
DATA WAREHOUSING - OLAP
http://www.tutorialspoint.com/dwh/dwh_olap.htm DATA WAREHOUSING - OLAP Copyright tutorialspoint.com Online Analytical Processing Server OLAP is based on the multidimensional data model. It allows managers,
Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov
Unlock your data for fast insights: dimensionless modeling with in-memory column store By Vadim Orlov I. DIMENSIONAL MODEL Dimensional modeling (also known as star or snowflake schema) was pioneered by
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What
Business Intelligence and Customer Relationship Management
Business Intelligence and Customer Relationship Management Aida Habul School of Economics and Business, University of Sarajevo Trg Oslobo enja-alija Izetbegovic, 71 000 Sarajevo, B&H Phone: + 387 33 275
