An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
|
|
|
- Ethan Carson
- 10 years ago
- Views:
Transcription
1 An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction processing (OLTP) whereas data warehousing systems are designed to support online analytical processing (OLAP). Operational systems concentrate on high-volume transaction processing on a day-to-day basis using real-time data. These systems are generally process-oriented and usually focus on specific business tasks such as registering students, updating financial transactions, and managing employee timesheets. They are optimized for simplicity and speed of modification, allowing for efficient and effortless data entry and retrieval. Such systems also track historical and transactional data, but not to the degree required by research queries. While the operational systems primarily focus on current data management, the data warehouses update and store historical data. They are generally subject-specific and usually carry data from multiple operational systems to support organizational decision-making. Data warehouses can be used to address issues in academic institutions regarding student satisfaction, the effectiveness of new instructional techniques, and the attrition rate. In response to a concern, relevant data can be extracted, or mined, and utilized for data analysis and report generation. Definition: According to William H. Inmon, a data warehouse is a subject-oriented, integrated, timevarying, non-volatile collection of data in support of the management s decision-making process (Inmon, 2005, p. 32). A data warehouse is a centralized repository that stores data from multiple Prepared by Priya Chaplot 1 January 9, 2007
2 information sources and transforms them into a common, multidimensional data model for efficient querying and analysis. A data warehouse has the ability to address a wide variety of phenomena. A faculty member may ask, How can I modify my instruction to help my students learn to write more effective essays? A manager in the Department of Human Resources may ask, What kind of training or orientation is necessary for new employees? Individuals from administration may ask, Are students who attend classes full-time more likely to succeed academically than those who take classes on a part-time basis? Each of these questions requires more information about the situation in order to conduct research. This information originates from the data warehouse. A data warehouse is a storehouse of an organization s historical data. Information from operational systems is extracted and imported into the data warehouse on a regular basis. As a result, complex inquiries, or queries, can be conducted through the data warehouse with minimal interruptions to the operational systems. The imported data is read-only and only adds to the data existing in the data warehouse. With greater amounts of data, the value of the data warehouse to the user increases, since analyses looking over a longer period of time become possible. When a user query is submitted to the warehouse, all relevant historical data addressing that query is readily available and current to support in the decision-making. Goals: The fundamental goal of the data warehouse is to support strategic planning, modeling and forecasting at the organizational level. It must fulfill the need for knowledge for an area of uncertainty or growth in the organization. In order to accomplish this task, it must provide a single, comprehensive and consistent view of the organization. Prepared by Priya Chaplot 2 January 9, 2007
3 The data must be easily accessible and understandable to the user. It must be simple yet intuitive, quick, and easy to use. Also, the data warehouse must present the information consistently and securely to its users. When data is collected from the source systems, it must complete various measures of quality assurance to confirm its accuracy. The data must be verified, appropriately labeled, and fully accounted for before it can be made available to the users. Also, the data must be resilient and able to seamlessly adapt to change without discrediting the existing data. Effective data warehousing can help create a meaningful relationship between information technology and business, facilitating enterprise-level strategic planning and growth (Cohen, 2006). Components: A data warehouse has four main components: operational systems of record, the data staging area, the data presentation area, and data access tools (Kimball & Ross, 2002, p. 7). Each component of the data warehouse serves a unique function in preparing data for manipulation and examination. Operational Source Systems Data Staging Area Data Presentation Area Data Access Tools Extract Extract Extract Services: Clean, combine, and standardize Conform dimensions NO USER QUERY SERVICES Data Store: Flat files and relational tables Processing: Sorting and sequential processing Load Load Data Mart #1 DIMENSIONAL Atomic and Summary data Based on a single Business process DW Bus: Conformed facts & dimensions Data Mart #2 (Similarly designed) Access Access Ad Hoc Query Tools Report Writers Analytic Applications Modeling: Forecasting Scoring Data mining Figure 1. Basic elements of the data warehouse (Kimball & Ross, 2002, p. 7). Prepared by Priya Chaplot 3 January 9, 2007
4 As aforementioned, the operational systems of records, or source systems, capture and process the organization s day-to-day transactions. They concentrate heavily on efficient processing performance, since they are dealing with a high volume of transactions. They function in isolation and do not typically share common data with other source systems. The data that is acquired through these systems is uploaded into the data staging area. The data staging area acts doubly as a storage area for the captured data and as a platform for the set of processes called extract-transformation-load (ETL). This set of processes occurs to standardize the raw data and incorporate it into the data warehouse environment. First, the data is extracted from various source systems and copied into the data staging area. There, the data is combined, cleansed and transformed into a standard format and structure. Missing elements, incorrect labels, duplicate data, misspellings, and other errors are manipulated and corrected in this phase. Once the data is standardized, it is loaded into the data presentation area, where it is finally accessible to users. The formatted data is organized, located and available for user queries in the data presentation area. The data presentation area is considered to be a set of integrated data marts. A data mart is a subset of the data warehouse and represents select data regarding a specific business function (Inmon, 1999). An organization can have multiple data marts, each one relevant to the department for which it was designed. For example, the English department may have a data mart reflecting historical student data including demographics, placement scores, academic performance, and class schedules. The data contained in the data presentation area must be detailed and logically organized. Once the data presentation area contains the formatted data, users can utilize various data access tools to perform queries. Some data access tools include ad hoc query tools, data mining Prepared by Priya Chaplot 4 January 9, 2007
5 applications and sophisticated forecasting tools. Users can use these tools to customize queries to search specific segments of the data presentation area. In addition to these components of a data warehouse, it is imperative to discuss the importance of a strong metadata structure. Metadata, or data about the data, contains vital information that guides the process of converting the raw data from the operational systems of record into accessible data in the data presentation area (Kimball & Ross, 2002, p. 14). Due to its value, the metadata resources must be as carefully categorized, protected, and accessible as the data itself. Analysis: Data warehouses are effective in the transformation from intuitive information gathering to systematic and objective investigation (Zikmund, 2003, p. 5). They provide users access and control to a wide variety of centralized and formatted data to choose the best course of action and support business decisions. Users can manipulate and customize the data to support specific queries that will enable positive changes at various business levels. Since the various stages increase data accuracy and integrity, complex queries can be conducted with a strong sense of confidence. Although there are many benefits to data warehousing, there are several challenges and drawbacks as well. Depending on their design, data warehouses can be highly risky since they have complex architectures, long development cycles, poor information quality, and an incapability to adapt as quickly as business conditions change. Furthermore, since the operational source systems provide the data that eventually makes its way into the data presentation area, data warehouses are limited by these source systems. Thus, each organization should focus on Prepared by Priya Chaplot 5 January 9, 2007
6 continuous evaluation and improvement of its data warehouse, as well as its source systems, to ensure its effectiveness in conducting research and supporting business decisions. Conclusion: Since the primary task of management is effective decision making, the primary task of research, and subsequently data warehouses, is to generate accurate information for use in that decision making. It is imperative that an organization s data warehousing strategies reflect changes in the internal and external business environment in addition to the direction in which the business is traveling. Playing an integral role in the growth, development and success of an organization, data warehouses facilitate meaningful research which facilitates effective management. References: [1] Cohen, Rich (2006). Business Intelligence Strategy: Seven Principles for Enterprise Data Warehouse Design. DM Review. Retrieved December 18, 2006, from [2] Inmon, William H., Building the Data Warehouse, 4th Edition, Wiley Publishing, Indianapolis, [3] Inmon, William H. (1999). Data Mart Does Not Equal Data Warehouse. DM Review. Retrieved January 2, 2007 from [4] Kimball, Ralph; Ross, Margy. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd Edition, John Wiley and Sons, Inc., Chichester, [5] Zikmund, William G., Business Research Methods, 7th Edition, Dryden Press, New York, Prepared by Priya Chaplot 6 January 9, 2007
The Role of Data Warehousing Concept for Improved Organizations Performance and Decision Making
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
Data Warehouse for Interactive Decision Support for Addis Ababa City Administration
Data Warehouse for Interactive Decision Support for Addis Ababa City Administration Yilma Desta Ethiopian Airlines, Addis Ababa, Ethiopia [email protected] Mesfin Kifle Department of Computer Science,
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
A Survey on Data Warehouse Architecture
A Survey on Data Warehouse Architecture Rajiv Senapati 1, D.Anil Kumar 2 1 Assistant Professor, Department of IT, G.I.E.T, Gunupur, India 2 Associate Professor, Department of CSE, G.I.E.T, Gunupur, India
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
Master Data Management and Data Warehousing. Zahra Mansoori
Master Data Management and Data Warehousing Zahra Mansoori 1 1. Preference 2 IT landscape growth IT landscapes have grown into complex arrays of different systems, applications, and technologies over the
Data Warehousing and Data Mining
Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong [email protected] Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge
Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach
2006 ISMA Conference 1 Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach Priya Lobo CFPS Satyam Computer Services Ltd. 69, Railway Parallel Road, Kumarapark West, Bangalore 560020,
SENG 520, Experience with a high-level programming language. (304) 579-7726, [email protected]
Course : Semester : Course Format And Credit hours : Prerequisites : Data Warehousing and Business Intelligence Summer (Odd Years) online 3 hr Credit SENG 520, Experience with a high-level programming
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Methodology Framework for Analysis and Design of Business Intelligence Systems
Applied Mathematical Sciences, Vol. 7, 2013, no. 31, 1523-1528 HIKARI Ltd, www.m-hikari.com Methodology Framework for Analysis and Design of Business Intelligence Systems Martin Závodný Department of Information
Data Warehouse Overview. Srini Rengarajan
Data Warehouse Overview Srini Rengarajan Please mute Your cell! Agenda Data Warehouse Architecture Approaches to build a Data Warehouse Top Down Approach Bottom Up Approach Best Practices Case Example
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Dimensional Modeling for Data Warehouse
Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or
Advanced Data Management Technologies
ADMT 2015/16 Unit 2 J. Gamper 1/44 Advanced Data Management Technologies Unit 2 Basic Concepts of BI and Data Warehousing J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Acknowledgements:
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
Dr. Osama E.Sheta Department of Mathematics (Computer Science) Faculty of Science, Zagazig University Zagazig, Elsharkia, Egypt oesheta75@gmail.
Evaluating a Healthcare Data Warehouse For Cancer Diseases Dr. Osama E.Sheta Department of Mathematics (Computer Science) Faculty of Science, Zagazig University Zagazig, Elsharkia, Egypt [email protected]
Sales and Operations Planning in Company Supply Chain Based on Heuristics and Data Warehousing Technology
Sales and Operations Planning in Company Supply Chain Based on Heuristics and Data Warehousing Technology Jun-Zhong Wang 1 and Ping-Yu Hsu 2 1 Department of Business Administration, National Central University,
THE TECHNOLOGY OF USING A DATA WAREHOUSE TO SUPPORT DECISION-MAKING IN HEALTH CARE
THE TECHNOLOGY OF USING A DATA WAREHOUSE TO SUPPORT DECISION-MAKING IN HEALTH CARE Dr. Osama E.Sheta 1 and Ahmed Nour Eldeen 2 1,2 Department of Mathematics (Computer Science) Faculty of Science, Zagazig
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT
ISSN 1804-0519 (Print), ISSN 1804-0527 (Online) www.academicpublishingplatforms.com BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT JELICA TRNINIĆ, JOVICA ĐURKOVIĆ, LAZAR RAKOVIĆ Faculty of Economics
Deriving Business Intelligence from Unstructured Data
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 9 (2013), pp. 971-976 International Research Publications House http://www. irphouse.com /ijict.htm Deriving
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Technology-Driven Demand and e- Customer Relationship Management e-crm
E-Banking and Payment System Technology-Driven Demand and e- Customer Relationship Management e-crm Sittikorn Direksoonthorn Assumption University 1/2004 E-Banking and Payment System Quick Win Agenda Data
Hybrid Support Systems: a Business Intelligence Approach
Journal of Applied Business Information Systems, 2(2), 2011 57 Journal of Applied Business Information Systems http://www.jabis.ro Hybrid Support Systems: a Business Intelligence Approach Claudiu Brandas
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
B. 3 essay questions. Samples of potential questions are available in part IV. This list is not exhaustive it is just a sample.
IS482/682 Information for First Test I. What is the structure of the test? A. 20-25 multiple-choice questions. B. 3 essay questions. Samples of potential questions are available in part IV. This list is
What is Customer Relationship Management? Customer Relationship Management Analytics. Customer Life Cycle. Objectives of CRM. Three Types of CRM
Relationship Management Analytics What is Relationship Management? CRM is a strategy which utilises a combination of Week 13: Summary information technology policies processes, employees to develop profitable
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research?
What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research? Emily Thomas Stony Brook University AIRPO Winter Workshop January 2006 Data to Information Historically
Master Data Management. Zahra Mansoori
Master Data Management Zahra Mansoori 1 1. Preference 2 A critical question arises How do you get from a thousand points of data entry to a single view of the business? We are going to answer this question
Data Mining for Successful Healthcare Organizations
Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge
A Review of Data Warehousing and Business Intelligence in different perspective
A Review of Data Warehousing and Business Intelligence in different perspective Vijay Gupta Sr. Assistant Professor International School of Informatics and Management, Jaipur Dr. Jayant Singh Associate
Business Intelligence Solutions. Cognos BI 8. by Adis Terzić
Business Intelligence Solutions Cognos BI 8 by Adis Terzić Fairfax, Virginia August, 2008 Table of Content Table of Content... 2 Introduction... 3 Cognos BI 8 Solutions... 3 Cognos 8 Components... 3 Cognos
Jagir Singh, Greeshma, P Singh University of Northern Virginia. Abstract
224 Business Intelligence Journal July DATA WAREHOUSING Ofori Boateng, PhD Professor, University of Northern Virginia BMGT531 1900- SU 2011 Business Intelligence Project Jagir Singh, Greeshma, P Singh
DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS
DATA WAREHOUSE CONCEPTS A fundamental concept of a data warehouse is the distinction between data and information. Data is composed of observable and recordable facts that are often found in operational
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
Business Intelligence: Effective Decision Making
Business Intelligence: Effective Decision Making Bellevue College Linda Rumans IT Instructor, Business Division Bellevue College [email protected] Current Status What do I do??? How do I increase
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006 What is a Data Warehouse? A data warehouse is a subject-oriented, integrated, time-varying, non-volatile
Data Mart/Warehouse: Progress and Vision
Data Mart/Warehouse: Progress and Vision Institutional Research and Planning University Information Systems What is data warehousing? A data warehouse: is a single place that contains complete, accurate
Dimensional Modeling and E-R Modeling In. Joseph M. Firestone, Ph.D. White Paper No. Eight. June 22, 1998
1 of 9 5/24/02 3:47 PM Dimensional Modeling and E-R Modeling In The Data Warehouse By Joseph M. Firestone, Ph.D. White Paper No. Eight June 22, 1998 Introduction Dimensional Modeling (DM) is a favorite
Datawarehousing and Business Intelligence
Datawarehousing and Business Intelligence Vannaratana (Bee) Praruksa March 2001 Report for the course component Datawarehousing and OLAP MSc in Information Systems Development Academy of Communication
Student Performance Analytics using Data Warehouse in E-Governance System
Performance Analytics using Data Warehouse in E-Governance System S S Suresh Asst. Professor, ASCT Department, International Institute of Information Technology, Pune, India ABSTRACT Data warehouse (DWH)
Data Warehouses in the Path from Databases to Archives
Data Warehouses in the Path from Databases to Archives Gabriel David FEUP / INESC-Porto This position paper describes a research idea submitted for funding at the Portuguese Research Agency. Introduction
Research on Airport Data Warehouse Architecture
Research on Airport Warehouse Architecture WANG Jian-bo FAN Chong-jun Business School University of Shanghai for Science and Technology Shanghai 200093, P. R. China. Abstract Domestic airports are accelerating
Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring
www.ijcsi.org 78 Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring Mohammed Mohammed 1 Mohammed Anad 2 Anwar Mzher 3 Ahmed Hasson 4 2 faculty
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What
Class News. Basic Elements of the Data Warehouse" 1/22/13. CSPP 53017: Data Warehousing Winter 2013" Lecture 2" Svetlozar Nestorov" "
CSPP 53017: Data Warehousing Winter 2013 Lecture 2 Svetlozar Nestorov Class News Class web page: http://bit.ly/wtwxv9 Subscribe to the mailing list Homework 1 is out now; due by 1:59am on Tue, Jan 29.
BUILDING A HEALTH CARE DATA WAREHOUSE FOR CANCER DISEASES
BUILDING A HEALTH CARE DATA WAREHOUSE FOR CANCER DISEASES Dr.Osama E.Sheta 1 and Ahmed Nour Eldeen 2 1,2 Department of Mathematics Faculty of Science, Zagazig University, Zagazig, Elsharkia, Egypt. 1 [email protected],
Understanding Data Warehousing. [by Alex Kriegel]
Understanding Data Warehousing 2008 [by Alex Kriegel] Things to Discuss Who Needs a Data Warehouse? OLTP vs. Data Warehouse Business Intelligence Industrial Landscape Which Data Warehouse: Bill Inmon vs.
CHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION 1. Introduction 1.1 Data Warehouse In the 1990's as organizations of scale began to need more timely data for their business, they found that traditional information systems technology
IMPROVING THE QUALITY OF THE DECISION MAKING BY USING BUSINESS INTELLIGENCE SOLUTIONS
IMPROVING THE QUALITY OF THE DECISION MAKING BY USING BUSINESS INTELLIGENCE SOLUTIONS Maria Dan Ştefan Academy of Economic Studies, Faculty of Accounting and Management Information Systems, Uverturii Street,
Trends in Data Warehouse Data Modeling: Data Vault and Anchor Modeling
Trends in Data Warehouse Data Modeling: Data Vault and Anchor Modeling Thanks for Attending! Roland Bouman, Leiden the Netherlands MySQL AB, Sun, Strukton, Pentaho (1 nov) Web- and Business Intelligence
CHAPTER 3. Data Warehouses and OLAP
CHAPTER 3 Data Warehouses and OLAP 3.1 Data Warehouse 3.2 Differences between Operational Systems and Data Warehouses 3.3 A Multidimensional Data Model 3.4Stars, snowflakes and Fact Constellations: 3.5
Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8
Enterprise Solutions Data Warehouse & Business Intelligence Chapter-8 Learning Objectives Concepts of Data Warehouse Business Intelligence, Analytics & Big Data Tools for DWH & BI Concepts of Data Warehouse
Application Of Business Intelligence In Agriculture 2020 System to Improve Efficiency And Support Decision Making in Investments.
Application Of Business Intelligence In Agriculture 2020 System to Improve Efficiency And Support Decision Making in Investments Anuraj Gupta Department of Electronics and Communication Oriental Institute
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING Ramesh Babu Palepu 1, Dr K V Sambasiva Rao 2 Dept of IT, Amrita Sai Institute of Science & Technology 1 MVR College of Engineering 2 [email protected]
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
Implementing Oracle BI Applications during an ERP Upgrade
Implementing Oracle BI Applications during an ERP Upgrade Summary Jamal Syed BI Practice Lead Emerging solutions 20 N. Wacker Drive Suite 1870 Chicago, IL 60606 Emerging Solutions, a professional services
An Overview of Database management System, Data warehousing and Data Mining
An Overview of Database management System, Data warehousing and Data Mining Ramandeep Kaur 1, Amanpreet Kaur 2, Sarabjeet Kaur 3, Amandeep Kaur 4, Ranbir Kaur 5 Assistant Prof., Deptt. Of Computer Science,
DATA QUALITY IN BUSINESS INTELLIGENCE APPLICATIONS
DATA QUALITY IN BUSINESS INTELLIGENCE APPLICATIONS Gorgan Vasile Academy of Economic Studies Bucharest, Faculty of Accounting and Management Information Systems, Academia de Studii Economice, Catedra de
Framework for Data warehouse architectural components
Framework for Data warehouse architectural components Author: Jim Wendt Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 04/08/11 Email: [email protected] Abstract:
Applied Business Intelligence. Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA
Applied Business Intelligence Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA Agenda Business Drivers and Perspectives Technology & Analytical Applications Trends Challenges
Technology in Action. Alan Evans Kendall Martin Mary Anne Poatsy. Eleventh Edition. Copyright 2015 Pearson Education, Inc.
Copyright 2015 Pearson Education, Inc. Technology in Action Alan Evans Kendall Martin Mary Anne Poatsy Eleventh Edition Copyright 2015 Pearson Education, Inc. Technology in Action Chapter 9 Behind the
THE QUALITY OF DATA AND METADATA IN A DATAWAREHOUSE
THE QUALITY OF DATA AND METADATA IN A DATAWAREHOUSE Carmen Răduţ 1 Summary: Data quality is an important concept for the economic applications used in the process of analysis. Databases were revolutionized
TDWI strives to provide course books that are content-rich and that serve as useful reference documents after a class has ended.
Previews of TDWI course books are provided as an opportunity to see the quality of our material and help you to select the courses that best fit your needs. The previews can not be printed. TDWI strives
University Data Warehouse Design Issues: A Case Study
Session 2358 University Data Warehouse Design Issues: A Case Study Melissa C. Lin Chief Information Office, University of Florida Abstract A discussion of the design and modeling issues associated with
A Data Warehouse Design for A Typical University Information System
(JCSCR) - ISSN 2227-328X A Data Warehouse Design for A Typical University Information System Youssef Bassil LACSC Lebanese Association for Computational Sciences Registered under No. 957, 2011, Beirut,
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence. Module Curriculum
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence Module Curriculum This document addresses the content related abilities, with reference to the module.
Metadata Technique with E-government for Malaysian Universities
www.ijcsi.org 234 Metadata Technique with E-government for Malaysian Universities Mohammed Mohammed 1, Ahmed Hasson 2 1 Faculty of Information and Communication Technology Universiti Teknikal Malaysia
An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning
An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning Roelien Goede North-West University, South Africa Abstract The business intelligence industry is supported
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus I. Contact Information Professor: Joseph Morabito, Ph.D. Office: Babbio 419 Office Hours: By Appt. Phone: 201-216-5304 Email: [email protected]
