1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
|
|
|
- Philippa Anderson
- 9 years ago
- Views:
Transcription
1 1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application that searches for hidden patterns in a database. b. A database designed to support decision making in organizations. It is batch updated and structured for rapid on-line queries and managerial summaries c. An interactive computer based system which helps decision makers utilize data and models to identify and solve problems and make decisions. 3. The following is the characteristic(s) of data in a data warehouse a. Subject Oriented b. Non-Volatile c. Time-Variant d. Integrated e. All the above 4. Which of the following is false a. Data Warehouse is designed for query and analysis b. Data Warehouse is designed for transaction processing c. Data Warehouse consolidates data from several sources
2 d. Data Warehouse maintains the records of both historical and the current data 5. The data in Data Warehouse is generally a. Clean Data b. Dirty Data c. Clean and Dirty Data d. None of above 6. What is Metadata a. Metadata contains the relationship between Dimension and Fact Tables b. Metadata describes data and other structures, such as objects, business rules, and processes c. Metadata stores the aggregation information d. Metadata contains only business rules 7. Multidimensional data can be queried and manipulated using a. T-SQL b. MDX c. MDAC d. OWC 8. The following is not the characteristic of Dimension table a. Describes business entities b. Presents data organized into Hierarchies c. Describes data in the fact table
3 d. Referential integrity need not be maintained between dimension tables and the fact table 9. Different Storage Modes used for storage of cubes are a. MOLAP b. ROLAP c. HOLAP 10. Which of the following best describes the Fact table a. Contains only measures b. Contains only keys that join to Dimension Tables c. Contains measures and keys that join to Dimension tables d. None of the above 11. Which of the following is false a. A private dimension is a dimension created for an individual cube b. A shared dimension is a dimension that can be used by multiple cubes c. A virtual dimension is a logical dimension based on the columns from a physical dimension d. The storage mode of a virtual dimension can be MOLAP, ROLAP or HOLAP 12. Which of the following is TRUE for Cube Storage Mode a. MOLAP copies all of the data and all the aggregates to the analysis server in an optimized multidimensional format b. ROLAP leaves the original data in the relational tables and uses separate set of relational tables to store the aggregates
4 c. In HOLAP, data remains in the relational tables, but aggregations are stored on the server in optimized multidimensional fomat 13. The following Storage Mode gives the best Query Performance a. MOLAP b. ROLAP c. HOLAP 14. What is a Datamart a. It is a subset of data warehouse and it supports a particular region, business unit or business function b. It is a superset of data warehouse c. It is a copy of data warehouse d. None Of the above 15. Which of the following is false a. In a star schema every dimension will have a primary key b. In a star schema, a dimension table will have one or more parent tables c. In a snow flake schema, dimension table will have one or more parent tables d. In a star schema, hierarchies for the dimensions are stored in the dimensional table itself e. In Snow Flake schema, hierarchies are broken into separate tables
5 16. Snowflaking means a. Normalizing the data b. Denormalizing the data c. None of Above 17. Which of the following is false for Cubes a. Cubes are multi-dimensional data representation b. Cubes replicate data in the dimension and fact tables c. Cubes do not require updating when the data warehouse data is updated d. Cubes provide an easy-to-use mechanism for querying data with quick and uniform response times 18. The methods of processing the cubes a. Incremental Update b. Refresh Data c. Process (Rebuild) Data d. All the Above 19. Which of the following is false a. Cube contains one or more Partitions b. Virtual Cubes retrieve information across multiple cubes c. Every Partition in a Cube should have the same storage mode 20. The Process by which data from transaction system or flat files is loaded in the datawarehouse schema is a. Extraction
6 b. Transformation c. Loading 21. During ETL load we generally have a. Unsorted data for Aggregation b. Sorted data for Aggregation c. Does not matter if we use Sorted or Unsorted data for Aggregation 22. Sequence of jobs to load data in to warehouse a. First load data into fact tables then dimension tables, then Aggregates if any b. First load data into dimension tables, then fact tables, then Aggregates if any c. First Aggregates then load data into dimension tables, then fact tables d. Does not matter if we load either of fact, dimensions, or aggregates 23. Which of the following is false for Surrogate Keys a. These keys are maintained within the data warehouse b. These keys are taken from the source data c. This uniquely identifies each entity in the dimension table regardless of its source key 24. The following is the characteristic(s) of Aggregations a. Aggregations are precalculated summaries of data b. Aggregations are stored in the multidimensional structure in cells at coordinates specified by the dimensions
7 c. Results in the fastest possible response time 25. The Data Analysis Tools that can be used to analyze data that is stored in data warehouse a. OLAP Manager b. Microsoft Excel 2000 c. Microsoft English Query 26. Solution for managing Slowly Changing Dimension in which history of data is tracked accurately a. Type 1: Overwrite the dimension record b. Type 2: Write another dimension record c. Type 3: Updating the dimension record and moving old value to a separate attribute d. None of the above 27. Which of the following method is used to view the data at different levels of granularity a. Drill Down b. Drill Up c. Drill Across d. Drill Through e. All the above 28. Drill Across generally uses the following join to generate report
8 a. Self Join b. Inner Join c. Outer Join 29. What is Data Mining a. It is a process which removes the history data in the data warehouse b. It is a process which removes the current data in the data warehouse c. It is a process that looks at the data in the cube and searches for patterns d. None of the above 30. In general data in Data Warehouse is a. Normalized b. Denormalized c. None of the Above
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 Introduction This course provides students with the knowledge and skills necessary to design, implement, and deploy OLAP
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
Monitoring Genebanks using Datamarts based in an Open Source Tool
Monitoring Genebanks using Datamarts based in an Open Source Tool April 10 th, 2008 Edwin Rojas Research Informatics Unit (RIU) International Potato Center (CIP) GPG2 Workshop 2008 Datamarts Motivation
When to consider OLAP?
When to consider OLAP? Author: Prakash Kewalramani Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 03/10/08 Email: [email protected] Abstract: Do you need an OLAP
SQL Server 2012 Business Intelligence Boot Camp
SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The
70-467: Designing Business Intelligence Solutions with Microsoft SQL Server
70-467: Designing Business Intelligence Solutions with Microsoft SQL Server The following tables show where changes to exam 70-467 have been made to include updates that relate to SQL Server 2014 tasks.
M2074 - Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 5 Day Course
Module 1: Introduction to Data Warehousing and OLAP Introducing Data Warehousing Defining OLAP Solutions Understanding Data Warehouse Design Understanding OLAP Models Applying OLAP Cubes At the end of
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course 20467A; 5 Days
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Designing Business Intelligence Solutions with Microsoft SQL Server 2012
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
DATA WAREHOUSING - OLAP
http://www.tutorialspoint.com/dwh/dwh_olap.htm DATA WAREHOUSING - OLAP Copyright tutorialspoint.com Online Analytical Processing Server OLAP is based on the multidimensional data model. It allows managers,
ETL TESTING TRAINING
ETL TESTING TRAINING DURATION 35hrs AVAILABLE BATCHES WEEKDAYS (6.30AM TO 7.30AM) & WEEKENDS (6.30pm TO 8pm) MODE OF TRAINING AVAILABLE ONLINE INSTRUCTOR LED CLASSROOM TRAINING (MARATHAHALLI, BANGALORE)
BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
BUILDING BLOCKS OF DATAWAREHOUSE G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT 1 Data Warehouse Subject Oriented Organized around major subjects, such as customer, product, sales. Focusing on
Data Warehousing: Data Models and OLAP operations. By Kishore Jaladi [email protected]
Data Warehousing: Data Models and OLAP operations By Kishore Jaladi [email protected] Topics Covered 1. Understanding the term Data Warehousing 2. Three-tier Decision Support Systems 3. Approaches
SAS BI Course Content; Introduction to DWH / BI Concepts
SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
SQL SERVER BUSINESS INTELLIGENCE (BI) - INTRODUCTION
1 SQL SERVER BUSINESS INTELLIGENCE (BI) - INTRODUCTION What is BI? Microsoft SQL Server 2008 provides a scalable Business Intelligence platform optimized for data integration, reporting, and analysis,
Data Warehousing. Read chapter 13 of Riguzzi et al Sistemi Informativi. Slides derived from those by Hector Garcia-Molina
Data Warehousing Read chapter 13 of Riguzzi et al Sistemi Informativi Slides derived from those by Hector Garcia-Molina What is a Warehouse? Collection of diverse data subject oriented aimed at executive,
Analysis Services Step by Step
Microsoft' Microsoft SQL Server 2008 Analysis Services Step by Step Scott Cameron, Hitachi Consulting Table of Contents Acknowledgments Introduction xi xiii Part I Understanding Business Intelligence and
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778
Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778 Course Outline Module 1: Introduction to Business Intelligence and Data Modeling This module provides an introduction to Business
CS2032 Data warehousing and Data Mining Unit II Page 1
UNIT II BUSINESS ANALYSIS Reporting Query tools and Applications The data warehouse is accessed using an end-user query and reporting tool from Business Objects. Business Objects provides several tools
DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS
DATA WAREHOUSE CONCEPTS A fundamental concept of a data warehouse is the distinction between data and information. Data is composed of observable and recordable facts that are often found in operational
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
Week 3 lecture slides
Week 3 lecture slides Topics Data Warehouses Online Analytical Processing Introduction to Data Cubes Textbook reference: Chapter 3 Data Warehouses A data warehouse is a collection of data specifically
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
Distance Learning and Examining Systems
Lodz University of Technology Distance Learning and Examining Systems - Theory and Applications edited by Sławomir Wiak Konrad Szumigaj HUMAN CAPITAL - THE BEST INVESTMENT The project is part-financed
OLAP Systems and Multidimensional Expressions I
OLAP Systems and Multidimensional Expressions I Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master
Presented by: Jose Chinchilla, MCITP
Presented by: Jose Chinchilla, MCITP Jose Chinchilla MCITP: Database Administrator, SQL Server 2008 MCITP: Business Intelligence SQL Server 2008 Customers & Partners Current Positions: President, Agile
Data Warehousing. Paper 133-25
Paper 133-25 The Power of Hybrid OLAP in a Multidimensional World Ann Weinberger, SAS Institute Inc., Cary, NC Matthias Ender, SAS Institute Inc., Cary, NC ABSTRACT Version 8 of the SAS System brings powerful
Introduction to Data Warehousing. Ms Swapnil Shrivastava [email protected]
Introduction to Data Warehousing Ms Swapnil Shrivastava [email protected] Necessity is the mother of invention Why Data Warehouse? Scenario 1 ABC Pvt Ltd is a company with branches at Mumbai,
Implementing Data Models and Reports with Microsoft SQL Server 20466C; 5 Days
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Implementing Data Models and Reports with Microsoft SQL Server 20466C; 5
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services Length: Delivery Method: 3 Days Instructor-led (classroom) About this Course Elements of this syllabus are subject
Data Warehousing, OLAP, and Data Mining
Data Warehousing, OLAP, and Marek Rychly [email protected] Strathmore University, @ilabafrica & Brno University of Technology, Faculty of Information Technology Advanced Databases and Enterprise Systems
Business Intelligence, Data warehousing Concept and artifacts
Business Intelligence, Data warehousing Concept and artifacts Data Warehousing is the process of constructing and using the data warehouse. The data warehouse is constructed by integrating the data from
Data Warehouses & OLAP
Riadh Ben Messaoud 1. The Big Picture 2. Data Warehouse Philosophy 3. Data Warehouse Concepts 4. Warehousing Applications 5. Warehouse Schema Design 6. Business Intelligence Reporting 7. On-Line Analytical
Outline. Data Warehousing. What is a Warehouse? What is a Warehouse?
Outline Data Warehousing What is a data warehouse? Why a warehouse? Models & operations Implementing a warehouse 2 What is a Warehouse? Collection of diverse data subject oriented aimed at executive, decision
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Business Intelligence, Analytics & Reporting: Glossary of Terms
Business Intelligence, Analytics & Reporting: Glossary of Terms A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ad-hoc analytics Ad-hoc analytics is the process by which a user can create a new report
Week 13: Data Warehousing. Warehousing
1 Week 13: Data Warehousing Warehousing Growing industry: $8 billion in 1998 Range from desktop to huge: Walmart: 900-CPU, 2,700 disk, 23TB Teradata system Lots of buzzwords, hype slice & dice, rollup,
SQL Server Analysis Services Complete Practical & Real-time Training
A Unit of Sequelgate Innovative Technologies Pvt. Ltd. ISO Certified Training Institute Microsoft Certified Partner SQL Server Analysis Services Complete Practical & Real-time Training Mode: Practical,
Data Warehousing and OLAP
1 Data Warehousing and OLAP Hector Garcia-Molina Stanford University Warehousing Growing industry: $8 billion in 1998 Range from desktop to huge: Walmart: 900-CPU, 2,700 disk, 23TB Teradata system Lots
Microsoft 20466 - Implementing Data Models and Reports with Microsoft SQL Server
1800 ULEARN (853 276) www.ddls.com.au Microsoft 20466 - Implementing Data Models and Reports with Microsoft SQL Server Length 5 days Price $4070.00 (inc GST) Version C Overview The focus of this five-day
Data W a Ware r house house and and OLAP II Week 6 1
Data Warehouse and OLAP II Week 6 1 Team Homework Assignment #8 Using a data warehousing tool and a data set, play four OLAP operations (Roll up (drill up), Drill down (roll down), Slice and dice, Pivot
Implementing Data Models and Reports with Microsoft SQL Server
Course 20466C: Implementing Data Models and Reports with Microsoft SQL Server Course Details Course Outline Module 1: Introduction to Business Intelligence and Data Modeling As a SQL Server database professional,
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Sterling Business Intelligence
Sterling Business Intelligence Concepts Guide Release 9.0 March 2010 Copyright 2009 Sterling Commerce, Inc. All rights reserved. Additional copyright information is located on the documentation library:
Data Warehouse Snowflake Design and Performance Considerations in Business Analytics
Journal of Advances in Information Technology Vol. 6, No. 4, November 2015 Data Warehouse Snowflake Design and Performance Considerations in Business Analytics Jiangping Wang and Janet L. Kourik Walker
Data Warehouse design
Data Warehouse design Design of Enterprise Systems University of Pavia 21/11/2013-1- Data Warehouse design DATA PRESENTATION - 2- BI Reporting Success Factors BI platform success factors include: Performance
Dimensional Modeling for Data Warehouse
Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or
Data Testing on Business Intelligence & Data Warehouse Projects
Data Testing on Business Intelligence & Data Warehouse Projects Karen N. Johnson 1 Construct of a Data Warehouse A brief look at core components of a warehouse. From the left, these three boxes represent
Delivering Business Intelligence With Microsoft SQL Server 2005 or 2008 HDT922 Five Days
or 2008 Five Days Prerequisites Students should have experience with any relational database management system as well as experience with data warehouses and star schemas. It would be helpful if students
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Learning Objectives. Definition of OLAP Data cubes OLAP operations MDX OLAP servers
OLAP Learning Objectives Definition of OLAP Data cubes OLAP operations MDX OLAP servers 2 What is OLAP? OLAP has two immediate consequences: online part requires the answers of queries to be fast, the
SAS Business Intelligence Online Training
SAS Business Intelligence Online Training IQ Training facility offers best online SAS Business Intelligence training. Our SAS Business Intelligence online training is regarded as the best training in Hyderabad
Building Data Cubes and Mining Them. Jelena Jovanovic Email: [email protected]
Building Data Cubes and Mining Them Jelena Jovanovic Email: [email protected] KDD Process KDD is an overall process of discovering useful knowledge from data. Data mining is a particular step in the
SQL SERVER TRAINING CURRICULUM
SQL SERVER TRAINING CURRICULUM Complete SQL Server 2000/2005 for Developers Management and Administration Overview Creating databases and transaction logs Managing the file system Server and database configuration
Dimensional Data Modeling for the Data Warehouse
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Dimensional Data Modeling for the Data Warehouse Prerequisites Students should
Microsoft Data Warehouse in Depth
Microsoft Data Warehouse in Depth 1 P a g e Duration What s new Why attend Who should attend Course format and prerequisites 4 days The course materials have been refreshed to align with the second edition
The Design and the Implementation of an HEALTH CARE STATISTICS DATA WAREHOUSE Dr. Sreèko Natek, assistant professor, Nova Vizija, srecko@vizija.
The Design and the Implementation of an HEALTH CARE STATISTICS DATA WAREHOUSE Dr. Sreèko Natek, assistant professor, Nova Vizija, [email protected] ABSTRACT Health Care Statistics on a state level is a
DATA CUBES E0 261. Jayant Haritsa Computer Science and Automation Indian Institute of Science. JAN 2014 Slide 1 DATA CUBES
E0 261 Jayant Haritsa Computer Science and Automation Indian Institute of Science JAN 2014 Slide 1 Introduction Increasingly, organizations are analyzing historical data to identify useful patterns and
MICROSOFT 70-460 EXAM QUESTIONS & ANSWERS
MICROSOFT 70-460 EXAM QUESTIONS & ANSWERS Number: 70-460 Passing Score: 800 Time Limit: 120 min File Version: 31.0 http://www.gratisexam.com/ MICROSOFT 70-460 EXAM QUESTIONS & ANSWERS Exam Name: Transition
Implementing Data Models and Reports with Microsoft SQL Server
CÔNG TY CỔ PHẦN TRƯỜNG CNTT TÂN ĐỨC TAN DUC INFORMATION TECHNOLOGY SCHOOL JSC LEARN MORE WITH LESS! Course 20466C: Implementing Data Models and Reports with Microsoft SQL Server Length: 5 Days Audience:
ETL Process in Data Warehouse. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
ETL Process in Data Warehouse G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT Outline ETL Extraction Transformation Loading ETL Overview Extraction Transformation Loading ETL To get data out of
Designing a Dimensional Model
Designing a Dimensional Model Erik Veerman Atlanta MDF member SQL Server MVP, Microsoft MCT Mentor, Solid Quality Learning Definitions Data Warehousing A subject-oriented, integrated, time-variant, and
University of Gaziantep, Department of Business Administration
University of Gaziantep, Department of Business Administration The extensive use of information technology enables organizations to collect huge amounts of data about almost every aspect of their businesses.
Building a Data Warehouse
Building a Data Warehouse With Examples in SQL Server EiD Vincent Rainardi BROCHSCHULE LIECHTENSTEIN Bibliothek Apress Contents About the Author. ; xiij Preface xv ^CHAPTER 1 Introduction to Data Warehousing
DATA WAREHOUSE E KNOWLEDGE DISCOVERY
DATA WAREHOUSE E KNOWLEDGE DISCOVERY Prof. Fabio A. Schreiber Dipartimento di Elettronica e Informazione Politecnico di Milano DATA WAREHOUSE (DW) A TECHNIQUE FOR CORRECTLY ASSEMBLING AND MANAGING DATA
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence. Module Curriculum
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence Module Curriculum This document addresses the content related abilities, with reference to the module.
LearnFromGuru Polish your knowledge
SQL SERVER 2008 R2 /2012 (TSQL/SSIS/ SSRS/ SSAS BI Developer TRAINING) Module: I T-SQL Programming and Database Design An Overview of SQL Server 2008 R2 / 2012 Available Features and Tools New Capabilities
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
OLAP & DATA MINING CS561-SPRING 2012 WPI, MOHAMED ELTABAKH
OLAP & DATA MINING CS561-SPRING 2012 WPI, MOHAMED ELTABAKH 1 Online Analytic Processing OLAP 2 OLAP OLAP: Online Analytic Processing OLAP queries are complex queries that Touch large amounts of data Discover
PREFACE INTRODUCTION MULTI-DIMENSIONAL MODEL. Chris Claterbos, Vlamis Software Solutions, Inc. [email protected]
BUILDING CUBES AND ANALYZING DATA USING ORACLE OLAP 11G Chris Claterbos, Vlamis Software Solutions, Inc. [email protected] PREFACE As of this writing, Oracle Business Intelligence and Oracle OLAP are
This tutorial will help computer science graduates to understand the basic-toadvanced concepts related to data warehousing.
About the Tutorial A data warehouse is constructed by integrating data from multiple heterogeneous sources. It supports analytical reporting, structured and/or ad hoc queries and decision making. This
Designing Business Intelligence Solutions with Microsoft SQL Server 2012
CÔNG TY CỔ PHẦN TRƯỜNG CNTT TÂN ĐỨC TAN DUC INFORMATION TECHNOLOGY SCHOOL JSC LEARN MORE WITH LESS! Course 20467B: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
COURSE OUTLINE. Track 1 Advanced Data Modeling, Analysis and Design
COURSE OUTLINE Track 1 Advanced Data Modeling, Analysis and Design TDWI Advanced Data Modeling Techniques Module One Data Modeling Concepts Data Models in Context Zachman Framework Overview Levels of Data
Implementing a Data Warehouse with Microsoft SQL Server
This course describes how to implement a data warehouse platform to support a BI solution. Students will learn how to create a data warehouse 2014, implement ETL with SQL Server Integration Services, and
Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram
Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram Cognizant Technology Solutions, Newbury Park, CA Clinical Data Repository (CDR) Drug development lifecycle consumes a lot of time, money
Anwendersoftware Anwendungssoftwares a. Data-Warehouse-, Data-Mining- and OLAP-Technologies. Online Analytic Processing
Anwendungssoftwares a Data-Warehouse-, Data-Mining- and OLAP-Technologies Online Analytic Processing Online Analytic Processing OLAP Online Analytic Processing Technologies and tools that support (ad-hoc)
Business Intelligence for SUPRA. WHITE PAPER Cincom In-depth Analysis and Review
Business Intelligence for A Technical Overview WHITE PAPER Cincom In-depth Analysis and Review SIMPLIFICATION THROUGH INNOVATION Business Intelligence for A Technical Overview Table of Contents Complete
Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer
Alejandro Vaisman Esteban Zimanyi Data Warehouse Systems Design and Implementation ^ Springer Contents Part I Fundamental Concepts 1 Introduction 3 1.1 A Historical Overview of Data Warehousing 4 1.2 Spatial
Basics of Dimensional Modeling
Basics of Dimensional Modeling Data warehouse and OLAP tools are based on a dimensional data model. A dimensional model is based on dimensions, facts, cubes, and schemas such as star and snowflake. Dimensional
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
COURSE 20463C: IMPLEMENTING A DATA WAREHOUSE WITH MICROSOFT SQL SERVER
Page 1 of 8 ABOUT THIS COURSE This 5 day course describes how to implement a data warehouse platform to support a BI solution. Students will learn how to create a data warehouse with Microsoft SQL Server
The Benefits of Data Modeling in Business Intelligence
WHITE PAPER: THE BENEFITS OF DATA MODELING IN BUSINESS INTELLIGENCE The Benefits of Data Modeling in Business Intelligence DECEMBER 2008 Table of Contents Executive Summary 1 SECTION 1 2 Introduction 2
