What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research?
|
|
|
- Mabel Bryant
- 10 years ago
- Views:
Transcription
1 What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research? Emily Thomas Stony Brook University AIRPO Winter Workshop January 2006
2
3 Data to Information Historically Standard paper reports Systems of record Special reports written by programmers A few direct users IR extracts
4 Data to Information Current Technology Data Many On-line warehouse self-service transaction users processing Institutional systems reporting including tool IR
5 Hypothesis New information technologies are creating greater demand for information and the need for data warehouses. Building a data warehouse requires transforming raw data into reporting measures and categories. Meeting the demand for information requires creating useful reports and report templates. Institutional researchers are experts at displaying information and constructing reporting variables. Therefore participating in the development of institutional reporting programs is a new role for institutional research.
6 Questions What is a data warehouse? What kinds of reporting does higher education do with warehouse data? What roles are institutional researchers playing in the development of institutional reporting programs?
7 What is a data warehouse? A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection of data in support of management s decisi`ons. (W.H. Inmon, Building the Data Warehouse)
8 What is a data warehouse? A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection of data to describe an organization s activities and support of management s decisions.
9 What is a data warehouse? A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection of derived data to describe an organization s activities and support of management s decisions.
10 What is a data warehouse? A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection of derived data that are managed and institutionally recognized as a shared data resource used to describe an organization s activities and support of management s decisions.
11 What is a data warehouse? A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection of data in support of management s decisions. (W.H. Inmon, Building the Data Warehouse) A data warehouse is a subject oriented, integrated, non-volatile, and time variant collection of derived data that are managed and institutionally recognized as a shared data resource used to describe an organization s activities and support management s decisions.
12 There is no question that the power user is the most important person in the corporation in regard to establishment of the data warehouse and the unleashing of the power of informational processing. (Inmon 1994,116)
13 Reporting Categories Operations monitoring: Which students are ready to be cleared for graduation? Operations analysis: Which students were affected by an error in processing graduation clearance? Management reporting: How many students graduated in each major in each of the last five years? Management analysis: Did the graduation GPA of recent graduates vary with whether they entered as freshmen or transfer students? Analytics: Did a new freshman program improve the graduation rate?
14 Star Schema Data Model Instructor Dimension Student Dimension Instructor ID Student ID Name Fact Table Name Department Student ID Class Title Course ID Major Full/Part-Time Instructor ID Location ID Course Dimension Location Dimension Term Course ID Location ID Credits Course Title Room Grade Course Department Building Gen Ed Indicator Example:
15 Reporting Matrix Operations monitoring Operations analysis Management reporting Management Analysis Analytics Detail or aggregates Ad hoc or recurring Who does it? Output format Distribution Tools User skills Data timing Data sources Data access
16 Reporting Matrix: Contents and Repetition Contents Detail to support action on individual students Aggregate data to describe performance or trends Repetition Recurring Ad hoc Recurring Ad hoc
17 Reporting Matrix: Reporting Contents and Repetition Reporting category Contents Operations Operations monitoring analysis Detail to support action on individual students Management Management reporting Analysis Aggregate data to describe performance or trends Repetition Recurring Ad hoc Recurring Ad hoc
18 Reporting Matrix: Who Does the Reporting? Reporting category Objective Operations monitoring Operations analysis Detail to support action on individual students Management Management reporting Analysis Aggregate data to describe performance or trends Analytics Support for conclusions Question type Recurring Ad hoc Recurring Ad hoc Typical reporters Functional area staff Functional area technical experts Core management such as dept. chairs Management analysts Institutional researchers
19 Reporting Matrix: Typical Output, Distribution, Skills, Tools Reporting Operations Operations Management Management Analytics category monitoring analysis reporting Analysis Typical output lists/counts lists/counts tables/graphs tables/graphs tables/graphs statistics Distribution system output system output Tools User skill pre-programmed queries standard reports OLAP Low use of preprogrammed reports/queries/ cubes SQL reporting software analytic software High use raw data via SQL or similar extraction paper report/ web standard reports OLAP dashboards Low easy information access paper report reporting software spreadsheets Moderate manipulation of raw data with a reporting tool text document reporting software analytic softw are Very high statistical analysis and data mining
20 Reporting Matrix: Data Timing, Data Sources and User Access Reporting category Data timing Data sources Data access Operations monitoring real time/ daily extract transaction system/ warehouse all or restricted veiw Operations analysis real time/ daily extract transaction system/ warehouse all Management reporting snapshots/ longitudinal data cubes from warehouse or data marts all or restricted view Management Analysis snapshots/ longitudinal data warehouse/ data marts all or restricted view Analytics snapshots/ longitudinal data warehouse/ longitudinal data marts all
21 Trends Information culture and data availability generate increased demand for information. Web-based report delivery and user-friendly tools facilitate self-service reporting. Increased reporting generates interest in institution-wide reporting solutions. New transaction systems add data complexity that motivates warehousing.
22 New Roles for Institutional Research New responsibilities for designing and implementing disseminated management reporting systems New responsibilities for shared data designs including data warehouses New means of ensuring the accuracy of management information: within the data source Less staff time devoted to meeting simple data requests New relationships with IT
23 IR and IT Historical Responsibilties Shared Responsibility? Operational reporting IT Operational data Management reporting Wide data disseminatation --data extracted and transformed for reporting Analytics IR Extracted/constructed data --wide dissemination Special purpose IR data
24 Institutional Research Contributions Assessing reporting needs Advocating for new forms of information delivery Defining an institutional reporting strategy/program Defining warehouse variables and table structure Selecting an institutional reporting tool Designing standard reports or templates Managing a management information delivery system
25
26 Two Types of Best Practice? (1) Fully-developed data warehouse Core of an institutional reporting program Source for all or most reporting Well-developed data model Fully defined and documented data management procedures Substantial institutional commitment and staff
27 Two Types of Best Practice? (2) Pragmatic low-budget approach Build something. Identify the data needed to meet key reporting needs Create tables to meet those needs Clean, expand, integrate, and document the tables and extend their use
28 Courtesy of Henry Stewart
29 Sources The Data Warehousing Institute. Davenport, TH (1997). Information Ecology: Why Technology is Not Enough for Success in the Information Age. New York and Oxford: Oxford University Press. Greenfield, L (1995). The Data Warehousing Information Center. Inmon, WH (1996). Building the Data Warehouse. New York: John Wiley & Sons, Inc. Inmon WH and RD Hackathorn (1994). Using the Data Warehouse. New York: John Wiley & Sons, Inc.
30 Sources Kimball, R, M Ross and W Thornthwaite (1998). The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses. New York: John Wiley & Sons, Inc. Kimball, R and M Ross (2002). The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (second edition). New York: John Wiley & Sons, Inc. Sanders, L (editor), How Technology is Changing Institutional Research. New Directions in Institutional Research, 103. Fall Serban, AM and J Luan. Knowledge Management: Building a Competitive Advantage in Higher Education. New Directions in Institutional Research, 113, Spring Wierschem, D, R McBroom and J McMillen. Methodology for Developing an Institutional Data Warehouse. AIR Professional File 88, 2003.
31 Hypothesis New information technologies are creating greater demand for information and the need for data warehouses. Building a data warehouse requires transforming raw data into reporting measures and categories. Meeting the demand for information requires creating useful reports and report templates. Institutional researchers are experts at displaying information and constructing reporting variables. Therefore participating in the development of institutional reporting programs is becoming a new IR role.
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction
Data Warehousing and Data Mining
Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong [email protected] Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus I. Contact Information Professor: Joseph Morabito, Ph.D. Office: Babbio 419 Office Hours: By Appt. Phone: 201-216-5304 Email: [email protected]
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
Microsoft Data Warehouse in Depth
Microsoft Data Warehouse in Depth 1 P a g e Duration What s new Why attend Who should attend Course format and prerequisites 4 days The course materials have been refreshed to align with the second edition
CHAPTER 3. Data Warehouses and OLAP
CHAPTER 3 Data Warehouses and OLAP 3.1 Data Warehouse 3.2 Differences between Operational Systems and Data Warehouses 3.3 A Multidimensional Data Model 3.4Stars, snowflakes and Fact Constellations: 3.5
SENG 520, Experience with a high-level programming language. (304) 579-7726, [email protected]
Course : Semester : Course Format And Credit hours : Prerequisites : Data Warehousing and Business Intelligence Summer (Odd Years) online 3 hr Credit SENG 520, Experience with a high-level programming
An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning
An Instructional Design for Data Warehousing: Using Design Science Research and Project-based Learning Roelien Goede North-West University, South Africa Abstract The business intelligence industry is supported
Indexing Techniques for Data Warehouses Queries. Abstract
Indexing Techniques for Data Warehouses Queries Sirirut Vanichayobon Le Gruenwald The University of Oklahoma School of Computer Science Norman, OK, 739 [email protected] [email protected] Abstract Recently,
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
Delivering Business Intelligence With Microsoft SQL Server 2005 or 2008 HDT922 Five Days
or 2008 Five Days Prerequisites Students should have experience with any relational database management system as well as experience with data warehouses and star schemas. It would be helpful if students
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
BUILDING A HEALTH CARE DATA WAREHOUSE FOR CANCER DISEASES
BUILDING A HEALTH CARE DATA WAREHOUSE FOR CANCER DISEASES Dr.Osama E.Sheta 1 and Ahmed Nour Eldeen 2 1,2 Department of Mathematics Faculty of Science, Zagazig University, Zagazig, Elsharkia, Egypt. 1 [email protected],
CASE PROJECTS IN DATA WAREHOUSING AND DATA MINING
CASE PROJECTS IN DATA WAREHOUSING AND DATA MINING Mohammad A. Rob, University of Houston-Clear Lake, [email protected] Michael E. Ellis, University of Houston-Clear Lake, [email protected] ABSTRACT This paper
Understanding Data Warehousing. [by Alex Kriegel]
Understanding Data Warehousing 2008 [by Alex Kriegel] Things to Discuss Who Needs a Data Warehouse? OLTP vs. Data Warehouse Business Intelligence Industrial Landscape Which Data Warehouse: Bill Inmon vs.
Data warehouses. Data Mining. Abraham Otero. Data Mining. Agenda
Data warehouses 1/36 Agenda Why do I need a data warehouse? ETL systems Real-Time Data Warehousing Open problems 2/36 1 Why do I need a data warehouse? Why do I need a data warehouse? Maybe you do not
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence. Module Curriculum
Republic Polytechnic School of Information and Communications Technology C355 Business Intelligence Module Curriculum This document addresses the content related abilities, with reference to the module.
The Design and the Implementation of an HEALTH CARE STATISTICS DATA WAREHOUSE Dr. Sreèko Natek, assistant professor, Nova Vizija, srecko@vizija.
The Design and the Implementation of an HEALTH CARE STATISTICS DATA WAREHOUSE Dr. Sreèko Natek, assistant professor, Nova Vizija, [email protected] ABSTRACT Health Care Statistics on a state level is a
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
Dimensional Modeling for Data Warehouse
Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or
Methodology Framework for Analysis and Design of Business Intelligence Systems
Applied Mathematical Sciences, Vol. 7, 2013, no. 31, 1523-1528 HIKARI Ltd, www.m-hikari.com Methodology Framework for Analysis and Design of Business Intelligence Systems Martin Závodný Department of Information
SAS BI Course Content; Introduction to DWH / BI Concepts
SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The
Dr. Osama E.Sheta Department of Mathematics (Computer Science) Faculty of Science, Zagazig University Zagazig, Elsharkia, Egypt oesheta75@gmail.
Evaluating a Healthcare Data Warehouse For Cancer Diseases Dr. Osama E.Sheta Department of Mathematics (Computer Science) Faculty of Science, Zagazig University Zagazig, Elsharkia, Egypt [email protected]
Upon successful completion of this course, a student will meet the following outcomes:
College of San Mateo Official Course Outline 1. COURSE ID: CIS 364 TITLE: Enterprise Data Warehousing Semester Units/Hours: 4.0 units; a minimum of 48.0 lecture hours/semester; a minimum of 48.0 lab hours/semester
IBM Cognos Training: Course Brochure. Simpson Associates: SERVICE www.simpson associates.co.uk
IBM Cognos Training: Course Brochure Simpson Associates: SERVICE www.simpson associates.co.uk Information Services 2013 : 2014 IBM Cognos Training: Courses 2013 2014 +44 (0) 1904 234 510 training@simpson
Introduction to Data Warehousing. Ms Swapnil Shrivastava [email protected]
Introduction to Data Warehousing Ms Swapnil Shrivastava [email protected] Necessity is the mother of invention Why Data Warehouse? Scenario 1 ABC Pvt Ltd is a company with branches at Mumbai,
A Review of Data Warehousing and Business Intelligence in different perspective
A Review of Data Warehousing and Business Intelligence in different perspective Vijay Gupta Sr. Assistant Professor International School of Informatics and Management, Jaipur Dr. Jayant Singh Associate
BUILDING OLAP TOOLS OVER LARGE DATABASES
BUILDING OLAP TOOLS OVER LARGE DATABASES Rui Oliveira, Jorge Bernardino ISEC Instituto Superior de Engenharia de Coimbra, Polytechnic Institute of Coimbra Quinta da Nora, Rua Pedro Nunes, P-3030-199 Coimbra,
DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS
DATA WAREHOUSE CONCEPTS A fundamental concept of a data warehouse is the distinction between data and information. Data is composed of observable and recordable facts that are often found in operational
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
The Microsoft Business Intelligence 2010 Stack Course 50511A; 5 Days, Instructor-led
The Microsoft Business Intelligence 2010 Stack Course 50511A; 5 Days, Instructor-led Course Description This instructor-led course provides students with the knowledge and skills to develop Microsoft End-to-
The Role of Data Warehousing Concept for Improved Organizations Performance and Decision Making
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,
Trends in Data Warehouse Data Modeling: Data Vault and Anchor Modeling
Trends in Data Warehouse Data Modeling: Data Vault and Anchor Modeling Thanks for Attending! Roland Bouman, Leiden the Netherlands MySQL AB, Sun, Strukton, Pentaho (1 nov) Web- and Business Intelligence
Proper study of Data Warehousing and Data Mining Intelligence Application in Education Domain
Journal of The International Association of Advanced Technology and Science Proper study of Data Warehousing and Data Mining Intelligence Application in Education Domain AMAN KADYAAN JITIN Abstract Data-driven
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
IMPROVING THE QUALITY OF THE DECISION MAKING BY USING BUSINESS INTELLIGENCE SOLUTIONS
IMPROVING THE QUALITY OF THE DECISION MAKING BY USING BUSINESS INTELLIGENCE SOLUTIONS Maria Dan Ştefan Academy of Economic Studies, Faculty of Accounting and Management Information Systems, Uverturii Street,
Datawarehousing and Analytics. Data-Warehouse-, Data-Mining- und OLAP-Technologien. Advanced Information Management
Anwendersoftware a Datawarehousing and Analytics Data-Warehouse-, Data-Mining- und OLAP-Technologien Advanced Information Management Bernhard Mitschang, Holger Schwarz Universität Stuttgart Winter Term
BUILDING A WEB-ENABLED DATA WAREHOUSE FOR DECISION SUPPORT IN CONSTRUCTION EQUIPMENT MANAGEMENT
BUILDING A WEB-ENABLED DATA WAREHOUSE FOR DECISION SUPPORT IN CONSTRUCTION EQUIPMENT MANAGEMENT Hongqin Fan ([email protected]) Graduate Research Assistant, University of Alberta, AB, T6G 2E1, Canada Hyoungkwan
Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course 20467A; 5 Days
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Designing Business Intelligence Solutions with Microsoft SQL Server 2012
DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM
DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM MOHAMMED SHAFEEQ AHMED Guest Lecturer, Department of Computer Science, Gulbarga University, Gulbarga, Karnataka, India (e-mail:
Deriving Business Intelligence from Unstructured Data
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 9 (2013), pp. 971-976 International Research Publications House http://www. irphouse.com /ijict.htm Deriving
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
Data W a Ware r house house and and OLAP Week 5 1
Data Warehouse and OLAP Week 5 1 Midterm I Friday, March 4 Scope Homework assignments 1 4 Open book Team Homework Assignment #7 Read pp. 121 139, 146 150 of the text book. Do Examples 3.8, 3.10 and Exercise
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS
INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS Azwa A. Aziz, Abdul Hafiz Abdul Wahid, Nazirah Abd. Hamid, Azilawati Rozaimee Fakulti Informatik, Universiti Sultan
MICROSOFT DATA WAREHOUSE IN DEPTH
MICROSOFT DATA WAREHOUSE IN DEPTH DATE LOCATION INSTRUCTORS INFORMATION AND REGISTRATION 16 19 April 2013 Stockholm Warren Thornthwaite and Joy Mundy www.q4k.com Organized by With the support of Kimball
Student Performance Analytics using Data Warehouse in E-Governance System
Performance Analytics using Data Warehouse in E-Governance System S S Suresh Asst. Professor, ASCT Department, International Institute of Information Technology, Pune, India ABSTRACT Data warehouse (DWH)
Building Data Warehousing and Data Mining from Course Management Systems: A Case Study of FUTA Course Management Information Systems
Building Data Warehousing and Data Mining from Course Management Systems: A Case Study of FUTA Course Management Information Systems *Akintola K.G., ** Adetunmbi A.O. **Adeola O.S. *Computer Science Department,
Turning your Warehouse Data into Business Intelligence: Reporting Trends and Visibility Michael Armanious; Vice President Sales and Marketing Datex,
Turning your Warehouse Data into Business Intelligence: Reporting Trends and Visibility Michael Armanious; Vice President Sales and Marketing Datex, Inc. Overview Introduction What is Business Intelligence?
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
CHAPTER 4: BUSINESS ANALYTICS
Chapter 4: Business Analytics CHAPTER 4: BUSINESS ANALYTICS Objectives Introduction The objectives are: Describe Business Analytics Explain the terminology associated with Business Analytics Describe the
THE TECHNOLOGY OF USING A DATA WAREHOUSE TO SUPPORT DECISION-MAKING IN HEALTH CARE
THE TECHNOLOGY OF USING A DATA WAREHOUSE TO SUPPORT DECISION-MAKING IN HEALTH CARE Dr. Osama E.Sheta 1 and Ahmed Nour Eldeen 2 1,2 Department of Mathematics (Computer Science) Faculty of Science, Zagazig
Key organizational factors in data warehouse architecture selection
Key organizational factors in data warehouse architecture selection Ravi Kumar Choudhary ABSTRACT Deciding the most suitable architecture is the most crucial activity in the Data warehouse life cycle.
Deductive Data Warehouses and Aggregate (Derived) Tables
Deductive Data Warehouses and Aggregate (Derived) Tables Kornelije Rabuzin, Mirko Malekovic, Mirko Cubrilo Faculty of Organization and Informatics University of Zagreb Varazdin, Croatia {kornelije.rabuzin,
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
University Data Warehouse Design Issues: A Case Study
Session 2358 University Data Warehouse Design Issues: A Case Study Melissa C. Lin Chief Information Office, University of Florida Abstract A discussion of the design and modeling issues associated with
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 Introduction This course provides students with the knowledge and skills necessary to design, implement, and deploy OLAP
B. 3 essay questions. Samples of potential questions are available in part IV. This list is not exhaustive it is just a sample.
IS482/682 Information for First Test I. What is the structure of the test? A. 20-25 multiple-choice questions. B. 3 essay questions. Samples of potential questions are available in part IV. This list is
Design of a Multi Dimensional Database for the Archimed DataWarehouse
169 Design of a Multi Dimensional Database for the Archimed DataWarehouse Claudine Bréant, Gérald Thurler, François Borst, Antoine Geissbuhler Service of Medical Informatics University Hospital of Geneva,
Business Intelligence & Product Analytics
2010 International Conference Business Intelligence & Product Analytics Rob McAveney www. 300 Brickstone Square Suite 904 Andover, MA 01810 [978] 691 8900 www. Copyright 2010 Aras All Rights Reserved.
Data Testing on Business Intelligence & Data Warehouse Projects
Data Testing on Business Intelligence & Data Warehouse Projects Karen N. Johnson 1 Construct of a Data Warehouse A brief look at core components of a warehouse. From the left, these three boxes represent
Data Warehousing. Read chapter 13 of Riguzzi et al Sistemi Informativi. Slides derived from those by Hector Garcia-Molina
Data Warehousing Read chapter 13 of Riguzzi et al Sistemi Informativi Slides derived from those by Hector Garcia-Molina What is a Warehouse? Collection of diverse data subject oriented aimed at executive,
Presented by: Jose Chinchilla, MCITP
Presented by: Jose Chinchilla, MCITP Jose Chinchilla MCITP: Database Administrator, SQL Server 2008 MCITP: Business Intelligence SQL Server 2008 Customers & Partners Current Positions: President, Agile
Datawarehousing and Business Intelligence
Datawarehousing and Business Intelligence Vannaratana (Bee) Praruksa March 2001 Report for the course component Datawarehousing and OLAP MSc in Information Systems Development Academy of Communication
IST722 Syllabus. Instructor Paul Morarescu Email [email protected] Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST
IST722 Syllabus Instructor Paul Morarescu Email [email protected] Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST Course Description This course provides concepts, principles, and tools for
East Asia Network Sdn Bhd
Course: Analyzing, Designing, and Implementing a Data Warehouse with Microsoft SQL Server 2014 Elements of this syllabus may be change to cater to the participants background & knowledge. This course describes
COMM 437 DATABASE DESIGN AND ADMINISTRATION
COMM 437 DATABASE DESIGN AND ADMINISTRATION If you are reading this, you would have already read countless articles about the power of information in improving decision making, enhancing strategic position
SQL Server 2012 End-to-End Business Intelligence Workshop
USA Operations 11921 Freedom Drive Two Fountain Square Suite 550 Reston, VA 20190 solidq.com 800.757.6543 Office 206.203.6112 Fax [email protected] SQL Server 2012 End-to-End Business Intelligence Workshop
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
The Study on Data Warehouse Design and Usage
International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013 1 The Study on Data Warehouse Design and Usage Mr. Dishek Mankad 1, Mr. Preyash Dholakia 2 1 M.C.A., B.R.Patel
The Evolution of the Data Warehouse Systems in Recent Years
Jacek Maślankowski * The Evolution of the Data Warehouse Systems in Recent Years Introduction Although data warehouses are used in enterprises for a long time, they has evaluated recently. In the last
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
