Predictive Modeling of Anatomy with Genetic and Clinical Data
|
|
|
- Emmeline Roberts
- 10 years ago
- Views:
Transcription
1 Predictive Modeling of Anatomy with Genetic and Clinical Data Adrian V. Dalca 1, Ramesh Sridharan 1, Mert R. Sabuncu 2, and Polina Golland 1 for ADNI 1 Computer Science and Artificial Intelligence Lab, EECS, MIT 2 Martinos Center for Biomedical Imaging, Harvard Medical School Abstract. We present a semi-parametric generative model for predicting anatomy of a patient in subsequent scans following a single baseline image. Such predictive modeling promises to facilitate novel analyses in both voxel-level studies and longitudinal biomarker evaluation. We capture anatomical change through a combination of population-wide regression and a non-parametric model of the subject s health based on individual genetic and clinical indicators. In contrast to classical correlation and longitudinal analysis, we focus on predicting new observations from a single subject observation. We demonstrate prediction of follow-up anatomical scans in the ADNI cohort, and illustrate a novel analysis approach that compares a patient s scans to the predicted subject-specific healthy anatomical trajectory. 1 Introduction We present a method for predicting anatomy based on external information, including genetic and clinical indicators. Specifically, given only a single baseline scan of a new subject in a longitudinal study, our model predicts anatomical changes and generates a subsequent image by leveraging subject-specific genetic and clinical information. Such voxel-wise prediction opens up several new areas of analysis, enabling novel investigations both at the voxel level and at the level of derivative biomarker measures. For example, voxel level differences between the true progression of a patient with dementia and their predicted healthy anatomy highlight spatial patterns of disease. We validate our method by comparing measurements of volumes of anatomical structures based on predicted images to those extracted from the acquired scans. Our model describes the change from a single (or baseline) medical scan in terms of population trends and subject-specific external information. We model how anatomical appearance changes with age on average in a population, as well as deviations from the population average using a person s health profile. We characterize such profiles non-parametrically based on the genotype, clinical information, and the baseline image. Subject-specific change is constructed A listing of ADNI investigators is available at Data used via AD DREAM Challenge:
2 2 A. Dalca et al. from the similarity of health profiles in the cohort, using a Gaussian process parametrized by a population health covariance. Given the predicted change, we synthesize new images through an appearance model. Statistical population analysis is one of the central topics in medical image computing. The classical correlation-based analysis has yielded important characterization of relationships within imaging data and with independent clinical variables [2,11,12,14]. Regression models of object appearance have been previously used for atlas construction and population analysis [2,14]. These methods characterize population trends with respect to external variables, such as age or gender, and construct clinically relevant population averages. Longitudinal analyses also characterize subject-specific temporal effects, usually in terms of changes in the biomarkers of interest. Longitudinal cohorts and studies promise to provide crucial insights into aging and disease [11,12]. Mixed effects models have been shown to improve estimation of subject-specific longitudinal trends by using inter-population similarity [3,15]. While these approaches offer a powerful basis for analysis of biomarkers or images in a population, they require multiple observations for any subject, and do not aim to provide subject-specific predictions given a single observation. The parameters of the models are examined for potential scientific insight, but they are not tested for predictive power. In contrast, we define the problem of population analysis as predicting anatomical changes for individual subjects. Our generative model incorporates a population trend and uses subject-specific genetic and clinical information, along with the baseline image, to generate subsequent anatomical images. This prediction-oriented approach provides avenues for novel analysis, as illustrated by our experimental results. 2 Prediction Model Given a dataset of patients with longitudinal data, and a single baseline image for a new patient, we predict follow-up anatomical states for the patient. We model anatomy as a phenotype y that captures the underlying structure of interest. For example, y can be a low-dimensional descriptor of the anatomy at each voxel. We assume we only have a measurement of our phenotype at baseline y b for a new subject. Our goal is to predict the phenotype y t at a later time t. We let x t be the subject age at time t, and define x t x t x b and y t y t y b. We model the change in phenotype y t using linear regression: y t x t β ` ɛ, (1) where β is the subject-specific regression coefficient, and noise ɛ N p0, σ 2 q is sampled from zero-mean Gaussian distribution with variance σ Subject-Specific Longitudinal Change To model subject-specific effects, we define β β ` Hpg, c, f b q, where β is a global regression coefficient shared by the entire population, and H captures a
3 Predictive Modeling of Anatomy with Genetic and Clinical Data 3 deviation from this coefficient based on the subject s genetic variants g, clinical information c, and baseline image features f b. We assume that patients genetic variants and clinical indicators affect their anatomical appearance, and that subjects with similar health profiles exhibit similar patterns of anatomical change. We let h G p q, h C p q, h I p q be functions that capture genetic, clinical and imaging effects on the regression coefficients: Hpg, c, I b q h G pgq ` h C pcq ` h I pf b q. (2) Combining with (1), we arrive at the full model y t x t β ` xt`hg pgq ` h C pcq ` h I pf b q ` ɛ, (3) which captures the population trend β, as well as the subject-specific deviations rh G p q, h C p q, h I p qs. For a longitudinal cohort of N subjects, we group all T i observations for subject i to form y i ry i1, y i2,...y iti s. We then form the global vector y r y 1, y 2,..., y N s. We similarly form vectors x, h G, h C, h I, g, c, f b and ɛ, to build the full regression model: y x β ` x d ph G pgq ` h C pcq ` h I pf b qq ` ɛ, (4) where d is the Hadamard, or element-wise product. This formulation is mathematically equivalent to a General Linear Model (GLM) [9] in terms of the health profile predictors rh G, h C, h I s. We employ Gaussian process priors to model the health functions: h D p q GP p0, τ 2 DK D p, qq, (5) where covariance kernel function τ 2 D K Dpz i, z j q captures the similarity between subjects i and j using feature vectors z i and z j for D P tg, C, Iu. We discuss the particular form of Kp, q used in the experiments later in the paper. 2.2 Learning The Bayesian formulation in (4) and (5) can be interpreted as a linear mixed effects model (LMM) [10] or a least squares kernel machine (LSKM) regression model [5,8]. We use the LMM interpretation to learn the parameters of our model, and the LSKM interpretation to perform final phenotype predictions. Specifically, we treat β as the coefficient vector of fixed effects and h G, h C, and h I as independent random effects. We seek the maximum likelihood estimates of parameters β and θ pτ 2 G, τ 2 C, τ 2 I, σ2 q by adapting standard procedures for LMMs [5,8]. As standard LMM solutions become computationally expensive for thousands of observations, we take advantage of the fact that while the entire genetic and the image phenotype data is large, the use of kernels on baseline data reduces the model size substantially. We obtain intuitive iterative updates that project the residuals at each step onto the expected rate of change in likelihood, and update β using the best linear unbiased predictor.
4 4 A. Dalca et al. 2.3 Prediction Under the LSKM interpretation, the terms hp q are estimated by minimizing a penalized squared-error loss function, which leads to the following solution [5,7,8,16]: hpz i q Nÿ α j Kpz i, z j q or h α T K (6) j 1 for some vector α. Combining with the definitions of the LMM, we estimate coefficients vectors α G, α C and α I from a linear system of equations that involves our estimates of ˆβ and θ. We can then re-write (4) as y x β ` x `α T GK G ` α T CK C ` α T I K I (7) and predict a phenotype at time t for a new subject i: «ff Nÿ y t y b ` x t β ` α G,j K G pg i, g j q ` α C,j K C pc i, c j q ` α I,j K I pf i, f j q. (8) j 1 3 Model Instantiation for Anatomical Predictions The full model (3) can be used with many reasonable phenotype definitions. Here, we describe the phenotype model we use for anatomical predictions and specify the similarity kernels of the health profile. 3.1 Anatomical Phenotype We define a voxel-wise phenotype that enables us to predict entire anatomical images. Let Ω be the set of all spatial locations v (voxels) in an image, and I b ti b pvqu vpω be the acquired baseline image. We similarly define A tapvqu vpω, to be the population atlas template. We assume each image I is generated through a deformation field Φ 1 parametrized by the corresponding displacements tupvqu vpω from the common atlas to the subject-specific coordinate frame [14], such that Ipvq Apv ` upvqq. We further define a followup image I t as a deformation Φ Bt from the baseline image I b, which can be composed to yield an overall deformation from the atlas to the follow-up scan via Φ 1 At Φ 1 AB Φ 1 Bt tu1 pvqu vpω : AI I t pvq Apv ` u 1 pvqq. (9) Using displacements u 1 pvq as the phenotype of interest in (1) captures the necessary information for predicting new images, but leads to very high dimensional descriptors. To regularize the transformation and to improve efficiency, we define a low-dimensional embedding of u 1 pvq. Specifically, we assume that the atlas provides a parcellation of the space into L anatomical labels L tψu L l 1. We build a low-dimensional embedding of the transformation vectors upvq within
5 Predictive Modeling of Anatomy with Genetic and Clinical Data 5 each label using PCA. We define the relevant phenotypes ty l,c u as the coefficients associated with the first C principal components of the model that capture 95% of the variance in each label, for l 1... L. We predict the phenotypes using (8). To construct a follow-up image I t given phenotype y t, we first form a deformation field Φ 1 p At by reconstruction from the estimated phenotype y t, and use Φ p At assuming an invertible transformation. Using the baseline image, we predict a subsequent image via Φ Bt Φ p At Φ 1 AB. Note that we do not directly model changes in image intensity. While population models necessitate capturing such changes, we predict changes from a baseline image. We also assume that affine transformations are not part of the deformations of interest, and thus all images are affinely registered to the atlas. 3.2 Health Similarities To fully define the health similarity term Hp,, q, we need to specify the forms of the kernel functions K G p, q, K C p, q, and K I p, q. For genetic data, we employ the identical by state (IBS) kernel often used in genetic analysis [13]. Given a vector of genetic variants g of length S, each genetic locus is encoded as gpsq P t0, 1, 2u, and K G pg i, g j q 1 2S Sÿ p2 g i psq g j psq q. (10) s 1 To capture similarity of clinical indicators c, we form the kernel function ˆ K C pc i, c j q exp 1 σc 2 pc i c j q T W pc i c j q, (11) where diagonal weight matrix W captures the effect size of each clinical indicator on the phenotype, and σc 2 is the variance of the clinical factors. We define the image feature vectors f b as the set of all PCA coefficients defined above for the baseline image. We define the image kernel matrix as ˆ K I pf b,i, f b,j q exp 1 σi 2 f b,i f b,j 2 2, (12) where σ 2 I is the variance of the image features. 4 Experiments We illustrate our approach by predicting image-based phenotypes based on genetic, clinical and imaging data in the ADNI longitudinal study [6] that includes two to ten follow-up scans acquired years after the baseline scan. We use affine registration to align all subjects to a template constructed from 145 randomly chosen subjects, and compute non-linear registration warps Φ AI for each image using ANTs [1]. We utilize a list of 21 genetic loci associated with
6 6 A. Dalca et al. Relative Error Baseline Population Model Full Model ICV Whole Brain Ventricles Hippocampus Entorhinal Fusiform Middle Temp. Fig. 1. Relative error (lower is better) of volume prediction for seven structures for subjects in the top decile of volume change. We report relative change between the baseline and the follow-up measurement (red), relative error in prediction using a population model (green), and the complete model (blue). Alzheimer s disease (AD) as the genetic vector g, and the standard clinical factors including age, gender, marital status, education, disease diagnostic, and cognitive tests, as the clinical indicator vector c. We learn the model parameters from 341 randomly chosen subjects and predict follow-up volumes on a separate set of 100 subjects. To evaluate the advantages of the proposed predictive model, we compare its performance to a population-wide linear regression model that ignores the subject-specific health profiles (i.e., H 0). 4.1 Volumetric Predictions In the first simplified experiment, we define phenotype y to be a vector of several scalar volume measurements obtained using FreeSurfer [4]. In addition to the population-wide linear regression model, we include a simple approach of using the baseline volume measurements as a predictor of the phenotype trajectory, effectively assuming no volume change with time. Since in many subjects, the volume differences are small, all three methods perform comparably when evaluated on the whole test set. To evaluate the differences between the methods, we focus on the subset of subjects with substantial volume changes, reported in Fig. 1. Our method consistently achieves smaller relative errors than the two baseline approaches. 4.2 Anatomical Prediction We also evaluate the model for full anatomical scan prediction. To quantify prediction accuracy, we propagate segmentation labels of relevant anatomical structures from the baseline scan to the predicted scan using the predicted warps. We compare the predicted segmentation label maps with the actual segmentations of the follow-up scans. The warps computed based on the actual follow-up scans through the atlas provide an indication of the best accuracy the predictive model could achieve when using warps to represent images. Similar to the volumetric
7 Predictive Modeling of Anatomy with Genetic and Clinical Data Dice Coefficient Registration through Atlas Population Model Full Model Cortex Ventricles Hippocampus Caudate Putamen Pallidum Amygdala Fig. 2. Prediction results. Left: Dice scores of labels propagated through three methods for several structures implicatd in AD in subjects with the most volume change for each structure. We report the prediction based on the registration of the actual followup scan to the atlas as an upper bound for warp-based prediction accuracy (red), predictions based on the population-wide linear regression model (green), and the full model (blue). Right: A predicted anatomical image for a patient diagnosed with AD using a healthy model. The color overlay shows the squared magnitude of the difference in predicted versus observed deformations, indicating a significantly different expansion trajectory of the ventricles. predictions, the full model offers modest improvements when evaluated on the entire test set, and substantial improvements in segmentation accuracy when evaluated in the subjects who exhibit large volume changes between the baseline scan and the follow-up scan, as reported in Fig. 2. In both experiments, all components h g, h c and h I contributed significantly to the improved predictions. Our experimental results suggest that the anatomical model depends on registration accuracy. In particular, we observe that directly registering the follow-up scan to the baseline scan leads to better alignment of segmentation labels than when transferring the labels through a composition of the transformations from the scans to the atlas space. This suggests that a different choice of appearance model may improve prediction accuracy, a promising direction for future work. To demonstrate the potential of the anatomical prediction, we predict the follow-up scan of a patient diagnosed with dementia as if the patient were healthy. Specifically, we train our model using healthy subjects, and predict follow-up scans for AD patients. In Fig. 2 we illustrate an example result, comparing the areas of brain anatomy that differ from the observed follow-up in the predicted healthy brain of this AD patient. Our prediction indicates that ventricle expansion would be different if this patient had a healthy trajectory. 5 Conclusions We present a model to predict the anatomy in patient follow-up images given just a baseline image using population trends and subject-specific genetic and clinical information. We validate our prediction method on scalar volumes and anatomical images, and show that it can be used as a powerful tool to illustrate how a subject-specific brain might differ if it were healthy. Through this and
8 8 A. Dalca et al. other new applications, our prediction method presents a novel opportunity for the study of disease and anatomical development. Acknowledgements. We acknowledge the following funding sources: NIH NIBIB 1K25EB , BrightFocus AHAF-A , NIH NIBIB NAC P41EB015902, NIH DA022759, and Wistron Corporation. References 1. Avants, B., Tustison, N., Song, G., Cook, P., Klein, A., Gee, J.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), (2011) 2. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int J Comp. Vis. 90(2), (2010) 3. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. International journal of computer vision 103(1), (2013) 4. Fischl, B.: Freesurfer. Neuroimage 62(2), (2012) 5. Ge, T., Nichols, T.E., Ghosh, D., Mormino, E.C., Smoller, J.W., Sabuncu, M.R., et al.: A kernel machine method for detecting effects of interaction between multidimensional variable sets: An imaging genetics application. NeuroImage (2015) 6. Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., L Whitwell, J., Ward, C., et al.: The alzheimer s disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging 27(4), (2008) 7. Kimeldorf, G., Wahba, G.: Some results on tchebycheffian spline functions. Journal of mathematical analysis and applications 33(1), (1971) 8. Liu, D., Lin, X., Ghosh, D.: Semiparametric regression of multidimensional genetic pathway data: Least-squares kernel machines and linear mixed models. Biometrics 63(4), (2007) 9. McCullagh, P.: Generalized linear models. European Journal of Operational Research 16(3), (1984) 10. McCulloch, C.E., Neuhaus, J.M.: Generalized linear mixed models. Wiley Online Library (2001) 11. Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-term conversion to ad: results from adni. Neuroimage 44(4), (2009) 12. Pfefferbaum, A., Rohlfing, T., Rosenbloom, M.J., Chu, W., Colrain, I.M., Sullivan, E.V.: Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of mri. Neuroimage 65, (2013) 13. Queller, D.C., Goodnight, K.F.: Estimating relatedness using genetic markers. Evolution pp (1989) 14. Rohlfing, T., Sullivan, E.V., Pfefferbaum, A.: Regression models of atlas appearance. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) Info. Proc. Med. Img. pp Springer (2009) 15. Sadeghi, N., Prastawa, M., Fletcher, P.T., Vachet, C., Wang, B., et al.: Multivariate modeling of longitudinal mri in early brain development with confidence measures. In: 2013 IEEE Inter. Symp. Biomed Imag. pp IEEE (2013) 16. Wahba, G.: Spline models for observational data, vol. 59. Siam (1990)
An Interactive Visualization Tool for Nipype Medical Image Computing Pipelines
An Interactive Visualization Tool for Nipype Medical Image Computing Pipelines Ramesh Sridharan, Adrian V. Dalca, and Polina Golland Computer Science and Artificial Intelligence Lab, MIT Abstract. We present
Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC
Machine Learning for Medical Image Analysis A. Criminisi & the InnerEye team @ MSRC Medical image analysis the goal Automatic, semantic analysis and quantification of what observed in medical scans Brain
Bayesian Penalized Methods for High Dimensional Data
Bayesian Penalized Methods for High Dimensional Data Joseph G. Ibrahim Joint with Hongtu Zhu and Zakaria Khondker What is Covered? Motivation GLRR: Bayesian Generalized Low Rank Regression L2R2: Bayesian
Subjects: Fourteen Princeton undergraduate and graduate students were recruited to
Supplementary Methods Subjects: Fourteen Princeton undergraduate and graduate students were recruited to participate in the study, including 9 females and 5 males. The mean age was 21.4 years, with standard
Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease
1 Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease The following contains a summary of the content of the neuroimaging module I on the postgraduate
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
BayesX - Software for Bayesian Inference in Structured Additive Regression
BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich
Face Model Fitting on Low Resolution Images
Face Model Fitting on Low Resolution Images Xiaoming Liu Peter H. Tu Frederick W. Wheeler Visualization and Computer Vision Lab General Electric Global Research Center Niskayuna, NY, 1239, USA {liux,tu,wheeler}@research.ge.com
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
The Problem With Atlas Encoding and Network Marketing
Atlas Encoding by Randomized Forests for Efficient Label Propagation Darko Zikic, Ben Glocker, and Antonio Criminisi Microsoft Research Cambridge Abstract We propose a method for multi-atlas label propagation
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard
An introduction to OBJECTIVE ASSESSMENT OF IMAGE QUALITY. Harrison H. Barrett University of Arizona Tucson, AZ
An introduction to OBJECTIVE ASSESSMENT OF IMAGE QUALITY Harrison H. Barrett University of Arizona Tucson, AZ Outline! Approaches to image quality! Why not fidelity?! Basic premises of the task-based approach!
Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
Machine Learning in FX Carry Basket Prediction
Machine Learning in FX Carry Basket Prediction Tristan Fletcher, Fabian Redpath and Joe D Alessandro Abstract Artificial Neural Networks ANN), Support Vector Machines SVM) and Relevance Vector Machines
University of California San Francisco, CA, USA 4 Department of Veterans Affairs Medical Center, San Francisco, CA, USA
Disrupted Brain Connectivity in Alzheimer s Disease: Effects of Network Thresholding Madelaine Daianu 1, Emily L. Dennis 1, Neda Jahanshad 1, Talia M. Nir 1, Arthur W. Toga 1, Clifford R. Jack, Jr. 2,
These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop
Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher
Publication List. Chen Zehua Department of Statistics & Applied Probability National University of Singapore
Publication List Chen Zehua Department of Statistics & Applied Probability National University of Singapore Publications Journal Papers 1. Y. He and Z. Chen (2014). A sequential procedure for feature selection
Regression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
Partial Least Squares (PLS) Regression.
Partial Least Squares (PLS) Regression. Hervé Abdi 1 The University of Texas at Dallas Introduction Pls regression is a recent technique that generalizes and combines features from principal component
BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES
BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
Morphological analysis on structural MRI for the early diagnosis of neurodegenerative diseases. Marco Aiello On behalf of MAGIC-5 collaboration
Morphological analysis on structural MRI for the early diagnosis of neurodegenerative diseases Marco Aiello On behalf of MAGIC-5 collaboration Index Motivations of morphological analysis Segmentation of
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
3D Visualization of FreeSurfer Data Sonia Pujol, Ph.D. Silas Mann, B.Sc. Randy Gollub, MD., Ph.D.
3D Visualization of FreeSurfer Data Sonia Pujol, Ph.D. Silas Mann, B.Sc. Randy Gollub, MD., Ph.D. Surgical Planning Laboratory Athinoula A. Martinos Center Harvard University -1- Acknowledgements NIH U54EB005149
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin
CHARACTERISTICS IN FLIGHT DATA ESTIMATION WITH LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINES
CHARACTERISTICS IN FLIGHT DATA ESTIMATION WITH LOGISTIC REGRESSION AND SUPPORT VECTOR MACHINES Claus Gwiggner, Ecole Polytechnique, LIX, Palaiseau, France Gert Lanckriet, University of Berkeley, EECS,
Fitting Subject-specific Curves to Grouped Longitudinal Data
Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: [email protected] Currie,
ONLINE SUPPLEMENTARY DATA. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing
ONLINE SUPPLEMENTARY DATA Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing Benjamin S. Aribisala 1,2,3, Natalie A. Royle 1,2,3, Maria C. Valdés Hernández
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate
Two-Frame Motion Estimation Based on Polynomial Expansion
Two-Frame Motion Estimation Based on Polynomial Expansion Gunnar Farnebäck Computer Vision Laboratory, Linköping University, SE-581 83 Linköping, Sweden [email protected] http://www.isy.liu.se/cvl/ Abstract.
How To Understand The Theory Of Probability
Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL
Tracking Groups of Pedestrians in Video Sequences
Tracking Groups of Pedestrians in Video Sequences Jorge S. Marques Pedro M. Jorge Arnaldo J. Abrantes J. M. Lemos IST / ISR ISEL / IST ISEL INESC-ID / IST Lisbon, Portugal Lisbon, Portugal Lisbon, Portugal
Handling attrition and non-response in longitudinal data
Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 63-72 Handling attrition and non-response in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein
Predict the Popularity of YouTube Videos Using Early View Data
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected]
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected] IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way
Norbert Schuff Professor of Radiology VA Medical Center and UCSF [email protected]
Norbert Schuff Professor of Radiology Medical Center and UCSF [email protected] Medical Imaging Informatics 2012, N.Schuff Course # 170.03 Slide 1/67 Overview Definitions Role of Segmentation Segmentation
How To Register Point Sets
Non-rigid point set registration: Coherent Point Drift Andriy Myronenko Xubo Song Miguel Á. Carreira-Perpiñán Department of Computer Science and Electrical Engineering OGI School of Science and Engineering
How To Analyze Medical Image Data With A Feature Based Approach To Big Data Medical Image Analysis
A Feature- based Approach to Big Data Medical Image Analysis Ma$hew Toews $, Chris/an Wachinger, Raul San Jose Estepar, William Wells III $ École de Technologie Supérieur, Montreal Canada BWH, Harvard
Obtaining Knowledge. Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology.
Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology 1.Obtaining Knowledge 1. Correlation 2. Causation 2.Hypothesis Generation & Measures 3.Looking into
Mean-Shift Tracking with Random Sampling
1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group
MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could
Prediction of Stock Performance Using Analytical Techniques
136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University
Multivariate Regression Modeling for Home Value Estimates with Evaluation using Maximum Information Coefficient
Multivariate Regression Modeling for Home Value Estimates with Evaluation using Maximum Information Coefficient Gongzhu Hu, Jinping Wang, and Wenying Feng Abstract Predictive modeling is a statistical
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Knowledge Discovery from patents using KMX Text Analytics
Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs [email protected] Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers
Principal Component Analysis
Principal Component Analysis ERS70D George Fernandez INTRODUCTION Analysis of multivariate data plays a key role in data analysis. Multivariate data consists of many different attributes or variables recorded
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING
GENOMIC SELECTION: THE FUTURE OF MARKER ASSISTED SELECTION AND ANIMAL BREEDING Theo Meuwissen Institute for Animal Science and Aquaculture, Box 5025, 1432 Ås, Norway, [email protected] Summary
Statistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Why do we have so many brain coordinate systems? Lilla ZölleiZ WhyNHow seminar 12/04/08
Why do we have so many brain coordinate systems? Lilla ZölleiZ WhyNHow seminar 12/04/08 About brain atlases What are they? What do we use them for? Who creates them? Which one shall I use? Brain atlas
Subspace Analysis and Optimization for AAM Based Face Alignment
Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China [email protected] Stan Z. Li Microsoft
An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R)
DSC 2003 Working Papers (Draft Versions) http://www.ci.tuwien.ac.at/conferences/dsc-2003/ An Interactive Tool for Residual Diagnostics for Fitting Spatial Dependencies (with Implementation in R) Ernst
Predicting the future progression of dementia. Ashish Raj, PhD
Business Presentation Predicting the future progression of dementia Ashish Raj, PhD Founder and CEO Associate Professor of Computer Science in Radiology Director, IDEAL Laboratory Associate Professor of
Integration and Visualization of Multimodality Brain Data for Language Mapping
Integration and Visualization of Multimodality Brain Data for Language Mapping Andrew V. Poliakov, PhD, Kevin P. Hinshaw, MS, Cornelius Rosse, MD, DSc and James F. Brinkley, MD, PhD Structural Informatics
MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients
MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients Peter L. Stanchev 1, Farshad Fotouhi 2 1 Kettering University, Flint, Michigan, 48504 USA [email protected] http://www.kettering.edu/~pstanche
Accurate and robust image superresolution by neural processing of local image representations
Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica
Image Segmentation and Registration
Image Segmentation and Registration Dr. Christine Tanner ([email protected]) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Lecture 8: Signal Detection and Noise Assumption
ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,
Pradeep Redddy Raamana
Pradeep Redddy Raamana Research Scientist at Simon Fraser University [email protected] Summary Highlights 8 years of experience in machine learning, data mining and statistical modelling. 6 years of experience
Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer
Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer Anant Madabhushi 1, Jianbo Shi 2, Mark Rosen 2, John E. Tomaszeweski 2,andMichaelD.Feldman
User Manual for GingerALE 2.3
BrainMapDevelopmentTeam: PeterT.Fox,M.D. AngelaR.Laird,Ph.D. SimonB.Eickhoff,M.D. JackL.Lancaster,Ph.D. MickFox,ApplicationsProgrammer AngelaM.Uecker,DatabaseProgrammer MichaelaRobertson,ResearchScientist
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive
Predicting Solar Generation from Weather Forecasts Using Machine Learning
Predicting Solar Generation from Weather Forecasts Using Machine Learning Navin Sharma, Pranshu Sharma, David Irwin, and Prashant Shenoy Department of Computer Science University of Massachusetts Amherst
Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors
Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col
Symmetric Log-Domain Diffeomorphic Registration: A Demons-based Approach
Symmetric Log-Domain Diffeomorphic Registration: A Demons-based Approach Tom Vercauteren 1, Xavier Pennec 2, Aymeric Perchant 1, and Nicholas Ayache 2 1 Mauna Kea Technologies, France 2 Asclepios, INRIA
Understanding and Applying Kalman Filtering
Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
BIO 226: APPLIED LONGITUDINAL ANALYSIS COURSE SYLLABUS. Spring 2015
BIO 226: APPLIED LONGITUDINAL ANALYSIS COURSE SYLLABUS Spring 2015 Instructor: Teaching Assistants: Dr. Brent Coull HSPH Building II, Room 413 Phone: (617) 432-2376 E-mail: [email protected] Office
Introduction to mixed model and missing data issues in longitudinal studies
Introduction to mixed model and missing data issues in longitudinal studies Hélène Jacqmin-Gadda INSERM, U897, Bordeaux, France Inserm workshop, St Raphael Outline of the talk I Introduction Mixed models
A Genetic Algorithm-Evolved 3D Point Cloud Descriptor
A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal
CoolaData Predictive Analytics
CoolaData Predictive Analytics 9 3 6 About CoolaData CoolaData empowers online companies to become proactive and predictive without having to develop, store, manage or monitor data themselves. It is an
Statistical Modeling of Huffman Tables Coding
Statistical Modeling of Huffman Tables Coding S. Battiato 1, C. Bosco 1, A. Bruna 2, G. Di Blasi 1, G.Gallo 1 1 D.M.I. University of Catania - Viale A. Doria 6, 95125, Catania, Italy {battiato, bosco,
Multiple Linear Regression in Data Mining
Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple
PREDICTIVE ANALYTICS: PROVIDING NOVEL APPROACHES TO ENHANCE OUTCOMES RESEARCH LEVERAGING BIG AND COMPLEX DATA
PREDICTIVE ANALYTICS: PROVIDING NOVEL APPROACHES TO ENHANCE OUTCOMES RESEARCH LEVERAGING BIG AND COMPLEX DATA IMS Symposium at ISPOR at Montreal June 2 nd, 2014 Agenda Topic Presenter Time Introduction:
Component Ordering in Independent Component Analysis Based on Data Power
Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals
COMMENTS AND CONTROVERSIES Why Voxel-Based Morphometry Should Be Used
NeuroImage 14, 1238 1243 (2001) doi:10.1006/nimg.2001.0961, available online at http://www.idealibrary.com on COMMENTS AND CONTROVERSIES Why Voxel-Based Morphometry Should Be Used John Ashburner 1 and
Proposal Writing in a Nutshell
Proposal Writing in a Nutshell Context Resources http://www.sci.utah.edu/~macleod/grants/ Find Your Purpose Who is the Audience? If you don t know, find out.?? Don t assume too much!! What are Review Criteria?
Support Vector Machines with Clustering for Training with Very Large Datasets
Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France [email protected] Massimiliano
The Wondrous World of fmri statistics
Outline The Wondrous World of fmri statistics FMRI data and Statistics course, Leiden, 11-3-2008 The General Linear Model Overview of fmri data analysis steps fmri timeseries Modeling effects of interest
Steven M. Ho!and. Department of Geology, University of Georgia, Athens, GA 30602-2501
PRINCIPAL COMPONENTS ANALYSIS (PCA) Steven M. Ho!and Department of Geology, University of Georgia, Athens, GA 30602-2501 May 2008 Introduction Suppose we had measured two variables, length and width, and
Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection
Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics
Biomarker Discovery and Data Visualization Tool for Ovarian Cancer Screening
, pp.169-178 http://dx.doi.org/10.14257/ijbsbt.2014.6.2.17 Biomarker Discovery and Data Visualization Tool for Ovarian Cancer Screening Ki-Seok Cheong 2,3, Hye-Jeong Song 1,3, Chan-Young Park 1,3, Jong-Dae
2. MATERIALS AND METHODS
Difficulties of T1 brain MRI segmentation techniques M S. Atkins *a, K. Siu a, B. Law a, J. Orchard a, W. Rosenbaum a a School of Computing Science, Simon Fraser University ABSTRACT This paper looks at
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
Towards better accuracy for Spam predictions
Towards better accuracy for Spam predictions Chengyan Zhao Department of Computer Science University of Toronto Toronto, Ontario, Canada M5S 2E4 [email protected] Abstract Spam identification is crucial
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
Presentation by: Ahmad Alsahaf. Research collaborator at the Hydroinformatics lab - Politecnico di Milano MSc in Automation and Control Engineering
Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen 9-October 2015 Presentation by: Ahmad Alsahaf Research collaborator at the Hydroinformatics lab - Politecnico di
