Statistical Models in Data Mining
|
|
|
- Lucas Austin
- 10 years ago
- Views:
Transcription
1 Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari
2 Flood of Data New York Times, January 11, 2010 Video and Image Data Unstructured Structured and Unstructured (Text) Data 2 Srihari
3 Large Data Sets are Ubiquitous 1.Due to digital data acquisition and storage technology Business Supermarket transactions Credit card usage records Telephone call details Government statistics Scientific Images of astronomical bodies Molecular databases Medical records 2. Automatic data production leads to need for automatic data consumption 3. Large databases mean vast amounts of information 4. Difficulty lies in converting data to useful knowledge 3 Srihari
4 Data Mining Definition Analyze Observational Data to find unsuspected relationships and Summarize data in novel ways that are understandable and useful to data owner Unsuspected Relationships non-trivial, implicit, previously unknown Ex of Trivial: Those who are pregnant are female Summarize as Patterns and Models (usually probabilistic) Linear Equations, Rules, Clusters, Graphs, Tree Structures, Recurrent Patterns in Time Series Extracting useful information from large data sets Usefulness: meaningful: lead to some advantage, usually economic Analysis: Automatic/Semi-automatic Process (Extraction of knowledge) Srihari
5 Reasons for Uncertainty 1. Data may only be a sample of population to be studied Uncertain about extent to which samples differ from each other 2. Interest is in making a prediction about tomorrow based on data we have today 3. Cannot observe some values and need to make a guess 5 Srihari
6 Dealing with Uncertainty Several Conceptual bases 1. Probability 2. Fuzzy Sets 3. Rough Sets Probability Theory vs Probability Calculus Probability Calculus is well-developed Generally accepted axioms and derivations Probability Theory has scope for perspectives 6 Lack theoretical backbone and the wide acceptance of probability Mapping real world to what probability is
7 Frequentist vs Bayesian Frequentist Probability is objective It is the limiting proportion of times event occurs in identical situations Bayesian An idealization since all customers are not identical Subjective probability Explicit characterization of all uncertainty including any parameters estimated from the data Frequently yield same results 7 Srihari
8 Data Mining vs Statistics Observational Data Objective of data mining exercise plays no role in data collection strategy E.g., Data collected for Transactions in a Bank Experimental Data Collected in Response to Questionnaire Efficient strategies to Answer Specific Questions In this way it differs from much of statistics For this reason, data mining is referred to as secondary data analysis 8 Srihari
9 Statistics vs Data Mining Size of data set (large in data mining) Eyeballing not an option (terabytes of data) Entire dataset rather than a sample Many variables Curse of dimensionality Make predictions Small sample sizes can lead to spurious discovery: Superbowl winner conference correlates to stock market (up/down)
10 Multidisciplinary terminology Structured Data Training Set Unstructured Data Information Retrieval Machine Learning Pattern Recognition Records Database Data Mining Statistics Samples Table Visualization Artificial Intelligence Expert Systems Data Points Instances 10 Leading Conference known as Knowledge Discovery and Data Mining Srihari
11 Data Mining Tasks Not so much a single technique Idea that there is more knowledge hidden in the data than shows itself on the surface Any technique that helps to extract more out of data is useful Five major task types: 1. Exploratory Data Analysis (Visualization: boxplots, charts) 2. Descriptive Modeling (Density estimation, Clustering) Model 3. Predictive Modeling (Classification and Regression) building 4. Discovering Patterns and Rules (Association rules) 5. Retrieval by Content (Retrieve items similar to pattern of interest) 11 Srihari
12 12 Clustering Old Faithful (Hydrothermal Geyser in Yellowstone) 272 observations Duration (mins, horiz axis) vs Time to next eruption (vertical axis) Simple Gaussian unable to capture structure Linear superposition of two Gaussians is better Gaussian has limitations in modeling real data sets Gaussian Mixture Models give very complex densities p( x) = π N( x µ, Σ k = 1 π k are mixing coefficients that sum to one One dimension Three Gaussians in blue Sum in red K k k k )
13 Global Model 13 Models and Patterns High level global description of data set Make statement about any point in d-space E.g., prediction, clustering It takes a large sample perspective Summarizing data in convenient, concise way Local Patterns Make statement about restricted regions of d-space E.g.: if x > thresh1 then Prob (y > thresh2) = p Departure from run of data Identify members with unusual properties Outliers in a database
14 Models for Prediction: Regression and Classification Predict response variable from given values of others Response variable y given predictor variables x 1,.., x d When y is quantitative the task is known as regression When y is categorical, it is known as classification learning or supervised classification 14
15 Statistical Models for Regression and Classification Generative Naïve Bayes Mixtures of multinomials Mixtures of Gaussians Hidden Markov Models (HMM) Bayesian networks Markov random fields Discriminative Logistic regression SVMs Traditional neural networks Nearest neighbor Conditional Random Fields (CRF) Gaussian Processes 15
16 National Academy of Sciences: Keck Center 16
17 Regression Problem: Carbon Dioxide in Atmosphere 400? CO Concentration ppm Year
18 Regression Single input variable 18 Linear Models Polynomial y(x,w) = w 0 +w 1 x+w 2 x 2 + =Σ w i x i Several variables linear combination of non-linear (basis) functions Bayesian Linear Regression Classification y(x,w) = w 0 + M 1 j=1 w j φ j (x) = w T φ(x) Logistic Regression (with sigmoid or soft-max) y(x,w) = σ[w T φ(x)]
19 Neural Network Function Overall function M D y k (x,w) = σ (2) w kj h (1) (1) (2) w ji x i + w j 0 + w k 0 j=1 i=1 Where w is the set of all weights and bias parameters nonlinear functions from inputs {x i } to outputs {y k } Note presence of both σ and h functions If σ is identity for regression If σ is sigmoid for two-class classification If σ is softmax for multi-classification 19
20 Gaussian Processes for Regression Radically different viewpoint not involving weight parameters Functions are drawn from a Gaussian where each data point is a function Gaussian Kernel k(x,x') = exp( x x' 2 /2σ 2 ) Exponential Kernel k(x,x') = exp( θ x x' ) Ornstein-Uhlenbeck process for Brownian motion 20
21 Gaussian Process with Two Samples Let y be a function (curve) of a one-dimensional variable x We take two samples y 1 and y 2 corresponding to x 1 and x 2 Assume they have a bivariate Gaussian distribution Each point from this distribution y 2 y 1 x 1 x 2 has an associated probability It also defines a function y(x) Assuming that two points are enough to define a curve y 2 More than two points will be needed to define a curve Which leads to a higher dimensional probability distribution 21 y 1
22 Gaussian Process Regression Generalize multivariate Gaussian to infinite variables (over all values of input x) A Gaussian distribution is fully specified by a mean vector µ and covariance matrix Σ f = (f 1,..f n ) T ~ N (µ,σ) indexes i =1,..n A Gaussian process is fully specified by a mean function m(x) and covariance function k(x,x ) f (x) ~ GP(m(x), k(x,x )) indexes x Kernel function k appears in place of covariance matrix Both express similarity of two in multidimensional space
23 Gaussian Process Fit to CO 2 data
24 Dual Role of Probability and Statistics in Data Analysis Generative Model of data allows data to be generated from the model Inference allows making statements about data 24
25 2. Nature of Data Sets Structured Data set of measurements from an environment or process Simple case n objects with d measurements each: n x d matrix d columns are called variables, features, attributes or fields 25
26 Unstructured Data 1. Structured Data Well-defined tables, attributes (columns), tuples (rows) 2. Unstructured Data World wide web Documents (HTML/XML) and hyperlinks HTML: tree structure with text and attributes embedded at nodes XML pages use metadata descriptions Text Documents Document viewed as sequence of words and punctuations Mining Tasks» Text categorization» Clustering Similar Documents» Finding documents that match a query Image Databases 26
27 Retrieval by Content User has pattern of interest and wishes to find that pattern in database, Ex: Text Search Estimate the relative importance of web pages using a feature vector whose elements are derived from the Query-URL pair Image Search Search a large database of images by using content descriptors such as color, texture, relative position 27 Srihari
28 Representations of Text Documents Boolean Vector Document is a vector where each element is a bit representing presence/absence of word A set of documents can be represented as matrix (d,w) where document d and word w has value 1 or 0 (sparse matrix) Vector Space Representation Each element has a value such as no. of occurrences or frequency A set of documents represented as a document-term matrix 28
29 Vector Space Example Document-Term Matrix t1 database t2 SQL t3 index t4 regression t5 likelihood t6 linear d ij represents number of times that term appears in that document 29
30 Image Retrieval Results Crime scene mark and their closest matches
31 Conclusion Data mining objective is to make discoveries from data We want to be as confident as we can that our conclusions are correct Nothing is certain Fundamental tool is probability Universal language for handling uncertainty Allows us to obtain best estimates even with data inadequacies and small samples 31 Srihari
Principles of Data Mining
Principles of Data Mining Instructor: Sargur N. 1 University at Buffalo The State University of New York [email protected] Introduction: Topics 1. Introduction to Data Mining 2. Nature of Data
Data, Measurements, Features
Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are
Learning outcomes. Knowledge and understanding. Competence and skills
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.
Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,
Principles of Dat Da a t Mining Pham Tho Hoan [email protected] [email protected]. n
Principles of Data Mining Pham Tho Hoan [email protected] References [1] David Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT press, 2002 [2] Jiawei Han and Micheline Kamber,
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com
SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING
Classification Problems
Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Machine Learning Overview
Machine Learning Overview Sargur N. Srihari University at Buffalo, State University of New York USA 1 Outline 1. What is Machine Learning (ML)? 1. As a scientific Discipline 2. As an area of Computer Science/AI
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
How To Understand The Theory Of Probability
Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval
Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data
MACHINE LEARNING IN HIGH ENERGY PHYSICS
MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Imputing Values to Missing Data
Imputing Values to Missing Data In federated data, between 30%-70% of the data points will have at least one missing attribute - data wastage if we ignore all records with a missing value Remaining data
Course Syllabus For Operations Management. Management Information Systems
For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third
Supervised Learning (Big Data Analytics)
Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
Big Data: Rethinking Text Visualization
Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Diagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Machine Learning and Statistics: What s the Connection?
Machine Learning and Statistics: What s the Connection? Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh, UK August 2006 Outline The roots of machine learning
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
CS 688 Pattern Recognition Lecture 4. Linear Models for Classification
CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(
In this presentation, you will be introduced to data mining and the relationship with meaningful use.
In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
Predict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, [email protected] Department of Electrical Engineering, Stanford University Abstract Given two persons
AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.
AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Lecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. and Alex Gray
Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas University of Washington and Alex
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM
International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT
Machine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Data Mining and Neural Networks in Stata
Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca [email protected] [email protected]
Data Mining with SQL Server Data Tools
Data Mining with SQL Server Data Tools Data mining tasks include classification (directed/supervised) models as well as (undirected/unsupervised) models of association analysis and clustering. 1 Data Mining
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Data Mining: An Introduction
Data Mining: An Introduction Michael J. A. Berry and Gordon A. Linoff. Data Mining Techniques for Marketing, Sales and Customer Support, 2nd Edition, 2004 Data mining What promotions should be targeted
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Content-Based Recommendation
Content-Based Recommendation Content-based? Item descriptions to identify items that are of particular interest to the user Example Example Comparing with Noncontent based Items User-based CF Searches
Machine learning for algo trading
Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with
Server Load Prediction
Server Load Prediction Suthee Chaidaroon ([email protected]) Joon Yeong Kim ([email protected]) Jonghan Seo ([email protected]) Abstract Estimating server load average is one of the methods that
Machine Learning and Data Mining. Fundamentals, robotics, recognition
Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,
Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University [email protected]
Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University [email protected] 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian
Exploratory Data Analysis
Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan
Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:
ANALYTICS IN BIG DATA ERA
ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut
Chapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
Prediction of Heart Disease Using Naïve Bayes Algorithm
Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,
KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KGCOE- CQAS- 747- Principles of
Exploratory Data Analysis with MATLAB
Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton
Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup
Network Anomaly Detection A Machine Learning Perspective Dhruba Kumar Bhattacharyya Jugal Kumar KaKta»C) CRC Press J Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
Faculty of Science School of Mathematics and Statistics
Faculty of Science School of Mathematics and Statistics MATH5836 Data Mining and its Business Applications Semester 1, 2014 CRICOS Provider No: 00098G MATH5836 Course Outline Information about the course
203.4770: Introduction to Machine Learning Dr. Rita Osadchy
203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Organizing Your Approach to a Data Analysis
Biost/Stat 578 B: Data Analysis Emerson, September 29, 2003 Handout #1 Organizing Your Approach to a Data Analysis The general theme should be to maximize thinking about the data analysis and to minimize
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
A Review of Data Mining Techniques
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,
Data Mining for Business Intelligence. Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner. 2nd Edition
Brochure More information from http://www.researchandmarkets.com/reports/2170926/ Data Mining for Business Intelligence. Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner. 2nd
Introduction to nonparametric regression: Least squares vs. Nearest neighbors
Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
Data Mining. Dr. Saed Sayad. University of Toronto 2010 [email protected]. http://chem-eng.utoronto.ca/~datamining/
Data Mining Dr. Saed Sayad University of Toronto 2010 [email protected] http://chem-eng.utoronto.ca/~datamining/ 1 Data Mining Data mining is about explaining the past and predicting the future by
Knowledge Discovery from patents using KMX Text Analytics
Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs [email protected] Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers
Visualizing class probability estimators
Visualizing class probability estimators Eibe Frank and Mark Hall Department of Computer Science University of Waikato Hamilton, New Zealand {eibe, mhall}@cs.waikato.ac.nz Abstract. Inducing classifiers
Linear Discrimination. Linear Discrimination. Linear Discrimination. Linearly Separable Systems Pairwise Separation. Steven J Zeil.
Steven J Zeil Old Dominion Univ. Fall 200 Discriminant-Based Classification Linearly Separable Systems Pairwise Separation 2 Posteriors 3 Logistic Discrimination 2 Discriminant-Based Classification Likelihood-based:
Supervised and unsupervised learning - 1
Chapter 3 Supervised and unsupervised learning - 1 3.1 Introduction The science of learning plays a key role in the field of statistics, data mining, artificial intelligence, intersecting with areas in
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS Data Mining Technology for Efficient Network Security Management Ankit Naik [1], S.W. Ahmad [2] Student [1], Assistant Professor [2] Department of Computer Science and Engineering
