How To Analyze Medical Image Data With A Feature Based Approach To Big Data Medical Image Analysis
|
|
|
- Erica Rose
- 5 years ago
- Views:
Transcription
1 A Feature- based Approach to Big Data Medical Image Analysis Ma$hew Toews $, Chris/an Wachinger, Raul San Jose Estepar, William Wells III $ École de Technologie Supérieur, Montreal Canada BWH, Harvard Medical School CSAIL, Massachuse$s Ins/tute of Technology h$p:// July 3, 2015
2 Context Big data Massive digital memories, rapid data transmission Large- scale data mining, novel discoveries,... Big medical image data sets E.g. 10K subjects, 20K lung CTs, 3.8 TB Per- subject labels, disease stage, Can we leverage this data? Computer assisted diagnosis Image biomarker discovery 2
3 Challenge Efficient image- to- image correspondence E.g. N = 20K lung CT volumes O(N 2 ) Intractable 3
4 Most Relevant Prior Work Nearest neighbor classifica/on (Cover & Hart 1967) As N - >, error is upper bounded by 2x op/mal Bayes error Big Data Scale- invariant feature transform SIFT (Lowe 2004) Iden/fy & match dis/nc/ve keypoints in images Efficient NN correspondence via random KD- trees O(N log N) 4
5 3D SIFT Features Lung CT Volume σ Geometry Location, scale, orientation Appearance Descriptor Gradient orientation histogram, 64 elements, rank-ordering Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features M. Toews, W.M. Wells III, MedIA 2013 SIFT-Rank: Ordinal Descriptors for Invariant Feature Correspondence M. Toews, W.M. Wells III, CVPR
6 3D SIFT Features Classifying Alzheimer s disease, discovering image biomarkers Modeling infant brain development Aligning images: robust, mul/- modal, group- wise Segmen/ng organs in full- body CT 6
7 Analysis: Kernel Density Es/ma/on Es/mate maximum a- posteriori (MAP) subject label C given feature descriptor set F = { f i } i p(c F) p(c) p( f i C) F = { f i } p( f i C) j:c=c j N # exp f f i j N % C $ α 2 i +1 & ( ' f j KNN i α i = min j f i f j Adap/ve kernel bandwidth: distance to NN 7
8 Analysis: Kernel Density Es/ma/on On- the- fly parameter es/ma/on Lazy Learning, easy to incorporate new data MAP es/ma/on: for each feature f i F : 1) Iden/fy KNN correspondence set 2) Compute p( f i C), posterior product F = { f i } p(c F) p(c) p( f i C) i O(log N) 8
9 COPD Chronic Obstruc/ve Pulmonary Disorder Major cause of chronic morbidity and mortality COPDGene data 21 sites, 10K subjects, 20K images, 95M features 5- category disease stage labels (GOLD score) Regan, Elizabeth A., et al. "Gene/c epidemiology of COPD (COPDGene) study design." COPD: Journal of Chronic Obstruc8ve Pulmonary Disease 7.1 (2011) 9
10 COPD Classifica/on Label C = [0,4] GOLD disease stage Maximum a- posterior es/ma/on C* = argmax{ p(c F) } < 1 second per image State- of- the- art GOLD predic/on accuracy GOLD Labels Predicted GOLD 10
11 COPD Dis/nct phenotypes Source: Frank H. Ne<er, MD and Ar/st 11
12 COPD Dis/nct phenotypes Blue Bloaters Pink Puffers 12
13 COPD Phenotype- informa/ve features? Musculoskeletal features 13
14 Other Aspects Same- subject iden/fica/on Label C = subject ID Perfect iden/fica/on across breathing state 65 highly similar images iden/fied 20 known duplicate subjects iden/fied via DNA 14
15 Other Aspects Significant data reduc/on 15
16 Other Aspects Feature geometry unused Es/ma/on from appearance descriptors only Subject images are unaligned, bag- of- features Soxware implementa/on available 16
17 References 1) M. Toews, C. Wachinger, R. S. et al. "A Feature- based Approach to Big Data Analysis of Medical Images Informa/on Processing in Medical Imaging (IPMI), ) C. Wachinger, M. Toews, et al. "Keypoint Transfer SegmentaAon, Informa/on Processing in Medical Imaging (IPMI), ) Gill, G. et Toews, M. et Beichel, R. R «Robust iniaalizaaon of acave shape models for lung segmentaaon in CT scans: a feature- based atlas approach». Interna/onal Journal of Biomed Imaging. p ) Toews, Ma$hew et Wells III, William M «Efficient and robust model- to- image alignment using 3D scale- invariant features». Medical Image Analysis, vol. 17, nº 3. p ) Toews, Ma$hew et Wells III, William M. et Zöllei, Lilla «A feature- based developmental model of the infant brain in structural MRI». In Medical Image Compu/ng and Computer- Assisted Interven/on MICCAI Coll. «Lecture Notes in Computer Science», p Springer Berlin Heidelberg. 6) Toews, Ma$hew et Wells III, William M. et Collins, D. Louis et Arbel, Tal «Feature- based morphometry: discovering group- related anatomical pa<erns». NeuroImage, vol. 49, nº 3. p ) Toews, Ma$hew. et Wells III, William M «SIFT- Rank: Ordinal descripaon for invariant feature correspondence». In IEEE Conference oncomputer Vision and Pa$ern Recogni/on, CVPR 2009 (Miami, FL, USA, June 20-25, 2009), p ) Toews, Ma$hew. et Arbel, T «A staasacal parts- based model of anatomical variability». IEEE Transac/ons on Medical Imaging, vol. 26, nº 4. p h$p:// 17
18 Thank You 18
Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC
Machine Learning for Medical Image Analysis A. Criminisi & the InnerEye team @ MSRC Medical image analysis the goal Automatic, semantic analysis and quantification of what observed in medical scans Brain
How To Use A Webmail On A Pc Or Macodeo.Com
Big data workloads and real-world data sets Gang Lu Institute of Computing Technology, Chinese Academy of Sciences BigDataBench Tutorial MICRO 2014 Cambridge, UK INSTITUTE OF COMPUTING TECHNOLOGY 1 Five
Why do we have so many brain coordinate systems? Lilla ZölleiZ WhyNHow seminar 12/04/08
Why do we have so many brain coordinate systems? Lilla ZölleiZ WhyNHow seminar 12/04/08 About brain atlases What are they? What do we use them for? Who creates them? Which one shall I use? Brain atlas
Ensemble Methods. Adapted from slides by Todd Holloway h8p://abeau<fulwww.com/2007/11/23/ ensemble- machine- learning- tutorial/
Ensemble Methods Adapted from slides by Todd Holloway h8p://abeau
Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on
Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classifica6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output
Probabilistic Latent Semantic Analysis (plsa)
Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg [email protected] www.multimedia-computing.{de,org} References
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION CSE 537 Ar@ficial Intelligence Professor Anita Wasilewska GROUP 2 TEAM MEMBERS: SAEED BOOR BOOR - 110564337 SHIH- YU TSAI - 110385129 HAN LI 110168054 SOURCES
siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service
siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service Ahmad Pahlavan Tafti 1, Hamid Hassannia 2, and Zeyun Yu 1 1 Department of Computer Science, University of Wisconsin -Milwaukee,
CATEGORIZATION OF SIMILAR OBJECTS USING BAG OF VISUAL WORDS AND k NEAREST NEIGHBOUR CLASSIFIER
TECHNICAL SCIENCES Abbrev.: Techn. Sc., No 15(2), Y 2012 CATEGORIZATION OF SIMILAR OBJECTS USING BAG OF VISUAL WORDS AND k NEAREST NEIGHBOUR CLASSIFIER Piotr Artiemjew, Przemysław Górecki, Krzysztof Sopyła
TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service
TouchPaper - An Augmented Reality Application with Cloud-Based Image Recognition Service Feng Tang, Daniel R. Tretter, Qian Lin HP Laboratories HPL-2012-131R1 Keyword(s): image recognition; cloud service;
Na#onal Asbestos Forum 2013: Advance in Medical Research on Asbestos- Related Diseases
Na#onal Asbestos Forum 2013: Advance in Medical Research on Asbestos- Related Diseases Professor Nico van Zandwijk Asbestos Diseases Research Ins#tute Content List of Asbestos- Related Diseases Epidemiology
Android Ros Application
Android Ros Application Advanced Practical course : Sensor-enabled Intelligent Environments 2011/2012 Presentation by: Rim Zahir Supervisor: Dejan Pangercic SIFT Matching Objects Android Camera Topic :
Anatomic Surface Reconstruc1on from Sampled Point Cloud Data and Prior Models
Anatomic Surface Reconstruc1on from Sampled Point Cloud Data and Prior Models Deyu Sun, Maryam E. Rettmann, David R. Holmes III, Cristian Linte, Bruce Cameron, Jiquan Liu, Douglas Packer, Richard A. Robb
Randomized Trees for Real-Time Keypoint Recognition
Randomized Trees for Real-Time Keypoint Recognition Vincent Lepetit Pascal Lagger Pascal Fua Computer Vision Laboratory École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Email:
Local features and matching. Image classification & object localization
Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
The Delicate Art of Flower Classification
The Delicate Art of Flower Classification Paul Vicol Simon Fraser University University Burnaby, BC [email protected] Note: The following is my contribution to a group project for a graduate machine learning
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
FACE RECOGNITION BASED ATTENDANCE MARKING SYSTEM
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,
The use of computer vision technologies to augment human monitoring of secure computing facilities
The use of computer vision technologies to augment human monitoring of secure computing facilities Marius Potgieter School of Information and Communication Technology Nelson Mandela Metropolitan University
Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors
Classification k-nearest neighbors Data Mining Dr. Engin YILDIZTEPE Reference Books Han, J., Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques. Third edition. San Francisco: Morgan Kaufmann
A Proposed Data Mining Model for the Associated Factors of Alzheimer s Disease
A Proposed Data Mining Model for the Associated Factors of Alzheimer s Disease Dr. Nevine Makram Labib and Mohamed Sayed Badawy Department of Computer and Information Systems Faculty of Management Sciences,
An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis]
An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis] Stephan Spiegel and Sahin Albayrak DAI-Lab, Technische Universität Berlin, Ernst-Reuter-Platz 7,
Cees Snoek. Machine. Humans. Multimedia Archives. Euvision Technologies The Netherlands. University of Amsterdam The Netherlands. Tree.
Visual search: what's next? Cees Snoek University of Amsterdam The Netherlands Euvision Technologies The Netherlands Problem statement US flag Tree Aircraft Humans Dog Smoking Building Basketball Table
Identifying Group-wise Consistent White Matter Landmarks via Novel Fiber Shape Descriptor
Identifying Group-wise Consistent White Matter Landmarks via Novel Fiber Shape Descriptor Hanbo Chen, Tuo Zhang, Tianming Liu the University of Georgia, US. Northwestern Polytechnical University, China.
Prediction of Heart Disease Using Naïve Bayes Algorithm
Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,
Norbert Schuff Professor of Radiology VA Medical Center and UCSF [email protected]
Norbert Schuff Professor of Radiology Medical Center and UCSF [email protected] Medical Imaging Informatics 2012, N.Schuff Course # 170.03 Slide 1/67 Overview Definitions Role of Segmentation Segmentation
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles [email protected] and lunbo
Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang
Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform
ECBDL 14: Evolu/onary Computa/on for Big Data and Big Learning Workshop July 13 th, 2014 Big Data Compe//on
ECBDL 14: Evolu/onary Computa/on for Big Data and Big Learning Workshop July 13 th, 2014 Big Data Compe//on Jaume Bacardit [email protected] The Interdisciplinary Compu/ng and Complex BioSystems
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Image Segmentation and Registration
Image Segmentation and Registration Dr. Christine Tanner ([email protected]) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation
USING DATA SCIENCE TO DISCOVE INSIGHT OF MEDICAL PROVIDERS CHARGE FOR COMMON SERVICES
USING DATA SCIENCE TO DISCOVE INSIGHT OF MEDICAL PROVIDERS CHARGE FOR COMMON SERVICES Irron Williams Northwestern University [email protected] Abstract--Data science is evolving. In
Face Recognition in Low-resolution Images by Using Local Zernike Moments
Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie
Data Mining & Data Stream Mining Open Source Tools
Data Mining & Data Stream Mining Open Source Tools Darshana Parikh, Priyanka Tirkha Student M.Tech, Dept. of CSE, Sri Balaji College Of Engg. & Tech, Jaipur, Rajasthan, India Assistant Professor, Dept.
Big Data: Image & Video Analytics
Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)
Discovering Local Subgroups, with an Application to Fraud Detection
Discovering Local Subgroups, with an Application to Fraud Detection Abstract. In Subgroup Discovery, one is interested in finding subgroups that behave differently from the average behavior of the entire
FastKeypointRecognitioninTenLinesofCode
FastKeypointRecognitioninTenLinesofCode Mustafa Özuysal Pascal Fua Vincent Lepetit Computer Vision Laboratory École Polytechnique Fédérale de Lausanne(EPFL) 115 Lausanne, Switzerland Email: {Mustafa.Oezuysal,
Linköping University Electronic Press
Linköping University Electronic Press Book Chapter Multi-modal Image Registration Using Polynomial Expansion and Mutual Information Daniel Forsberg, Gunnar Farnebäck, Hans Knutsson and Carl-Fredrik Westin
Performance Analysis of Data Mining Techniques for Improving the Accuracy of Wind Power Forecast Combination
Performance Analysis of Data Mining Techniques for Improving the Accuracy of Wind Power Forecast Combination Ceyda Er Koksoy 1, Mehmet Baris Ozkan 1, Dilek Küçük 1 Abdullah Bestil 1, Sena Sonmez 1, Serkan
PharmaSUG2011 Paper HS03
PharmaSUG2011 Paper HS03 Using SAS Predictive Modeling to Investigate the Asthma s Patient Future Hospitalization Risk Yehia H. Khalil, University of Louisville, Louisville, KY, US ABSTRACT The focus of
Studying Auto Insurance Data
Studying Auto Insurance Data Ashutosh Nandeshwar February 23, 2010 1 Introduction To study auto insurance data using traditional and non-traditional tools, I downloaded a well-studied data from http://www.statsci.org/data/general/motorins.
Keywords data mining, prediction techniques, decision making.
Volume 5, Issue 4, April 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analysis of Datamining
Data Mining. Supervised Methods. Ciro Donalek [email protected]. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot.
Data Mining Supervised Methods Ciro Donalek [email protected] Supervised Methods Summary Ar@ficial Neural Networks Mul@layer Perceptron Support Vector Machines SoLwares Supervised Models: Supervised
Distributed forests for MapReduce-based machine learning
Distributed forests for MapReduce-based machine learning Ryoji Wakayama, Ryuei Murata, Akisato Kimura, Takayoshi Yamashita, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University, Japan. NTT Communication
Patient Similarity-guided Decision Support
Patient Similarity-guided Decision Support Tanveer Syeda-Mahmood, PhD IBM Almaden Research Center May 2014 2014 IBM Corporation What is clinical decision support? Rule-based expert systems curated by people,
BRIEF: Binary Robust Independent Elementary Features
BRIEF: Binary Robust Independent Elementary Features Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua CVLab, EPFL, Lausanne, Switzerland e-mail: [email protected] Abstract.
Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
ICD-10-CM for Ophthalmology. Presented by:
ICD-10-CM for Ophthalmology Presented by: No part of this presenta.on may be reproduced or transmi5ed in any form or by any means (graphically, electronically, or mechanically, including photocopying,
Hadoop SNS. renren.com. Saturday, December 3, 11
Hadoop SNS renren.com Saturday, December 3, 11 2.2 190 40 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December
India s Integrated Taxpayer Data Management System (ITDMS) - A data mining tool for non-intrusive anti-tax evasion work
India s Integrated Taxpayer Data Management System (ITDMS) - A data mining tool for non-intrusive anti-tax evasion work Winner of Prime Minister Award For Excellence In Public Administration April 2010
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier G.T. Prasanna Kumari Associate Professor, Dept of Computer Science and Engineering, Gokula Krishna College of Engg, Sullurpet-524121,
Fast Matching of Binary Features
Fast Matching of Binary Features Marius Muja and David G. Lowe Laboratory for Computational Intelligence University of British Columbia, Vancouver, Canada {mariusm,lowe}@cs.ubc.ca Abstract There has been
User Authentication using Combination of Behavioral Biometrics over the Touchpad acting like Touch screen of Mobile Device
2008 International Conference on Computer and Electrical Engineering User Authentication using Combination of Behavioral Biometrics over the Touchpad acting like Touch screen of Mobile Device Hataichanok
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS Data Mining Technology for Efficient Network Security Management Ankit Naik [1], S.W. Ahmad [2] Student [1], Assistant Professor [2] Department of Computer Science and Engineering
How To Solve The Kd Cup 2010 Challenge
A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China [email protected] [email protected]
AN IMPROVED DOUBLE CODING LOCAL BINARY PATTERN ALGORITHM FOR FACE RECOGNITION
AN IMPROVED DOUBLE CODING LOCAL BINARY PATTERN ALGORITHM FOR FACE RECOGNITION Saurabh Asija 1, Rakesh Singh 2 1 Research Scholar (Computer Engineering Department), Punjabi University, Patiala. 2 Asst.
GPU Programming in Computer Vision
Computer Vision Group Prof. Daniel Cremers GPU Programming in Computer Vision Preliminary Meeting Thomas Möllenhoff, Robert Maier, Caner Hazirbas What you will learn in the practical course Introduction
A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms
A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms H. Kandil and A. Atwan Information Technology Department, Faculty of Computer and Information Sciences, Mansoura University,El-Gomhoria
Customer Classification And Prediction Based On Data Mining Technique
Customer Classification And Prediction Based On Data Mining Technique Ms. Neethu Baby 1, Mrs. Priyanka L.T 2 1 M.E CSE, Sri Shakthi Institute of Engineering and Technology, Coimbatore 2 Assistant Professor
E-commerce Transaction Anomaly Classification
E-commerce Transaction Anomaly Classification Minyong Lee [email protected] Seunghee Ham [email protected] Qiyi Jiang [email protected] I. INTRODUCTION Due to the increasing popularity of e-commerce
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Data Mining: A Preprocessing Engine
Journal of Computer Science 2 (9): 735-739, 2006 ISSN 1549-3636 2005 Science Publications Data Mining: A Preprocessing Engine Luai Al Shalabi, Zyad Shaaban and Basel Kasasbeh Applied Science University,
Florida International University - University of Miami TRECVID 2014
Florida International University - University of Miami TRECVID 2014 Miguel Gavidia 3, Tarek Sayed 1, Yilin Yan 1, Quisha Zhu 1, Mei-Ling Shyu 1, Shu-Ching Chen 2, Hsin-Yu Ha 2, Ming Ma 1, Winnie Chen 4,
Change is Coming in 2014! ICD-10 will replace ICD-9 for Diagnosis Coding
Change is Coming in 2014! ICD-10 will replace ICD-9 for Diagnosis Coding Clinical Coding Diagnosis Codes Clinicians select ICD-CM codes to describe a patient s diagnoses, symptoms, and clinical findings.
A SECURE DECISION SUPPORT ESTIMATION USING GAUSSIAN BAYES CLASSIFICATION IN HEALTH CARE SERVICES
A SECURE DECISION SUPPORT ESTIMATION USING GAUSSIAN BAYES CLASSIFICATION IN HEALTH CARE SERVICES K.M.Ruba Malini #1 and R.Lakshmi *2 # P.G.Scholar, Computer Science and Engineering, K. L. N College Of
KNOWLEDGE-BASED IN MEDICAL DECISION SUPPORT SYSTEM BASED ON SUBJECTIVE INTELLIGENCE
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 22/2013, ISSN 1642-6037 medical diagnosis, ontology, subjective intelligence, reasoning, fuzzy rules Hamido FUJITA 1 KNOWLEDGE-BASED IN MEDICAL DECISION
Data Quality Mining: Employing Classifiers for Assuring consistent Datasets
Data Quality Mining: Employing Classifiers for Assuring consistent Datasets Fabian Grüning Carl von Ossietzky Universität Oldenburg, Germany, [email protected] Abstract: Independent
Signature Segmentation and Recognition from Scanned Documents
Signature Segmentation and Recognition from Scanned Documents Ranju Mandal, Partha Pratim Roy, Umapada Pal and Michael Blumenstein School of Information and Communication Technology, Griffith University,
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Advances towards Remote Assessment of Disease and Relapse in Multiple Sclerosis
Advances towards Remote Assessment of Disease and Relapse in Multiple Sclerosis Jane Rhodes March 31 st 2016 CAMD Digital Biomarkers Conference Baltimore, MD Emerging technology for the enhancement of
Simple and efficient online algorithms for real world applications
Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,
2. MATERIALS AND METHODS
Difficulties of T1 brain MRI segmentation techniques M S. Atkins *a, K. Siu a, B. Law a, J. Orchard a, W. Rosenbaum a a School of Computing Science, Simon Fraser University ABSTRACT This paper looks at
GE Global Research. The Future of Brain Health
GE Global Research The Future of Brain Health mission statement We will know the brain as well as we know the body. Future generations won t have to face Alzheimer s, TBI and other neurological diseases.
Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Alessandro Laio, Maria d Errico and Alex Rodriguez SISSA (Trieste)
Clustering by fast search- and- find of density peaks Alessandro Laio, Maria d Errico and Alex Rodriguez SISSA (Trieste) What is a cluster? clus ter [kluhs- ter], noun 1.a number of things of the same
Image Classification for Dogs and Cats
Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science [email protected] Abstract
How To Cluster
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main
A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow
, pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices
Simultaneous Gamma Correction and Registration in the Frequency Domain
Simultaneous Gamma Correction and Registration in the Frequency Domain Alexander Wong [email protected] William Bishop [email protected] Department of Electrical and Computer Engineering University
The Visual Internet of Things System Based on Depth Camera
The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed
Manifold Learning with Variational Auto-encoder for Medical Image Analysis
Manifold Learning with Variational Auto-encoder for Medical Image Analysis Eunbyung Park Department of Computer Science University of North Carolina at Chapel Hill [email protected] Abstract Manifold
Object Recognition. Selim Aksoy. Bilkent University [email protected]
Image Classification and Object Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Image classification Image (scene) classification is a fundamental
Data Mining with R. Decision Trees and Random Forests. Hugh Murrell
Data Mining with R Decision Trees and Random Forests Hugh Murrell reference books These slides are based on a book by Graham Williams: Data Mining with Rattle and R, The Art of Excavating Data for Knowledge
Surgical Tools Recognition and Pupil Segmentation for Cataract Surgical Process Modeling
Surgical Tools Recognition and Pupil Segmentation for Cataract Surgical Process Modeling David Bouget, Florent Lalys, Pierre Jannin To cite this version: David Bouget, Florent Lalys, Pierre Jannin. Surgical
Documenting & Coding. Chronic Obstructive Pulmonary Disease (COPD) Presented by: David S. Brigner, MLA, CPC
Documenting & Coding Chronic Obstructive Pulmonary Disease (COPD) Presented by: David S. Brigner, MLA, CPC Sr. Provider Training & Development Consultant Professional Profile David Brigner currently performs
