4)(x) du(x) = n-' E?(zi(x)) du(x),
|
|
|
- Merryl Mercy King
- 10 years ago
- Views:
Transcription
1 PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 98, Number 1, September 1986 ORTHOGONALITY AND THE HAUSDORFF DIMENSION OF THE MAXIMAL MEASURE ARTUR OSCAR LOPES ABSTRACT. In this paper the orthogonality properties of iterated polynomials are shown to remain valid in some cases for rational maps. Using a functional equation fulfilled by the generating function, the author shows that the Hausdorff dimension of the maximal measure is a real analytical function of the coefficients of an Axiom A rational map satisfying the property that all poles of f and zeros of f'(z) have multiplicity one. Here we will consider f a rational map such that the Julia set (see [1]) is bounded and f is of the form f(z) = P(z)(Q(z))-', where P(z) = zn + ani zn- + +a1z + ao, Q(z) = bdzd + bdlzd-i + +b z + bo, where ai E C, bj E C, 1bd =O, n > 2, and d < n. In [6, 8, and 10] it was shown that for f a rational map there exists just one f-invariant probability measure u such that, for any continuous function 4), 4)(x) du(x) = n-' E?(zi(x)) du(x), where zi(x), i E {1,..., n }, are the roots of f(z) = x, counted with multiplicity, and this is the measure of maximum entropy. This measure is called the maximal measure, and it has entropy log n. For f such that f(ox) = cx and J(f) bounded, this measure is the equilibrium measure for the logarithm potential if and only if f is a polynomial [1, 9]. Let F(z) be the only one such that F(z)/z is analytic near x, F(z) - z as z -b o, and F'(z)F(z)i = J (z - x)-ldu(x) = z-1( E MmZ -), where Mm = Jxm du(x) for m E N (see [2]) are the m-moments of u. Note that Mo = 1, and the expansion is valid only when the Julia set is bounded, which implies either d < n - 1 or d = n - 1, and I bdi < 1 or IbdI = 1, and there is a Siegel disk around infinity. Received by the editors August 16, Key words and phrases. Hausdorff dimension, rational maps, orthogonality, Axiom A, generating function Mathematics Subject Classification. Primary 42A52, 58F11. 51?D1986 American Mathematical Society /86 $ $.25 per page
2 52 A. O. LOPES We will consider d = n - 1 in Theorems 1 and 2 just to simplify the formulas. The same result can be easily obtained in the same way in the general case d < n. In Theorems 3 and 4, the interesting case is for d = n - 1, and the formulas of Theorem 1 will be used there. THEOREM 1. Let sm = E:,, py and tm = E;=, qj", where d = n - 1 and p, and q, are respectively the zeros of P and Q. Let ar be the coefficient of z - in ~ the Laurent series in oo of f (L)-" where m, k E N, then Mm is obtained recursively by I m-1 m-j (1) M, = (n- a:)-' sm + E M, E al-,(s, - ti),=i PROOF. The following functional equation was obtained in [9]: To obtain the Laurent series in oo of ff(z)/ -x)-'du(x) =ff(z)/(z)-' f ~mf(z)-~, m=o we have to obtain the Laurent series of Mm ff(z) f(z)-("+'). This series is obtained in the following way: We point out that ar = (bd)m for m >, 0, the first term in the above expression is Mmb,"(so - t,)z-("+i), and we have (s,- to) = n - d = 1. The Laurent series in oo of ff(z) j( f(z) - x)-' du(x) is The Laurent development of
3 Therefore HAUSDORFF DIMENSION OF THE MAXIMAL MEASURE m-1 i i m-j nmm - tm = (s, - t,) + M,a," + E M, E al_,(si - ti). j=l i=o Finally, M, can be obtained inductively by DEFINITION 1. f is expanding if there exists a k E N such that I( f k)'(x)l > 1 for any z in the Julia set. DEFINITION 2. The Hausdorff dimension of a measure u is the inf{hausdorff dimension of A for a11 measurable sets such that u(a) = 1). Ruelle [12] showed that the Hausdorff dimension of the Julia set of an expanding rational map is a real analytic function of the coefficients. Here we will show THEOREM 2. Suppose fa is a family of expanding rational maps with coefficients depending analytically on X E R such that fa(z) has a11 poles and f,'(z) has a11 zeros with algebraic multiplicity one. Then Hausdorff dimension of the maximal measure of f, is real analytic with respect to the parameter A. If a11 zeros and a11 poles are respectively in the same component of C - J(fA), then the condition on the zeros and poles is unnecessary. PROOF. By [ll] the Hausdorff dimension of u satisfies -1 HD(U) = entropy of u(/ loglff(x) I du(x)) where ri and v, are resepctively the zeros and poles of f' counted with multiplicity. Since logif(z)l = / loglz - xldu(x), we have We claim that the coefficients of the Laurent series of F(z) depend analytically on the coefficients of f(z). From [7, Theorem the coefficients of F(z) depend analytically on the moments M,. Now, by (I), each moment M, is a finite sum ofs,, t,, a:, which are themselves analytic on the coefficients of f(z). Therefore the claim is proved. Now since the sum of the values of an analytic map in the roots of a polynomial is an analytic function of the coefficients of the polynomial, we conclude that the Hausdorff dimension of the maximal measure is a real analytic function of the coefficients of f (x). Consider the sequence { f "(z)), n E N, where f '(L) = z and f "(z) = f 0 f "-l(z). In [2] conditions were given for the orthogonality of the sequences { f ") with respect to the measure u when f is a polynomial (that is, / f,(l) f "(L) du(z) = O for m # n). See also [3,4 and 51.
4 54 A. O. LOPES Here we are using a nonhermitian scalar product similar to the one used in [2]. EXAMPLE. For f(z) = zn the maximal measure is Lebesgue measure on the unit circle, and orthogonality is a consequence of the orthogonality of the Fourier series. For f a rational map such that f(m) = m, the interesting case is obtained when d = n - 1 by the following theorem. THEOREM 3. Let f(z) = ~(z)q(z)-', Q(z) = bn-,z "-.I + + b,, bn-i # 0, and the Julia set bounded. Then with 1 Ml = -(n - bnpl)- where P(z) = Z" + an-l~"-l a0, 1 f ""(z) f "(z) du(z) = n-l(bn-,m2 + a,-,m1) 1 M2 = ( n - b:-1)-1(s2 - anwl(n - bn-l)- (bn-2 - an-lbn-l +(SI - tl)bn-l)]. PROOF. By the f-invariance of u we have = n-l(bn-,m2 - an-,m1), and the theorem follows from (1). REMARK 1. This theorem gives us necessary and sufficient conditions for / f m(z) f "(z) du(z) = O for m > n in terms of the coefficients of f "-", as explained by the next theorem. THEOREM 4. Let f(z) be a rational map as above such that a,-, = a,-, = 0, bn-i # n, bip1 # n. Then {fn(z)) satisfies/fm(z)fn(z)du(z) = O form Z n. PROOF. Since s, = -an-, and s2 = a:-, - 2an-,, we have from (1) that M, = O and M2 = O. For m > n, f "-" and f have the same maximal measure [6]. Therefore, using the same argument as for Theorem 3, 1 f "(z) f "(z) du(z) = 1 f "-n(z)zdu(z) = 1 (cz + d)zdu(z) =cm2+dml, wherec,d~c. Since M, = M2 = 0, the proposition follows. REMARK 2. If one considers the case of real rational maps such that the Julia set is contained on R, one recovers orthogonality with respect to the usual inner product. Note that bn-, # n and b:-, # n are automatically satisfied when J( f ) is bounded. REFERENCES 1. H. Brolin, Invariant sets under iteration ofrationalfunctions, Ark. Mat. 6 (1966), M. F. Barnsley, J. S. Geronimo and A. N. Harrington, Orthogonal polynomial associated with invariant measure on the Julia ser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), M. F. Barnsley and A. N. Harrington, Moments of balanced measures on Julia sets, Trans. Amer. Math. Soc. 284 (1984),
5 HAUSDORFF DIMENSION OF THE MAXIMAL MEASURE D. Bessis, D. Mentha and P. Moussa, Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mapping, Lett. Math. Phys. 6 (1982), D. Bessis and P. Moussa, Orthogonality properties of iterated polynomial mapping, Comm. Math. Phys. 88 (1983), A. Freire, A. Lopes and R. Maíik, An invariant mensure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), E. Hille, Analytic function theory, Blaisdell, New York, V. Lubitsh, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems 3 (1983) A. Lopes, Equilibrium mensures for rational maps, Ergodic Theory Dynamical Systems (to appear). 10. R. Mané, On rhe uniqueness of the maximizing mensure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), A. Manning, The dimension of the maximal memure for a rational map, Ann. of Math. (2) 3 (1984), D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982), INSTITUTO DE MATEMATICA, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, AV. BENTO GON- ÇALVES 9500, CAMPUS DO VALE, PORTO ALEGRE, RS, BRASIL
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
Lecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
ON DEGREE OF APPROXIMATION ON A JORDAN CURVE TO A FUNCTION ANALYTIC INTERIOR TO THE CURVE BY FUNCTIONS NOT NECESSARILY ANALYTIC INTERIOR TO THE CURVE
ON DEGREE OF APPROXIMATION ON A JORDAN CURVE TO A FUNCTION ANALYTIC INTERIOR TO THE CURVE BY FUNCTIONS NOT NECESSARILY ANALYTIC INTERIOR TO THE CURVE J. L. WALSH It is our object here to consider the subject
1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
arxiv:math/0601660v3 [math.nt] 25 Feb 2006
NOTES Edited by William Adkins arxiv:math/666v3 [math.nt] 25 Feb 26 A Short Proof of the Simple Continued Fraction Expansion of e Henry Cohn. INTRODUCTION. In [3], Euler analyzed the Riccati equation to
1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1
Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve
QUALITATIVE THEORY OF DYAMICAL SYSTEMS 2, 61 66 (2001) ARTICLE O. 11 Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve Alexei Grigoriev Department of Mathematics, The
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
Characterization Of Polynomials Using Reflection Coefficients
Applied Mathematics E-Notes, 4(2004), 114-121 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Characterization Of Polynomials Using Reflection Coefficients José LuisDíaz-Barrero,JuanJosé
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
Algebraic Concepts Algebraic Concepts Writing
Curriculum Guide: Algebra 2/Trig (AR) 2 nd Quarter 8/7/2013 2 nd Quarter, Grade 9-12 GRADE 9-12 Unit of Study: Matrices Resources: Textbook: Algebra 2 (Holt, Rinehart & Winston), Ch. 4 Length of Study:
Math 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours
MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY
Complex Function Theory Second Edition Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Contents Preface to the Second Edition Preface to the First Edition ix xi Chapter I. Complex Numbers 1 1.1. Definition
ON THE COEFFICIENTS OF THE LINKING POLYNOMIAL
ADSS, Volume 3, Number 3, 2013, Pages 45-56 2013 Aditi International ON THE COEFFICIENTS OF THE LINKING POLYNOMIAL KOKO KALAMBAY KAYIBI Abstract Let i j T( M; = tijx y be the Tutte polynomial of the matroid
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
PROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
Diablo Valley College Catalog 2014-2015
Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,
6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.
hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,
NONASSOCIATIVE ALGEBRAS SATISFYING IDENTITIES OF DEGREE THREE(i)
NONASSOCIATIVE ALGEBRAS SATISFYING IDENTITIES OF DEGREE THREE(i) BY FRANK ROSIER AND J. MARSHALL OSBORN A number of different authors have studied classes of nonassociative algebras or rings satisfying
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
A simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).
Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable
096 Professional Readiness Examination (Mathematics)
096 Professional Readiness Examination (Mathematics) Effective after October 1, 2013 MI-SG-FLD096M-02 TABLE OF CONTENTS PART 1: General Information About the MTTC Program and Test Preparation OVERVIEW
An example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
CONTRIBUTIONS TO ZERO SUM PROBLEMS
CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg
The sum of digits of polynomial values in arithmetic progressions
The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: [email protected]
RINGS WITH A POLYNOMIAL IDENTITY
RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in
F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:
THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
WHEN DOES A CROSS PRODUCT ON R n EXIST?
WHEN DOES A CROSS PRODUCT ON R n EXIST? PETER F. MCLOUGHLIN It is probably safe to say that just about everyone reading this article is familiar with the cross product and the dot product. However, what
The Factor Theorem and a corollary of the Fundamental Theorem of Algebra
Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside
ON FIBER DIAMETERS OF CONTINUOUS MAPS
ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there
DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
OSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for
Critically Periodic Cubic Polynomials
Critically Periodic Cubic Polynomials John Milnor Stony Brook University (www.math.sunysb.edu) IN MEMORY OF ADRIEN DOUADY Paris, May 26 2008 Parameter Space 1. THE PROBLEM: To study cubic polynomial maps
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
Estimated Pre Calculus Pacing Timeline
Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS
LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS LESLIE D. GATES, JR.1 1. Introduction. The main result of this paper is an extension of the analysis of Laurent Schwartz [l ] concerning the primitive of
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
Math 131 College Algebra Fall 2015
Math 131 College Algebra Fall 2015 Instructor's Name: Office Location: Office Hours: Office Phone: E-mail: Course Description This course has a minimal review of algebraic skills followed by a study of
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
SECRET sharing schemes were introduced by Blakley [5]
206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has
PROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
5. Factoring by the QF method
5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the
Some Problems of Second-Order Rational Difference Equations with Quadratic Terms
International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic
Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions
Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions Tomas Recio a J Rafael Sendra b Luis Felipe Tabera a, Carlos Villarino b a Dpto de Matemáticas, Universidad de Cantabria,
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
On the largest prime factor of x 2 1
On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
A simple application of the implicit function theorem
Boletín de la Asociación Matemática Venezolana, Vol. XIX, No. 1 (2012) 71 DIVULGACIÓN MATEMÁTICA A simple application of the implicit function theorem Germán Lozada-Cruz Abstract. In this note we show
RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Kyoto University. Note on the cohomology of finite cyclic coverings. Yasuhiro Hara and Daisuke Kishimoto
Kyoto University Kyoto-Math 2013-02 Note on the cohomology of finite cyclic coverings by Yasuhiro Hara and Daisuke Kishimoto April 2013 Department of Mathematics Faculty of Science Kyoto University Kyoto
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Integer roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
Chapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
In memory of Lars Hörmander
ON HÖRMANDER S SOLUTION OF THE -EQUATION. I HAAKAN HEDENMALM ABSTRAT. We explain how Hörmander s classical solution of the -equation in the plane with a weight which permits growth near infinity carries
Associativity condition for some alternative algebras of degree three
Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
SECTION 10-2 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
Section 3-3 Approximating Real Zeros of Polynomials
- Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
4.1. COMPLEX NUMBERS
4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
s-convexity, model sets and their relation
s-convexity, model sets and their relation Zuzana Masáková Jiří Patera Edita Pelantová CRM-2639 November 1999 Department of Mathematics, Faculty of Nuclear Science and Physical Engineering, Czech Technical
Invariant Metrics with Nonnegative Curvature on Compact Lie Groups
Canad. Math. Bull. Vol. 50 (1), 2007 pp. 24 34 Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and Zhongtao Wu Abstract.
