Systems of Equations There are 3 methods to solving a system of equations: Graphing Substitution Addition/Elimination Method
|
|
|
- Earl Cox
- 9 years ago
- Views:
Transcription
1 Systems of Equations There are 3 methods to solving a system of equations: Graphing Substitution Addition/Elimination Method Solving by Graphing: 1. Solve the first equation for y -> put it in the form y = mx + b a. If the line is already solved for y, skip right down to step 2 2. Graph the line for the first equation 3. Repeat steps 1 and 2 with the second equation 4. The intersection point of the two lines is the solution to the system. If the lines are the same, there are infinitely many solutions. If the lines are parallel and do not intersect, then there are no solutions Example: Solve the following system of equations by graphing y = 2x 1 3y + x = Since the first equation is solved for y, we are able to graph it right away. x y Now we need to solve the second equation for y: 3y + x = -> Subtract x from both sides 3y = x + -> Divide both sides by 3 y = 1 x or y = 1 3 x Now we can graph the second line:
2 x y We can see the intersection point is the point (2,3). This is the solution to the system. To check our solution, we plug in the point into our two equations to verify it: 3 = 2(2) 1 3(3) + 2 = 3 = 3 = The solution checks out, and thus our solution to the system is (2,3) Solving by Substitution: 1. Solve ONE of the equations for x or for y a. This step can be skipped if one of the equations is already solved for x or y 2. Substitute the result into the other equation for that variable 3. The new equation will now be all x terms, or all y terms. Solve the equation for the variable. 4. Plug the answer back into the original equation (the one you initially solve for x or y) to find the other answer Example: Solve the following system of equations by substitution x = 4y 9 5y + 3x = 10 Since the first equation is already solved for x, we can substitute right away. We will substitute 4y 9 in for x one the second equation, and solve: 5y + 3(4y 9) = 10 5y + 12y 27 = 10 y 27 = 10 y = y = 1
3 Now use y = 1 to find the value for x: x = 4(1) 9 x = 5 To check and verify our solution, we plug our x and y values into the second equation: 5(1) + 3( 5) = = = 10 The solution checks out, and thus our solution is (-5,1) Solve the following system by the substitution method: 3x 4y = 15 4x + 2y = 14 Neither equation is solved for one variable, so we will need to solve one of the equations for x or y. Let s choose the second equation, and solve it for y. 4x + 2y = 14 2y = 4x + 14 y = 2x + 7 Now we will substitute 4x + 27 in for y on the first equation to solve for x: 3x 4( 2x + 7) = 15 3x + 8x 28 = 15 x 28 = 15 x = 43 x = 43 Now we will use x = 43 in the equation we solved for y: y = 2 ( 43 ) + 7
4 y = y = y = 9 To check and verify our solution, we plug our x and y values into the first equation: 3 ( 43 ) 4 ( 9 ) = = = = = 15 The solution checks out, and thus our solution is ( 43, 9 ) Solving by the Addition Method: 1. Get the x s and y s on the same side of the equation and lined up with each other. 2. Find a common multiple for EITHER the x s or the y s, whichever you choose to eliminate. 3. Make one of those multiples a negative, so that the equations can be added together. 4. Once the equations are added together, one of the variables will be eliminated. Finish solving for the variable that is still present. 5. Take your answer from #4, and plug it into either of the equations to find the other value. Example: Solve the system of equations by the addition method 3x + 7y = 63 4x 3y = 10 Because the one of the y s is positive and the other is negative, we will eliminate, so that we don t have to multiply by a negative. A common multiple for 7 and 3 is 21. This means we will multiply the first equation by 3, and the second equation by 7. This will help us solve for x.
5 3(3x + 7y = 63) -> 9x + 21y = 189 7(4x 3y = 10) -> 28x 21y = 70 37x = 259 x = 7 Now, we will plug x = 7 into the first equation to solve for y: 3( 7) + 7y = y = 63 7y = 42 y = 6 To check and verify our solution, we will plug our x and values into the second equation: 4( 7) 3( 6) = ( 18) = = = 10 The solution checks out, and thus our solution is (-7,-6) Solve the following system of equations by the addition method: 6x + 5y = 16 4x + 9y = 24 Because there are no negative numbers, we will have to multiply by a negative. Let s choose to eliminate x. A common multiple for 6 and 4 is 12. This means we will multiply the first equation by 2, and the second equation by -3 (we choose the second equation to be negative): 2(6x + 5y = 16) -> 12x + 10y = 32 3(4x + 9y = 24) -> 12x 27y = 72 y = 40 y = 40
6 Now we will plug y = 40 into the first equation to solve for x: 6x + 5 ( 40 ) = 16 6x = 16 6x = = x = 72 x = = 12 To check and verify our solution, we will plug our x and y values into the second equation: 4 ( 12 ) + 9 (40 ) = = = = 24 Our solution checks out, and thus our solution is ( 12, 40 ) When to Use the Different Methods Use the graphing method when instructed to graph the equations Use the substitution method when one of the equations is already solved for x or y. Also, use the substitution method when one of the coefficients for any of the x s or y s is 1. Use the addition method when none of the coefficients are 1. Also, use the addition method when none of the equations are solved for x or y. Solving a System with Three Equations by Elimination 2x + 3y z = 2 6x 5y + 4z = 8 y 5z = 19
7 First, we will use the top two equations to eliminate x. -3(2x + 3y z = 2) -> 6x 9y + 3z = 6 6x 5y + 4z = 8 -> 6x 5y + 4z = 8 14y + 7z = 14 This allows us to use this new equation with the original third equation to eliminate either y or z. We will eliminate y. 14y + 7z = 14 -> 14y + 7z = 14 -> 14y + 7z = 14 y 5z = 19 -> 14(y 5z = 19) -> 14y 70z = z = 252 z = 4 Now we will use z = 4 to help us find y. y 5( 4) = 19 y + 20 = 19 y = 1 Now we will use z = 4 and y = 1 to find x. 2x + 3( 1) ( 4) = 2 2x = 2 2x = 1 x = 1 2 So our solution is x = 1, y = 1, z = 4 2
8 Solving a System with Three Equations by Row Echelon 4x 3y + 5z = 57 3x + 2y 2z = 6 6x 7y 2z = 24 First, we need to get the coefficient in front of the x to be a 1. We can do this by taking Row 1 Row 2. 4x 3y + 5z = 57 3x + 2y 2z = 6 x 5y + 7z = 63 R2 R1 R2-R1 This becomes the new first row of the system. Next, we need to get x eliminated from the second equation. We do this by taking 2R 2 R 3 2(3x + 2y 2y = 6) -> 6x + 4y 4z = 12 2R 2 6x 7y 2z = 24 -> 6x 7y 2z = 24 R 3 y 2z = 36 2R 2 R 3 Next, we need the coefficient in front of that y to be a 1, so we divide everything by and get: y 2 36 z = Lastly, we need to eliminate both x and y for the third equation to make the coefficient in front of the z to be 1. First, we will eliminate x. We will do this by taking 3R 1 4R 2 3(4x 3y + 5z = 57) -> 12x 9y + 15z = 1 3R 1 4(3x + 2y 2z = 6) -> 12x + 8y 8z = 24 4R 2 y + 23z = 195 3R 1 4R 2 Now, we use this result with the previous result to eliminate y. y 2z = 36 -> (y 2z = 36) -> 187y 34z = 612 y + 23z = 195 -> ( y + 23z = 195) -> 187y + 253z = z = 1533
9 z = 7 Now we have these 3 equations: x 5y + 7z = 63 y 2 36 z = z = 7 We have z = 7, and we use that in the second equation. y 2 36 (7) = y 14 = 36 y = 22 = 2 Now use both of our results for y and z to find x using the top equation x 5( 2) + 7(7) = 63 x = 63 x = 4 Thusly, our solution is x = 4, y = 2, z = 7
Systems of Equations - Addition/Elimination
4.3 Systems of Equations - Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving
SYSTEMS OF LINEAR EQUATIONS
SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations
5 Systems of Equations
Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate
Chapter 9. Systems of Linear Equations
Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables
7.3 Solving Systems by Elimination
7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
No Solution Equations Let s look at the following equation: 2 +3=2 +7
5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
Solving Systems of Two Equations Algebraically
8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Systems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
Slope-Intercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine
Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.
Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is
Solving Linear Equations - General Equations
1.3 Solving Linear Equations - General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them
Solving systems by elimination
December 1, 2008 Solving systems by elimination page 1 Solving systems by elimination Here is another method for solving a system of two equations. Sometimes this method is easier than either the graphing
Graphing - Parallel and Perpendicular Lines
. Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel
Factoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
Amortized Loan Example
Amortized Loan Example Chris Columbus bought a house for $293,000. He put 20% down and obtained a 3 simple interest amortized loan for the balance at 5 % annually interest for 30 8 years. a. Find the amount
Systems of Equations - Substitution
4.2 Systems of Equations - Substitution Objective: Solve systems of equations using substitution. When solving a system by graphing has several limitations. First, it requires the graph to be perfectly
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Solving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
Determine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Systems of Linear Equations and Inequalities
Systems of Linear Equations and Inequalities Recall that every linear equation in two variables can be identified with a line. When we group two such equations together, we know from geometry what can
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
LINEAR EQUATIONS IN TWO VARIABLES
66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that
1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient
Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear
x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
Fractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
IV. ALGEBRAIC CONCEPTS
IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students
Factor Diamond Practice Problems
Factor Diamond Practice Problems 1. x 2 + 5x + 6 2. x 2 +7x + 12 3. x 2 + 9x + 8 4. x 2 + 9x +14 5. 2x 2 7x 4 6. 3x 2 x 4 7. 5x 2 + x -18 8. 2y 2 x 1 9. 6-13x + 6x 2 10. 15 + x -2x 2 Factor Diamond Practice
10.1 Systems of Linear Equations: Substitution and Elimination
726 CHAPTER 10 Systems of Equations and Inequalities 10.1 Systems of Linear Equations: Sustitution and Elimination PREPARING FOR THIS SECTION Before getting started, review the following: Linear Equations
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Practice Test Answer and Alignment Document Mathematics: Algebra II Performance Based Assessment - Paper
The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items. - The rubrics show sample student responses. Other valid methods for solving
Systems of Equations - Three Variables
4.4 Systems of Equations - Three Variables Objective: Solve systems of equations with three variables using addition/elimination. Solving systems of equations with 3 variables is very similar to how we
Question 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
3 1B: Solving a System of Equations by Substitution
3 1B: Solving a System of Equations by Substitution 1. Look for an equation that has been solved for a single variable. Lets say 2. Substitute the value of that variable from into in place of that variable.
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Title Location Date Start Time End Time Description
Title Location Date Start Time End Time Description Operations w/ Integers SJC Rm 1457B Aug. 29 12:30 PM 2:00 PM Beginning with an introduction to integers, this workshop will review the four basic operations
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving
Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.
Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is
Let s explore the content and skills assessed by Heart of Algebra questions.
Chapter 9 Heart of Algebra Heart of Algebra focuses on the mastery of linear equations, systems of linear equations, and linear functions. The ability to analyze and create linear equations, inequalities,
Solving Systems of Linear Equations Graphing
Solving Systems of Linear Equations Graphing Outcome (learning objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
Linear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
Methods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Lecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
Write the Equation of the Line Review
Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections
Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1
Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point
Inequalities - Absolute Value Inequalities
3.3 Inequalities - Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in
Pre Calculus Math 40S: Explained!
www.math40s.com 7 Part I Ferris Wheels One of the most common application questions for graphing trigonometric functions involves Ferris wheels, since the up and down motion of a rider follows the shape
6-3 Solving Systems by Elimination
Warm Up Simplify each expression. 1. 2y 4x 2(4y 2x) 2. 5(x y) + 2x + 5y Write the least common multiple. 3. 3 and 6 4. 4 and 10 5. 6 and 8 Objectives Solve systems of linear equations in two variables
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
An equation containing one variable raised to the power of one (1) is called a linear equation in one variable.
DETAILED SOLUTIONS AND CONCEPTS - LINEAR EQUATIONS IN ONE VARIABLE Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you!
Notes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
Test 4 Sample Problem Solutions, 27.58 = 27 47 100, 7 5, 1 6. 5 = 14 10 = 1.4. Moving the decimal two spots to the left gives
Test 4 Sample Problem Solutions Convert from a decimal to a fraction: 0.023, 27.58, 0.777... For the first two we have 0.023 = 23 58, 27.58 = 27 1000 100. For the last, if we set x = 0.777..., then 10x
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
Maximizing volume given a surface area constraint
Maximizing volume given a surface area constraint Math 8 Department of Mathematics Dartmouth College Maximizing volume given a surface area constraint p.1/9 Maximizing wih a constraint We wish to solve
How To Understand And Solve A Linear Programming Problem
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
IB Maths SL Sequence and Series Practice Problems Mr. W Name
IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =
Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism
1. Kinetics is the study of the rates of reaction. Chemical Kinetics 2. Using the kinetics of a given reaction a possible reaction mechanism 3. What is a reaction mechanism? Why is it important? A reaction
Arithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
The Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
2013 MBA Jump Start Program
2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Equations of Lines and Planes
Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts
1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
