The Rundown on Rainmaking
|
|
|
- Eleanore Boyd
- 10 years ago
- Views:
Transcription
1 21 April 2011 The Rundown on Rainmaking Brooke Jones Researcher FDI Global Food and Water Crises Research Programme Summary Australia s susceptibility to drought has affected its farming capacity in the past and continues to do so now. This is despite the extensive research on weather modification and the development of technology designed to ameliorate water shortages. Artificial rainmaking has the potential to form a significant component of water resource management. Worldwide, scientists have attempted to induce rain artificially using various techniques in order to ease drought conditions. These include laser technology that triggers the formation of water droplets in the air, and cloud seeding, which involves the introduction of chemicals into clouds in an attempt to stimulate the precipitation process. Analysis An average rain cloud contains eight million tonnes of rainwater, meaning there is a vast quantity of untapped rain in the sky. This is why artificial rainmaking techniques appear to be an obvious solution to water shortages around the world. In 2010, the World Meteorological Organisation reported that 24 countries were participating in a total of 80 cloud seeding projects. Cloud seeding was discovered in 1946, when scientists realised that dropping particular substances into clouds could trigger rainfall. Typically, cloud seeding is the dispersion of silver iodide aerosols or frozen carbon dioxide (dry ice) throughout the upper part of clouds. There are three different types of cloud seeding methods: static, dynamic and hygroscopic. The static and dynamic methods fall into the category of cold cloud seeding, which is typically applied to cumulus congestus clouds. These clouds are produced by strong updrafts and are usually taller than they are wide. The hygroscopic method, referred to as warm cloud seeding, is aimed at convective clouds, which are smaller and stretch several kilometres across.
2 Cold Cloud Seeding Static cloud seeding seeks to increase precipitation by scattering silver iodide into the cloud formation. Silver iodide has a crystalline structure similar to that of ice and hence the moisture in the clouds condenses around the molecules and become heavy. These water droplets fall from the sky as rain or, in some cases, snow. While silver iodide acts as an iceforming agent by providing additional nuclei for water vapour condensation, dry ice lowers the temperature as it evaporates. In turn, this works to increase the amount and rapidity of the ice forming. Dynamic cloud seeding involves the injection of a much larger amount of silver iodide crystals than in the static method so as to cause glaciation of the cloud. The heat released from the freezing adds buoyancy and enhances the vertical air currents with the aim of yielding increased precipitation. Although more complex than the static mode, dynamic cloud seeding is capable of producing more rain. Artillery used to seed clouds in China Source: asianpacificpost.com Warm Cloud Seeding Cloud seeding chemicals are dispersed either by light aircraft or by devices on the ground. Targeting with aircraft is more efficient and accurate, but it is also the more expensive option. When released by ground-based generators that burn the granular form of the chemical, the fine particles are carried downwind and upwards by air currents after release. Another means of delivery is that of rocket launchers, which have been widely used by China. Hygroscopic seeding affects warm cloud processes. It involves the use of water absorbing particles, usually sodium chloride, that are spread through the lower parts of clouds. They attract water droplets which induces the coalescence process, producing rain. The salts are usually delivered by pyrotechnic flare technology. It was recently discovered, however, that the optimal size of hygroscopic particles is larger than what can be dispersed by current flare technology. Pyrotechnic flares emitted by aeroplane Source: iceflares.com The Limitations of Seeding There are a number of drawbacks associated with cloud seeding. In most cases, there is no control system in place that can determine whether a cloud would have rained even without being seeded. Also, particular conditions are required for cold cloud seeding to be effective. Page 2 of 5
3 The temperature of the clouds must contain a significant amount of super cooled water that is below freezing point, but not frozen, approximately between -10 C and -20 C. The wind must also be below a certain speed so as to not cause dispersion of the cloud. Warm clouds need to maintain an updraft of moist air. The depth of clouds is another significant factor so as to allow sufficient time for the ice particles to grow before falling. Given that the potential for rainfall is strongly dependant on the dynamics of the clouds that are being seeded, cloud seeding is not a cure for drought. There is also much scepticism in the field. Researchers in Israel recently analysed fifty years worth of data and ultimately proclaimed cloud seeding as an ineffective method for increasing precipitation. They argue that cloud seeding is only successful when performed on orographic clouds, which are formed over mountains and short-lived. Above and beyond Rainmaking There are other uses for cloud seeding besides rainfall enhancement. It has been used as a way of suppressing hail in order to reduce the damage to crops, and also fog in order to clear the air around airports. It has even been implemented to reduce the intensity of hurricanes, and, as demonstrated by China prior to the 2008 Beijing Olympics, to clear away air pollution and smog. Also worth noting are reports of the Russian Government s use of the technology to seed clouds containing radioactive particles over Belarus. Cloud Seeding in Australia The general characteristics of many areas in Australia, coupled with inconclusive results from several experiments, led CSIRO to abandon cloud seeding as a field for scientific exploration in It is, however, still being tried and tested by other bodies as means of increasing rainfall and mitigating the impacts of drought. There are currently three major cloud seeding trials underway in Australia, two of which have concentrated on providing additional capacity to hydropower systems. In 1964, the Hydro-Electricity Commission of Tasmania began trialling cloud seeding as a means of increasing the runoff rates into the mountainous hydro-electric catchment area. From initial experiments conducted, the Bureau of Meteorology estimated a 30 per cent increase in rainfall over approximately 2,500 square kilometres in the autumn months. Due to these positive results, cloud seeding operations have been commissioned in the region ever since. The New South Wales Government has been operating a cloud seeding project in the Snowy Mountains for the Hydro-Electric Scheme. This particular trial uses land-based aerosol generators that shoot miniscule particles of silver iodide, initiating the formation of ice crystals, which in this case fall as snow, not rain. Late last year, the Natural Resources Campaign concluded that the cloud seeding technology had increased snowfall by 14 per cent. The operation has succeeded in adding a tracing element (indium sesquioxide) which can determine how much snow has accumulated due to the seeding. The trial commenced in 2004 and, although there is ample evidence to suggest a significant increase in snowfall, it is Page 3 of 5
4 not yet known whether this has resulted in commensurate run-off into the dams. Thus, the trial has been extended until Economic Benefits Cloud seeding is a costly technology. The first experiments conducted showed that cloud seeding would need to be conducted over a wide area for an extended period of time for it to have any worthwhile economic impact. However, if an area contains clouds suitable for seeding, then investment into the augmentation of rainfall can provide great economic benefits, and potentially greater food and energy security. The United States invests approximately US$600,000 each year into cloud seeding which has produced an average annual output of 50 million tonnes of water for drinking and farm water supplies. This equates to a cost of 1.3 cents per tonne of water. The North Dakota Cloud Modification Project has supposedly increased summer rainfall by five to 10 per cent, which yields an increased crop production worth $US8.4 million to $US16 million annually. The hydro-electric project in Tasmania is estimated to be worth about three times the cost of the cloud seeding programme. Laser Technology Seeding clouds with lasers has also been investigated as a way of stimulating precipitation on demand. 1 Short pulses of infrared laser rays sent through humid air into clouds can trigger artificial lightning. The discharge of lightning increases the temperature of the atmosphere to such an extent that the molecular bonds between nitrogen and oxygen are broken. This endothermic (heat-absorbing) reaction creates a plasma containing charged particles that act as condensation nuclei allowing raindrops to grow, not unlike silver iodide crystals in cloud seeding. This scientific occurrence is evidenced by the high incidence of lightning flashes during hail storms. The lasers can be generated on the ground, at cloud level and also in space. In space, solar energy is used to produce high power intensity laser beams on a solar power satellite or a space station. These laser beams are transferred to a particular ground station and released in the surrounding atmosphere where they act as an agent for artificial lightning. Some scientists are sceptical of the feasibility of lasers to trigger rain, stating that typical atmospheric conditions do not allow sufficient humidity for it to work. The researching team have reported that it will take several more years to fully develop rainmaking laser technology. Other Rainmaking Technologies Rain can also be made to fall by applying the same science for how rain is naturally created. By collecting solar energy on the ground and using it to heat the surrounding atmosphere, it will produce an ascending air current. This air current takes moisture vapour from seawater 1 Chang, A., Lasers Bring Home the Rain, Strategic Weekly Analysis, Vol. 1, 38, 12 October 2010, Future Directions International: Perth. Page 4 of 5
5 up into the sky, causing condensation to form cloud particles, and water is accordingly precipitated. A process for the artificial growth of clouds and causing them to condensate has also been proposed. It is believed that this can be achieved through the pulverisation of smaller clouds with water to form larger clouds. Conclusion As population and urbanisation exponentially increase and the impacts of climate change become more severe, water resource management is an ever-increasing concern. Artificial rainmaking technologies have come a long way since before the middle of the twentieth century. The objective of current rainmaking methods, particularly cloud seeding, is to make clouds more effective in dispensing the rain that they hold. Although drought has often been the impetus for the implementation of cloud seeding technology, cloud seeding cannot be relied upon as a short-term response. It does not produce changes in long-term weather patterns or climate, and it is a costly operation. Also, cloud seeding does not work everywhere. Suitable conditions must be verified in order for it to be a cost-effective means of increasing rainfall. Artificial rainmaking is an area in need of continual research and operations that have produced positive results are a sign of hope for many. On the other hand, it could take some years before it provides the reliable and consistent results desired by drought-affected agricultural producers. Meanwhile, the evidence to date shows that the technology should not be abandoned. Cloud seeding projects in both Tasmania and the NSW Snowy Mountains indicate successes which, if sustained, have the potential to provide some certainty to rainfall patterns. ***** Any opinions or views expressed in this paper are those of the individual author, unless stated to be those of Future Directions International. Published by Future Directions International Pty Ltd. Desborough House, Suite 2, 1161 Hay Street, West Perth WA 6005 Australia. Tel: Fax: Gary Kleyn [email protected] Web: Page 5 of 5
Expert Panel Assessment. Snowy Precipitation Enhancement Trial (SPET) Executive Summary
Expert Panel Assessment Snowy Precipitation Enhancement Trial (SPET) Executive Summary In Summary Snowy Hydro Ltd proposes to undertake a six year cloud seeding trial in the Snowy Mountains region of New
Cloud seeding. Frequently Asked Questions. What are clouds and how are they formed? How do we know cloud seeding works in Tasmania?
What are clouds and how are they formed? Clouds are composed of water droplets and sometimes ice crystals. Clouds form when air that is rich in moisture near the Earth s surface rises higher into the atmosphere,
Idaho Power Company s
Idaho Power Company s Cloud Seeding Program Shaun Parkinson, PhD, PE Presentation Overview What is cloud seeding? How we know cloud seeding works Perceptions IPC s cloud seeding program Payette Upper Snake
Chapter 8, Part 1. How do droplets grow larger? Cloud Droplets in Equilibrium. Precipitation Processes
Chapter 8, Part 1 Precipitation Processes How do droplets grow larger? Cloud contain water droplets, but a cloudy sky does not always mean rain. Cloud Droplets in Equilibrium In equilibrium water molecules
WORLD METEOROLOGICAL ORGANIZATION
WORLD METEOROLOGICAL ORGANIZATION WMO DOCUMENTS ON WEATHER MODIFICATION Updated in the meeting of the Expert Team on Weather Modification Research Abu Dhabi, 22-24 March 2010 EXECUTIVE SUMMARY OF THE WMO
Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe [email protected] Director of Meteorology
Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe [email protected] Director of Meteorology Weather Modification, Inc. Fargo, North Dakota, USA www.weathermodification.com Content
Fog and Cloud Development. Bows and Flows of Angel Hair
Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei
Lecture 7a: Cloud Development and Forms
Lecture 7a: Cloud Development and Forms Why Clouds Form Cloud Types (from The Blue Planet ) Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling. Four Ways
The key points of the 2013 Annual Compliance Report are described fully in the following sections of this report:
Introduction Snowy Hydro Limited (Snowy Hydro) relies on precipitation falling over the catchments of the Snowy Mountains to supply water for the production of hydro-electricity. Cloud seeding over this
Clouds for pilots. Ed Williams. http://williams.best.vwh.net/
Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
Cloud Seeding Frequently Asked Questions
Cloud Seeding Frequently Asked Questions What is cloud seeding? Cloud seeding is a weather modification technique which involves the introduction of additional particles into suitable clouds to encourage
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE!
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! 1 NAME DATE GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water
UNESCO EOLSS. and more intensive scientific studies to further develop the scientific basis for this technology.
ARTIFICIAL RAINFALL A. A. Chernikov Central Aerological Observatory, Roshydromet, Russia Keywords: artificial rain, cloud condensation nucleus, cloud particles, cloud seeding, glaciogenic seeding, hygroscopic
Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson
Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page
Lecture 7a: Cloud Development and Forms Why Clouds Form?
Lecture 7a: Cloud Development and Forms Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling. Why Clouds Form Cloud Types (from The Blue Planet ) Four Ways
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SECOND GRADE WATER WEEK 1. PRE: Exploring the properties of water. LAB: Experimenting with different soap mixtures. POST: Analyzing
Clouds, Fog, & Precipitation
firecatching.blogspot.com Kids.brittanica.com Clouds and fog are physically the same just location is different Fog is considered a stratus cloud at or near the surface What does one see when looking at
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Common Questions and Answers about Cloud Seeding
Common Questions and Answers about Cloud Seeding Cloud seeding, often called weather modification, is a scientific process intended to enhance rain and snow, reduce hail damage, and alleviate fog. Current
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding
Precipitation forms from water droplets or ice crystals.
KEY CONCEPT Water falls to Earth s surface as precipitation. BEFORE, you learned Water moves between Earth's surface and the atmosphere Water vapor condenses into clouds NOW, you will learn How precipitation
Multiple Choice Identify the choice that best completes the statement or answers the question.
Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood
WEATHER AND CLIMATE practice test
WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in
Temperature affects water in the air.
KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
Water, Phase Changes, Clouds
TUESDAY: air & water & clouds Water, Phase Changes, Clouds How can freezing make something warmer? 'warm air can hold more water' why? How do clouds form? The (extraordinary) properties of Water Physical
Climate of Illinois Narrative Jim Angel, state climatologist. Introduction. Climatic controls
Climate of Illinois Narrative Jim Angel, state climatologist Introduction Illinois lies midway between the Continental Divide and the Atlantic Ocean, and the state's southern tip is 500 miles north of
Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere
Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
MCQ - ENERGY and CLIMATE
1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
[7] SD3.1 The student demonstrates an understanding of cycles influenced by energy from the
Cloud Types Levels Overview: During this project, students learn about different types of clouds and determine which type of cloud is most commonly overhead in their area over a period of four weeks. Objectives:
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
HUMIDITY AND PRECIPITATION
12 HUMIDITY AND PRECIPITATION In our previous lesson while discussing the composition of the atmosphere, we noted that water vapour, though a minor component, is a very important constituent of the atmosphere.
Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah.
Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah. Figure 6.1 Dew forms on clear nightswhen objects on the surface cool to a temperature below the dew point. If these beads of water
Education and Outreach Lesson Plan
Education and Outreach Lesson Plan Visit our online activities collection http://education.arm.gov/ Grade levels K 2 Common Covering Clouds Common Covering Clouds Approximate Time 1 1/2 hours, or two 45-minute
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Storms Short Study Guide
Name: Class: Date: Storms Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A(n) thunderstorm forms because of unequal heating
Weather Radar Basics
Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW
CLIMATE, WATER & LIVING PATTERNS THINGS
CLIMATE, WATER & LIVING PATTERNS NAME THE SIX MAJOR CLIMATE REGIONS DESCRIBE EACH CLIMATE REGION TELL THE FIVE FACTORS THAT AFFECT CLIMATE EXPLAIN HOW THOSE FACTORS AFFECT CLIMATE DESCRIBE HOW CLIMATES
If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC)
Cirrus (CI) Detached clouds in the form of delicate white filaments or white patches or narrow bands. These clouds have a fibrous or hair like appearance, or a silky sheen or both. with frontal lifting
Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012
Aerosol affects on the microphysics of precipitation development in tropical and sub-tropical convective clouds using dual-polarization radar and airborne measurements. Roelof Bruintjes, Sarah Tessendorf,
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.
Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that
THIRD GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
THIRD GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF THIRD GRADE WATER WEEK 1. PRE: Comparing the different components of the water cycle. LAB: Contrasting water with hydrogen
An Online School for Weather. www.srh.noaa.gov/jetstream/atmos/ll_whatacycle_aquifers.pdf
JetStream An Online School for Weather Aquifers Aquifers Aquifers 1 3 5 Aquifers Aquifers Aquifers 2 4 6 /atmos/ll_whatacycle_aquifers.pdf There are over 35 lesson plans in the National Weather Service
Atmospheric Stability & Cloud Development
Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable
Clouds and What They Mean
Vocabulary and Writing Worksheet 1. Choose the best vocabulary word for each sentence and write it in the blank. dew point evaporation fog gas precipitation relative humidity a. Relative humidity refers
Common Cloud Names, Shapes, and Altitudes:
Common Cloud Names, Shapes, and Altitudes: Low Clouds Middle Clouds High Clouds Genus Cumulus Cumulonimbus (extend through all 3 levels) Stratus Stratocumulus Altocumulus Altostratus Nimbostratus (extend
Georgia Performance Standards Framework for Natural Disasters 6 th Grade
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development
Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada
Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
The Clouds Outside My Window. National Weather Service NOAA
The Clouds Outside My Window National Weather Service NOAA The Clouds Out My Window Written and illustrated by John Jensenius My window With help from Owlie Skywarn 1 The Clouds Outside My Window Whether
Cloud Protocols. Welcome Introduction Protocols. Learning Activities Appendix. Purpose. Overview. Student Outcomes. Time. Level.
Cloud Protocols Purpose To observe the type and cover of clouds including contrails Overview Students observe which of ten types of clouds and how many of three types of contrails are visible and how much
Understanding Basic Concepts demonstrate an awareness of air as a substance that surrounds us and takes up space, and whose movement we feel as wind
Designation: Ontario Curriculum: Science and Technology Earth and Space Systems: Grade 2 Air and Water in the Environment Written by: Andrea Schultz-Allison, Department of Earth Sciences, The University
Climate Change Mini-Simulation: Background Guide
Climate Change Mini-Simulation: Background Guide United Nations The United Nations (UN) is an international organization founded in 1945 after the Second World War by 51 countries committed to creating
Read and study the following information. After reading complete the review questions. Clouds
Name: Pd: Read and study the following information. After reading complete the review questions. Clouds What are clouds? A cloud is a large collection of very tiny droplets of water or ice crystals. The
Water Recycles poster
Water Recycles poster The "Water ReCycles" poster is designed for students of all ages. It shows the natural water cycle and humans influence on water resources. Raincloud illustration The raincloud in
AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES
AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES Question 4 Some scientists estimate that by 2025 over 60 percent of the global human population will live in urban areas. Urban residents experience a variety
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
FACTS ABOUT CLIMATE CHANGE
FACTS ABOUT CLIMATE CHANGE 1. What is climate change? Climate change is a long-term shift in the climate of a specific location, region or planet. The shift is measured by changes in features associated
Let s Make a Cloud. Objective Demonstrate the combination of three natural elements, to form a cloud: water vapor, smoke and air pressure.
Let s Make a Cloud Related Subject: Climate and Weather Group Size: 10-15 Length of Activity: 45 minutes Objective Demonstrate the combination of three natural elements, to form a cloud: water vapor, smoke
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Make a Cloud Finder. How to Fold the Cloud Finder: Play the Weather Word Game:
Make a Cloud Finder Make a Cloud Finder. The pattern is included here. Learn the names of the beautiful clouds that may appear in the sky where you live. Color your Cloud Finder, and cut it out on the
WeatherBug Vocabulary Bingo
Type of Activity: Game: Interactive activity that is competitive, and allows students to learn at the same time. Activity Overview: WeatherBug Bingo is a fun and engaging game for you to play with students!
A Teaching Unit for Years 3 6 children
A Teaching Unit for Years 3 6 children 1 SEREAD and ARGO: Concept Overview for Years 3-6 Teaching Programme This is the overview for the first part of the SEREAD programme link with ARGO. The overview
A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities.
A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities. Richard L. Dornfeld, BSME, P.E. Staff Engineer September 25, 2014 Moisture can be a problem
Materials Needed: Time Needed: Adaptations: 2 flyswatters (optional) Vocabulary Definitions (below) Vocabulary Scramble Sheets (below)
Vocabulary Slap Game ( Flyswatter Game ) Directions: Project a Vocabulary Scramble sheet on a projection screen or Smart Board. Divide the class into two teams. Each team sends one person up to the screen.
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
How To Seed A Mountain With A Cloud Seeder
Statement on the Application of Winter Orographic Cloud Seeding For Water Supply and Energy Production Literature Review and Scientific Synthesis on the Efficacy of Winter Orographic Cloud Seeding A Report
60 minutes total (two 30 minute sessions)
Lesson Plan 9 Mini Water Cycle Brief description Students observe the water cycle in action inside a mini solar still. The still consists of a plastic tub filled with a layer of moist soil or sand, and
The Atmosphere and Winds
Oceanography 10, T. James Noyes, El Camino College 8A-1 The Atmosphere and Winds We need to learn about the atmosphere, because the ocean and atmosphere are tightly interconnected with one another: you
Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately
Clouds: What They Are and What They Mean. Susannah Lopez. Introduction to Meteorology. 2 December 2008
Clouds: What They 1 Clouds: What They Are and What They Mean Susannah Lopez Introduction to Meteorology 2 December 2008 Clouds: What They 2 Clouds: What They Are and What They Mean Clouds are composed
Activity 4 Clouds Over Your Head Level 1
Activity 4 Clouds Over Your Head Level 1 1 Objectives: Students will become familiar with the four main types of clouds: stratus, cirrus, cumulus, and cumulonimbus and their characteristics. Students will
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Severe Weather A Reading A Z Level T Leveled Book Word Count: 1,775
Severe Weather A Reading A Z Level T Leveled Book Word Count: 1,775 LEVELED BOOK T SEVERE WEATHER Written by Bruce D. Cooper Illustrated by Cende Hill Visit www.readinga-z.com for thousands of books and
KINDERGARTEN WATER 1 WEEK LESSON PLANS AND ACTIVITIES
KINDERGARTEN WATER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF KINDERGARTEN WEEK 1. PRE: Defining the states of matter. LAB: Discovering the properties of water. POST: Analyzing the water
Flash Flood Science. Chapter 2. What Is in This Chapter? Flash Flood Processes
Chapter 2 Flash Flood Science A flash flood is generally defined as a rapid onset flood of short duration with a relatively high peak discharge (World Meteorological Organization). The American Meteorological
The atmosphere has a number of gases, often in tiny amounts, which trap the heat given out by the Earth.
The Earth is wrapped in a blanket of air called the atmosphere, which is made up of several layers of gases. The sun is much hotter than the Earth and it gives off rays of heat (radiation) that travel
THE PLANT KINGDOM: THE WATER CYCLE
THE PLANT KINGDOM: THE WATER CYCLE Material: The Water Cycle Nomenclature The Water cycle Model Water Ice Heat Source (lamp with a clamp) Tables Presentation 1: Key Experience 1. Say, Today we are going
The Balance of Power in the Earth-Sun System
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.
UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.
UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station
The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics
Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
A Resource Guide to In State Hydropower Production
A Resource Guide to In State Hydropower Production Thursday, October 11, 2007 Fairfax, VT Hydro Facility Owned & Operated by CVPS Published by: Winooski, VT Winooski One Hydro Electric Facility Introduction
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
