A counterexample to a result on the tree graph of a graph
|
|
|
- Betty Hancock
- 9 years ago
- Views:
Transcription
1 AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 63(3) (2015), Pages A counterexample to a result on the tree graph of a graph Ana Paulina Figueroa Departamento de Matemáticas Instituto Tecnológico Autónomo de México (ITAM) Mexico City Mexico [email protected] Eduardo Rivera-Campo Departamento de Matemáticas Universidad Autónoma Metropolitana Iztapalapa Mexico City Mexico [email protected] Abstract Given a set of cycles C of a graph G, the tree graph of G, defined by C, is the graph T (G, C) whose vertices are the spanning trees of G and in which two trees R and S are adjacent if R S contains exactly one cycle and this cycle lies in C. Li et al. [Discrete Math. 271 (2003), ] proved that if the graph T (G, C) is connected, then C cyclically spans the cycle space of G. Later, Yumei Hu [Proc. 6th Int. Conf. Wireless Communications Networking and Mobile Comput. (2010), 1 3] proved that if C is an arboreal family of cycles of G which cyclically spans the cycle space of a 2-connected graph G, then T (G, C) is connected. In this note we present an infinite family of counterexamples to Hu s result. 1 Introduction The tree graph of a connected graph G is the graph T (G) whose vertices are the spanning trees of G, in which two trees R and S are adjacent if R S contains exactly one cycle. Li et al. [2] defined the tree graph of G with respect to a set of Partially supported by CONACyT, México Projects and
2 A.P. FIGUEROA ET AL. / AUSTRALAS. J. COMBIN. 63 (3) (2015), cycles C as the spanning subgraph T (G, C) of T (G) where two trees R and S are adjacent only if the unique cycle contained in R S lies in C. A set of cycles C of G cyclically spans the cycle space of G if for each cycle σ of G there are cycles α 1, α 2,..., α m C such that: σ = α 1 α 2... α m and, for i = 2, 3,..., m, α 1 α 2... α i is a cycle of G. Li et al. [2] proved the following theorem: Theorem 1. If C is a set of cycles of a connected graph G such that the graph T (G, C) is connected, then C cyclically spans the cycle space of G. A set of cycles C of a graph G is arboreal with respect to G if for every spanning tree T of G, there is a cycle σ C which is a fundamental cycle of T. Yumei Hu [1] claimed to have proved the converse theorem: Theorem 2. Let G be a 2-connected graph. If C is an arboreal set of cycles of G that cyclically spans the cycle space of G, then T (G, C) is connected. In this note we present a counterexample to Theorem 2 given by a triangulated plane graph G with 6 vertices and an arboreal family of cycles C of G such that C cyclically spans the cycle space of G, while T (G, C) is disconnected. Our example generalises to a family of triangulated graphs G n with 3(n + 2) vertices for each integer n 0. If α is a face of a plane graph G, we denote, also by α, the corresponding cycle of G as well as the set of edges of α. 2 Preliminary results Let G be a plane graph. For each cycle τ, let k(τ) be the number of faces of G contained in the interior of τ. A diagonal edge of τ is an edge lying in the interior of τ having both vertices in τ. The following lemma will be used in the proof of Theorem 4. Lemma 3. Let G be a triangulated plane graph and σ be a cycle of G. If k(σ) 2, then there are two faces φ and ψ of G, contained in the interior of σ, both with at least one edge in common with σ, and such that σ φ and σ ψ are cycles of G. Proof. If k(σ) = 2, let φ and ψ be the two faces of G contained in the interior of σ. Clearly σ φ = ψ and σ ψ = φ which are cycles of G. Assume k = k(σ) 3 and that the result holds for each cycle τ of G with 2 k(τ) < k. If σ has a diagonal edge uv, then σ together with the edge uv define two cycles σ 1 and σ 2 such that k(σ) = k(σ 1 ) + k(σ 2 ). If σ 1 is a face of G, then σ σ 1 is a cycle of G and, if k(σ 1 ) 2, then by induction there are two faces φ 1 and ψ 1 of G, contained in the interior of σ 1, both with at least one edge in common with σ 1, and such that σ 1 φ 1 and σ 1 ψ 1 are cycles of G. Without loss of generality, we assume uv is not an edge of φ 1 and therefore φ = φ 1 has at least one edge in common
3 A.P. FIGUEROA ET AL. / AUSTRALAS. J. COMBIN. 63 (3) (2015), with σ and is such that σ φ is a cycle of G. Analogously σ 2 contains a face ψ with at least one edge in common with σ and such that σ ψ is a cycle of G. For the remaining of the proof we may assume σ has no diagonal edges. Since k = k(σ) 3, there is a vertex u of σ which is incident with one or more edges lying in the interior of σ. Let v 0, v 1,..., v m be the vertices in σ or in the interior of σ which are adjacent to u. Without loss of generality we assume v 0 and v m are vertices of σ and that v 0, v 1,..., v m 1, v m is a path joining v 0 and v m, see Figure 1. Figure 1: Cycle σ with no diagonal edges. As σ has no diagonal edges, vertices v 1, v 2,..., v m 1 are not vertices of σ and therefore faces φ = uv 0 v 1 and ψ = uv m v m 1 are such that σ φ and σ ψ are cycles of G, each with one edge in common with σ. Theorem 4. Let G be a triangulated plane graph and α and β be two internal faces of G with one edge in common. If C is the set of internal faces of G with cycle α replaced by the cycle α β, then C cyclically spans the cycle space of G. Proof. Let σ be a cycle of G. If k(σ) = 1, then σ C or σ = α in which case σ = (α β) β. In both cases σ is cyclically spanned by C. We proceed by induction assuming k = k(σ) 2 and that if τ is a cycle of G with k(τ) < k, then τ is cyclically spanned by C. By Lemma 3, there are two faces φ and ψ of G, contained in the interior of σ, such that both σ φ and σ ψ are cycles of G; without loss of generality we assume φ α. Clearly k(σ φ) < k; by induction, there are cycles τ 1, τ 2,..., τ m C such that: σ φ = τ 1 τ 2... τ m and, for i = 2, 3,..., m, τ 1 τ 2... τ i is a cycle of G. As σ = (σ φ) φ = τ 1 τ 2... τ m φ, cycle σ is also cyclically spanned by C. 3 Main result Let G be the skeleton graph of a octahedron (see Figure 2) and C be the set of cycles that correspond to the internal faces of G with cycle α replaced by cycle α β.
4 A.P. FIGUEROA ET AL. / AUSTRALAS. J. COMBIN. 63 (3) (2015), Figure 2: Graph G with internal faces α, β, γ, δ, σ, τ and ρ and outer face ω. By Theorem 4, C cyclically spans the cycle space of G. Suppose C is not arboreal and let P be a spanning tree of G with none of its fundamental cycles in C. For this to happen, each of the cycles β, γ, δ, σ, τ and ρ of G, must have at least two edges which are not edges of P and since P has no cycles, at least one edge of cycle α and at least one edge of cycle ω are not edgs of P. Therefore G has at least 7 edges which are not edges of P. These, together with the 5 edges of P sum up to 12 edges which is exactly the number of edges of G. This implies that each of the cycles ω and α has exactly two edges of P and that each of the cycles β, γ, δ, σ, τ and ρ has exactly one edge of P. If edges xy and xz are edges of P, then vertex x cannot be incident to any other edge of P and therefore cycle α can only have one edge of P, which is not possible. If edges xy and yz are edges of P, then vertex y cannot be incident to any other edge of P. In this case, the edge in cycle σ, opposite to vertex y, must be an edge of P and cannot be incident to any other edge of P, which again is not possible. The case where edges xz and yz are edges of P is analogous. Therefore C is an arboreal set of cycles of G. Let T, S and R be the spanning trees of G given in Figure 3. The graph T (G, C) has a connected component formed by the trees T, S and R since cycle ρ is the only cycle in C which is a fundamental cycle of either T, S or R. This implies that T (G, C) is disconnected. Figure 3: Trees T (left), S (center) and R (right). We proceed to generalise the counterexample to graphs with arbitrary large number of vertices. Let G 0 = G, x 0 = x, y 0 = y, z 0 = z and for t 0 define G t+1 as the graph obtained by placing a copy of G t in the inner face of the skeleton graph of an octahedron as in Figure 4.
5 A.P. FIGUEROA ET AL. / AUSTRALAS. J. COMBIN. 63 (3) (2015), Figure 4: G t+1. Notice that each graph G n contains a copy G of G in the innermost layer. We also denote by α, β, γ, δ, σ, τ and ρ the cycles of G n that correspond to the cycles α, β, γ, δ, σ, τ and ρ of G. Let ω n denote the cycle given by the edges in the outer face of G n. For n 0 let C n be the set of cycles that correspond to the internal faces of G n with cycle α replaced by cycle α β. By Theorem 4, C n cyclically spans the cycle space of G n. We claim that for n 0, set C n is an arboreal set of cycles of G n. Suppose C t is arboreal but C t+1 is not and let P t+1 be a spanning tree of G t+1 such that none of its fundamental cycles lies in C t+1. As in the case of graph G and tree P, above, each cycle in C t+1, other than α β, has exactly one edge in P t+1, while cycles α and ω t+1 have exactly two edges in P t+1. The reader can see that this implies that the edges of P t+1 which are not edges of G t form a path with length 3. Then P t+1 {x t+1, y t+1, z t+1 } is a spanning tree of G t and by induction, one of its fundamental cycles lies in C t C t+1 which is a contradiction. Therefore C t+1 is arboreal. Let T 0 = T and for t 0 define T t+1 as the spanning tree of G t+1 obtained by placing a copy of T t in the inner face of the skeleton graph of an octahedron as in Figure 5. Trees S t+1 and R t+1 are obtained from S t and R t in the same way with S 0 = S and R 0 = R respectively. We claim that, for each integer n 0, cycle ρ is the only cycle in C n which is a fundamental cycle of either T n, S n or R n. Therefore T n, S n and R n form a connected component of G n which implies that T (G n, C n ) is disconnected.
6 A.P. FIGUEROA ET AL. / AUSTRALAS. J. COMBIN. 63 (3) (2015), Figure 5: t = 3k (left), t = 3k + 1 (centre) and t = 3k + 2 (right). References [1] Y. Hu, A necessary and sufficient condition on the tree graph defined by a set of cycles, in Proc. 6th Int. Conf. Wireless Communications Networking and Mobile Computing (WiCOM) (2010), IEEE (2010), 1 3. [2] X. Li, V. Neumann-Lara and E. Rivera-Campo, On the tree graph defined by a set of cycles, Discrete Math. 271 (2003), (Received 9 Jan 2015; revised 17 July 2015)
Cycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
Class One: Degree Sequences
Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of
Odd induced subgraphs in graphs of maximum degree three
Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing
Connectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
Labeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
Total colorings of planar graphs with small maximum degree
Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
An inequality for the group chromatic number of a graph
Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
Non-Separable Detachments of Graphs
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2001-12. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
All trees contain a large induced subgraph having all degrees 1 (mod k)
All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
On end degrees and infinite cycles in locally finite graphs
On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel
HOLES 5.1. INTRODUCTION
HOLES 5.1. INTRODUCTION One of the major open problems in the field of art gallery theorems is to establish a theorem for polygons with holes. A polygon with holes is a polygon P enclosing several other
Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.
7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,
Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10
Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties
Topological Treatment of Platonic, Archimedean, and Related Polyhedra
Forum Geometricorum Volume 15 (015) 43 51. FORUM GEOM ISSN 1534-1178 Topological Treatment of Platonic, Archimedean, and Related Polyhedra Tom M. Apostol and Mamikon A. Mnatsakanian Abstract. Platonic
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Cycle transversals in bounded degree graphs
Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.
Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there
- 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there
P. Jeyanthi and N. Angel Benseera
Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel
8. Matchings and Factors
8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,
Extremal Wiener Index of Trees with All Degrees Odd
MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of
3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
Introduction to Graph Theory
Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
A 2-factor in which each cycle has long length in claw-free graphs
A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
The Clar Structure of Fullerenes
The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25
Sum of Degrees of Vertices Theorem
Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2
Classification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
Removing Even Crossings
EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,
Mean Ramsey-Turán numbers
Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
The number of generalized balanced lines
The number of generalized balanced lines David Orden Pedro Ramos Gelasio Salazar Abstract Let S be a set of r red points and b = r + 2δ blue points in general position in the plane, with δ 0. A line l
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
Finding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs
Graph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis [email protected] http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
Euler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
Actually Doing It! 6. Prove that the regular unit cube (say 1cm=unit) of sufficiently high dimension can fit inside it the whole city of New York.
1: 1. Compute a random 4-dimensional polytope P as the convex hull of 10 random points using rand sphere(4,10). Run VISUAL to see a Schlegel diagram. How many 3-dimensional polytopes do you see? How many
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Generalized Induced Factor Problems
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
On the crossing number of K m,n
On the crossing number of K m,n Nagi H. Nahas [email protected] Submitted: Mar 15, 001; Accepted: Aug 10, 00; Published: Aug 1, 00 MR Subject Classifications: 05C10, 05C5 Abstract The best lower bound known
arxiv:1203.1525v1 [math.co] 7 Mar 2012
Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle [email protected] arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined
Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices
MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang
BOUNDARY EDGE DOMINATION IN GRAPHS
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
SUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me
SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines
Disjoint Compatible Geometric Matchings
Disjoint Compatible Geometric Matchings Mashhood Ishaque Diane L. Souvaine Csaba D. Tóth Abstract We prove that for every even set of n pairwise disjoint line segments in the plane in general position,
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Topology-based network security
Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
The chromatic spectrum of mixed hypergraphs
The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex
Strong Ramsey Games: Drawing on an infinite board
Strong Ramsey Games: Drawing on an infinite board Dan Hefetz Christopher Kusch Lothar Narins Alexey Pokrovskiy Clément Requilé Amir Sarid arxiv:1605.05443v2 [math.co] 25 May 2016 May 26, 2016 Abstract
A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS
A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS PAWE L PRA LAT Abstract. In this note we consider the on-line Ramsey numbers R(P n, P m ) for paths. Using a high performance computing clusters,
A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy
A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy David P. Williamson Anke van Zuylen School of Operations Research and Industrial Engineering, Cornell University,
Removing even crossings
Removing even crossings Michael J. Pelsmajer a, Marcus Schaefer b, Daniel Štefankovič c a Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA b Department of Computer
The minimum number of distinct areas of triangles determined by a set of n points in the plane
The minimum number of distinct areas of triangles determined by a set of n points in the plane Rom Pinchasi Israel Institute of Technology, Technion 1 August 6, 007 Abstract We prove a conjecture of Erdős,
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
Game Chromatic Index of Graphs with Given Restrictions on Degrees
Game Chromatic Index of Graphs with Given Restrictions on Degrees Andrew Beveridge Department of Mathematics and Computer Science Macalester College St. Paul, MN 55105 Tom Bohman, Alan Frieze, and Oleg
Ramsey numbers for bipartite graphs with small bandwidth
Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São
Regular Augmentations of Planar Graphs with Low Degree
Regular Augmentations of Planar Graphs with Low Degree Bachelor Thesis of Huyen Chau Nguyen At the Department of Informatics Institute of Theoretical Computer Science Reviewers: Advisors: Prof. Dr. Dorothea
Examination paper for MA0301 Elementær diskret matematikk
Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750
. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
Suk-Geun Hwang and Jin-Woo Park
Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 471 478 A NOTE ON PARTIAL SIGN-SOLVABILITY Suk-Geun Hwang and Jin-Woo Park Abstract. In this paper we prove that if Ax = b is a partial signsolvable linear
Polytope Examples (PolyComp Fukuda) Matching Polytope 1
Polytope Examples (PolyComp Fukuda) Matching Polytope 1 Matching Polytope Let G = (V,E) be a graph. A matching in G is a subset of edges M E such that every vertex meets at most one member of M. A matching
