Total colorings of planar graphs with small maximum degree
|
|
|
- Virginia Ellis
- 10 years ago
- Views:
Transcription
1 Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong University, Jinan, 50100, P.R. China Zaozhuang No. middle school, Shandong, 77100, P.R. China Abstract Let G be a planar graph of maximum degree Δ and girth g, and there is an integer t(> g) such that G has no cycles of length from g + 1 to t. Then the total chromatic number of G is Δ + 1 if (Δ, g, t) {(5, 4, 6), (4, 4, 17)}; or Δ = and (g, t) {(5, 1), (6, 11), (7, 11), (8, 10), (9, 10)}, where each vertex is incident with at most one gcycle. Keywords: Total coloring; Planar graph; Cycle; Girth MSC: 05C15 1 Introduction All graphs considered in this paper are simple, finite and undirected, and we follow [6] for the terminologies and notations not defined here. Let G be a graph. We use V (G), E(G), Δ(G) and δ(g) (or simply V, E, Δ and δ) to denote the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. For a vertex v V, let N(v) denote the set of vertices adjacent to v, and let d(v) = N(v) denote the degree of v. A k-vertex, a k + -vertex or a k -vertex is a vertex of degree k, at least k or at most k respectively. A k-cycle is a cycle of length k, and a -cycle is usually called a triangle. A total-k-coloring of a graph G is a coloring of V E using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ (G) of G is the smallest integer k such that G has a total-k-coloring. Clearly, χ (G) Δ + 1. This work is supported by a research grant NSFC ((109711) of China. Corresponding author. addresses: [email protected]. 1
2 Behzad [1] posed independently the following famous conjecture, which is known as the Total Coloring Conjecture (TCC). Conjecture.For any graph G, Δ + 1 χ (G) Δ +. This conjecture was confirmed for a general graph with Δ 5. But for planar graph, the only open case is Δ = 6 (see [9],[]). Interestingly, planar graphs with high maximum degree allow a stronger assertion,that is, every planar graph with high maximum degree Δ is (Δ + 1)-totally-colorable. This result was first established in [] for Δ 14, which was extended to Δ 9 (see [10]). For 4 Δ 8, it is not known whether that the assertion still holds true. But there are many related results by adding girth restrictions, see [7, 8, 11, 1, 14, 15, 16]. We present our new results in this paper. Theorem 1. Let G be a planar graph of maximum degree Δ and girth g, and there is an integer t(> g) such that G has no cycles of length from g + 1 to t. Then the total chromatic number of G is Δ + 1 if (a) (Δ, g, t) = (5, 4, 6) or (b)(δ, g, t) = (4, 4, 17). Borodin et al. [5] obtained that if a planar graph G of maximum degree three contains no cycles of length from to 9, then χ (G) = Δ+1. In the following, we make further efforts on the total-colorability of planar graph on the condition that G contains some k-cycle,where k (5,, 9). We get the following result. Theorem. Let G be a planar graph of maximum degree and girth g, each vertex is incident with at most one g-cycle and there is an integer t(> g) such that G has no cycles of length from g + 1 to t. Then χ (G) = Δ + 1 if one of the following conditions holds. (a) g = 5 and t 1, (b) g = 6 and t 11, (c) g = 7 and t 11; (d) g = 8 and t 10, (e) g = 9 and t 10. We will introduce some more notations and definitions here for convenience. Let G = (V, E, F ) be a planar graph, where F is the face set of G. The degree of a face f, denoted by, is the number of edges incident with it, where each cut-edge is counted twice. A k-face or a k + -face is a face of degree k or at least k, respectively. Let n k (v) be the number of k-vertices adjacent to v and n k (f) be the number of k-vertices incident with f. Proof of Theorem 1 Let G be a minimal counterexample to Theorem 1 in terms of the number of vertices and edges. Then every proper subgraph of G is (Δ + 1)-totally-colorable. Firstly, we investi-
3 gate some structural properties of G,which will be used to derive the desired contradiction completing our proof. Lemma. G is -connected and hence, it has no vertices of degree 1 and the boundary b(f) of each face f in G is exactly a cycle (i.e. b(f) cannot pass through a vertex v more than once). Lemma 4. [4] G contains no edge uv with min{d(u), d(v)} Δ and d(u) + d(v) Δ + 1. Lemma 5. [] The subgraph of G induced by all edges joining -vertices to Δ -vertices is a forest. Lemma 6. [5] If Δ 5, then no -vertex is adjacent two -vertices. Let G be the subgraph induced by all edges incident with -vertices of G. Then G is a forest by Lemma 5. We root it at a 5-vertex. In this case, every -vertex has exactly one parent and exactly one child, which are 5-vertices. Since G is a planar graph, by Euler s formula, we have v V (d(v) 4) + f F ( 4) = 8 < 0. Now we define the initial charge function ch(x) of x V F to be ch(v) = d(v) 4 if v V and ch(f) = 4 if f F. It follows that x V F ch(x) < 0. Note that any discharging procedure preserves the total charge of G. If we can define suitable discharging rules to change the initial charge function ch to the final charge function ch on V F, such that ch (x) 0 for all x V F, then we get an obvious contradiction. Now we design appropriate discharging rules and redistribute weights accordingly. For a vertex v, we define f k (v) or f + k (v) to be the number of k-faces or k+ -faces incident with v, respectively. To prove (a), our discharging rules are defined as follows. R11. Each -vertex receives from its child. R. Each -vertex v receives 1 f + 7 (v) from each of its incident 7+ -faces. R1. Each 5 + -vertex receives 1 from each of its incident 7+ -faces. Next,we will check ch (x) 0 for all x V F. Let f F (G). If = 4, then ch (f) = ch(f) = 0. Suppose = 7. Then n (f) 4 by Lemma 6. Moreover, every 7 + -face sends at most 1 to its incident -vertices by R and 1 to its incident 5-vertices by R1. So we
4 have ch (f) ch(f) = 0. Suppose 8. Then n (v) by Lemma 4 and Lemma 6. Thus, ch (f) ch(f) ( 1 ) ( ) by R and R1. Let v V (G). If d(v) =, then ch (v) = ch(v)+ = 0. If d(v) =, then f + 7 (v) and it follows from R that ch (v) = ch(v)+f 7 + (v) 1 = 0. If d(v) = 4, then f + 7 (v) ch (v) = ch(v) = 0. If d(v) = 5, then f 7 + (v). Moreover, it may be the child of at most one -vertex. Thus ch (v) ch(v) + 1 = 0 by R1. Suppose d(v) 6. Then v is incident with at most d(v) 4-faces and it may be the the parent of at most one -vertex. So ch (v) ch(v) + (d(v) d(v) ) 1 = 7d(v) 6 > 0. 6 Note that (a) implies that (b) is true if Δ 5. So it suffice to prove (b) by assuming Δ = 4. Since G is a planar graph, by Euler s formula, we have ( 6) = < 0. v V (d(v) 6) + f F Now we define the initial charge function ch(x) of x V F to be ch(v) = d(v) 6 if v V and ch(f) = 6 if f F. It follows that x V F ch(x) < 0. To prove (b), we construct the new charge ch (x) on G as follows. R1 Each ( 18)-face gives 1 6 to its incident vertices. R Each -vertex gets from its child and 1 from its parent. R Let f be a 4-face. If f is incident with a -vertex, then it gets from each of its incident + -vertices. If f is incident with no -vertices, then it gets 1 from each of its incident vertices. The rest of this paper is devoted to checking ch (x) 0 for all x V F. Let f F (G). If = 4, then ch (f) = ch(f) + max{, 1 4} = 0. If 18, then ch (f) = ch(f) r (1 6 ) = 0 by R1. r Let v V (G). If d(v) =, then ch (v) = ch(v) = 0 by R. If d(v) =, then f 18(v) + and f 4 (v) 1,and it follows from R1 and R that ch (v) = ch(v)+ > 0. Suppose that d(v) = 4. Then ch(v) = 4 6 =. If n (v) 1, then v sends at most n (v)+ to all its adjacent -vertices by R. If n (v) 4, then f 4 (v) 1 by Lemma 5, and it follows that ch (v) ch(v) n (v)+ + = 14 n (v) > 0 by R1 and R. If 6 1 n (v), then f 4 (v), and it follows that ch (v) ch(v) n (v)+ + = n (v) 0. If n (v) = 0, we have f 4 (v). Moreover, each 4-face incident with v contains no -vertices. By R, we have ch (v) ch(v) + 1 > 0. Now we complete the proof of Theorem 1. 4
5 Proof of Theorem A (k) vertex is a -vertex adjacent to exactly k -vertices. Let G be a minimal counterexample to Theorem in terms of the number of vertices and edges. By minimality of G, it has the following result. Lemma 7. [5] (a) no -vertex is adjacent to two -vertices; (b) no -vertex is adjacent to a -vertex and a ()-vertex ; (c) no -vertex is adjacent to three -vertices. Let G be the bipartite subgraph of G comprising V and all edges of G that join a - vertex to a -vertex. Then G has no isolated -vertices by Lemma 7(a), and the maximum degree is at most by Lemma 7(c), and any component of G is a path with more than one edges must end in two -vertices by Lemma 7(b). It follows that n n. So we can find a matching M in G saturating all -vertices. If uv M and d(u) =,v is called the -master of u. Each -vertex has one -master and each vertex of degree Δ can be the -master of at most one -vertex. Since G is a planar graph, by Euler s formula, we have v V (d(v) 6) + f F ( 6) = < 0. Now we define the initial charge function ch(x) of x V F to be ch(v) = d(v) 6 if v V and ch(f) = 6 if f F. It follows that x V F ch(x) < 0. Note that any discharging procedure preserves the total charge of G. If we can define suitable discharging rules to change the initial charge function ch to the final charge function ch on V F, such that ch (x) 0 for all x V F, then we get an obvious contradiction. Now we design appropriate discharging rules and redistribute weights accordingly. R1 Each ( 5)-face gives 6 to its incident vertices. R Each -vertex receives 6 from its -master. t+1 g Let ch (x) be the new charge obtained by the above rules for all x V F. If f F (G), then ch (f) = ch(f) 6 = 0 by R1. Let v V (G). Suppose d(v) =. Then v can be the -master of at most one -vertex, and v sends at most 6 to -vertex t+1 g by R. In addition, If v is incident with a g-face, then the other faces incident with v are two (t + 1) + -faces, for G has no cycles of length from g + 1 to t. Thus, v receives ( 6 g ) from its incident g-face and ( 6 ) from each of its incident (t + t+1 1)+ -face by R1. So ch (v) ch(v) + ( 6 ) + ( 6 ) ( 6 ) = 0 for all g and t. Otherwise, v t+1 g t+1 g 5
6 is incident with three (t + 1) + -faces, then ch (v) ch(v) + ( 6 ) ( 6) = t+1 t+1 g 6 6 > 0, for t + 1 > g. Suppose d(v) =. Then v receives at most 6 g t+1 t+1 g from its -master by R1. If v is incident with a g-face, since G has no cycles of length from g + 1 to t, then the other face incident with v is a (t + 1) + -face, and it follows that ch (v) ch(v)+( 6 )+( 6 )+( 6 ) = 0 for all g and t. Otherwise, v is incident t+1 g t+1 g with two (t + 1) + -faces, then ch (v) ch(v) + ( 6 ) + ( 6) = 4 6 > 0. t+1 t+1 g t+1 g From the above, we can see that ch (f) = ch(f) 6 Suppose d(v) =.So ch (v) ch(v) + ( 6 ) + ( 6 ) ( 6 t+1 g t+1 g When v is incident with three (t+1) + -faces, then ch (v) ch(v)+( g = 0 for all f F (G). ) = 0 for all g and t. ) ( 6) = t+1 t+1 g > 0, for t+1 > g. Suppose d(v) =. If v is incident with a g-face and a t+1 (t+1)+ -face, then ch (v) ch(v) + ( 6 t+1 ) + ( 6 g ) + ( t+1 6 g ) = 0 for all g and t.when v is incident with two (t + 1) + -faces, then ch (v) ch(v) + ( 6 ) + ( 6) = 4 6. So t+1 t+1 g t+1 g when g = 5, then t 1;when g = 6, then t 11;when g = 7, then t 11; when g = 8, then t 10; when g = 9, then t 10, and it follows that ch (v) 0. Our proof of Theorem is now complete. References [1] M. Behzad, Graphs and their chromatic numbers, Ph. D. Thesis, Michigan State University, [] O. V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 94 (1989) [] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) [4] O. V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 6 (1997) [5] O. V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, Europ. J. Combin. 19 (1998) [6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan, London,
7 [7] D. Du, L. Shen and Y. Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable, Discrete Applied Math. 157 (009) [8] J. F. Hou, Y. Zhu, G. Z. Liu, J. L. Wu and M. Lan, Total Colorings of Planar Graphs without Small Cycles, Graphs and Combinatorics 4( 008) [9] A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 16 (1996) [10] L. Kowalik, J-Sébastien.Sereni and R. Skrekovski, Total colorings of planar graphs with maximum degree nine, SIAM J. Discrete Math. (008) [11] Q. Ma, J. L. Wu and X. Yu, Planar graphs without 5-cycles or without 6-cycles, Discrete Mathematics 09:10( 009) [] D. P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 1 (1999) [1] P. Wang and J. L. Wu, A note on total colorings of planar graphs without 4-cycles. Discuss. Math. Graph Theory 4 (004) [14] J.B. Li, G.Z.Liu. On f-edge cover coloring of nearly bipartite graphs. Bull. Malays. Math. Sci. Soc. () 4 (011), no., [15] A.J. Dong, X. Zhang and G.J. Li. Equitable Coloring and Equitable Choosability of Planar Graphs without 5- and 7-Cycles. Bull. Malays. Math. Sci. Soc. (). Accepted. [16] H.Yu. Chen, X.Tan and J.L. Wu. The Linear Arboricity of Planar Graphs without 5-cycles with Chords. Bull. Malays. Math. Sci. Soc. (). Accepted. 7
An inequality for the group chromatic number of a graph
Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,
Labeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10
Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs
Mean Ramsey-Turán numbers
Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average
Cycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
On the maximum average degree and the incidence chromatic number of a graph
Discrete Mathematics and Theoretical Computer Science DMTCS ol. 7, 2005, 203 216 On the maximum aerage degree and the incidence chromatic number of a graph Mohammad Hosseini Dolama 1 and Eric Sopena 2
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
Odd induced subgraphs in graphs of maximum degree three
Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
BOUNDARY EDGE DOMINATION IN GRAPHS
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
A 2-factor in which each cycle has long length in claw-free graphs
A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices
MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang
All trees contain a large induced subgraph having all degrees 1 (mod k)
All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
Cycles and clique-minors in expanders
Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor
The Independence Number in Graphs of Maximum Degree Three
The Independence Number in Graphs of Maximum Degree Three Jochen Harant 1 Michael A. Henning 2 Dieter Rautenbach 1 and Ingo Schiermeyer 3 1 Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684
On the independence number of graphs with maximum degree 3
On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs
Non-Separable Detachments of Graphs
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2001-12. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
Finding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
On parsimonious edge-colouring of graphs with maximum degree three
On parsimonious edge-colouring of graphs with maximum degree three Jean-Luc Fouquet, Jean-Marie Vanherpe To cite this version: Jean-Luc Fouquet, Jean-Marie Vanherpe. On parsimonious edge-colouring of graphs
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin
CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework
Extremal Wiener Index of Trees with All Degrees Odd
MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of
Clique coloring B 1 -EPG graphs
Clique coloring B 1 -EPG graphs Flavia Bonomo a,c, María Pía Mazzoleni b,c, and Maya Stein d a Departamento de Computación, FCEN-UBA, Buenos Aires, Argentina. b Departamento de Matemática, FCE-UNLP, La
P. Jeyanthi and N. Angel Benseera
Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel
The degree, size and chromatic index of a uniform hypergraph
The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a k-uniform hypergraph in which no two edges share more than t common vertices, and let D denote the
3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
A simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs
8. Matchings and Factors
8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
Minimum degree condition forcing complete graph immersion
Minimum degree condition forcing complete graph immersion Matt DeVos Department of Mathematics Simon Fraser University Burnaby, B.C. V5A 1S6 Jacob Fox Department of Mathematics MIT Cambridge, MA 02139
The chromatic spectrum of mixed hypergraphs
The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex
High degree graphs contain large-star factors
High degree graphs contain large-star factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a
Embedding nearly-spanning bounded degree trees
Embedding nearly-spanning bounded degree trees Noga Alon Michael Krivelevich Benny Sudakov Abstract We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
Discrete Mathematics Problems
Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: [email protected] Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................
A Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:
The Open University s repository of research publications and other research outputs
Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:
The minimum number of distinct areas of triangles determined by a set of n points in the plane
The minimum number of distinct areas of triangles determined by a set of n points in the plane Rom Pinchasi Israel Institute of Technology, Technion 1 August 6, 007 Abstract We prove a conjecture of Erdős,
FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS. Mateusz Nikodem
Opuscula Mathematica Vol. 32 No. 4 2012 http://dx.doi.org/10.7494/opmath.2012.32.4.751 FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS Mateusz Nikodem Abstract. We develop the problem of fault-tolerant
Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there
- 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Large induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
Removing Even Crossings
EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,
On-line Ramsey Theory for Bounded Degree Graphs
On-line Ramsey Theory for Bounded Degree Graphs Jane Butterfield Tracy Grauman William B. Kinnersley Kevin G. Milans Christopher Stocker Douglas B. West University of Illinois Urbana IL, U.S.A. Submitted:
Removing even crossings
Removing even crossings Michael J. Pelsmajer a, Marcus Schaefer b, Daniel Štefankovič c a Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA b Department of Computer
DEGREE-ASSOCIATED RECONSTRUCTION PARAMETERS OF COMPLETE MULTIPARTITE GRAPHS AND THEIR COMPLEMENTS
TAIWANESE JOURNAL OF MATHEMATICS Vol. xx, No. xx, pp. 0-0, xx 20xx DOI: 10.11650/tjm.19.2015.4850 This paper is available online at http://journal.taiwanmathsoc.org.tw DEGREE-ASSOCIATED RECONSTRUCTION
On end degrees and infinite cycles in locally finite graphs
On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel
A Study of Sufficient Conditions for Hamiltonian Cycles
DeLeon 1 A Study of Sufficient Conditions for Hamiltonian Cycles Melissa DeLeon Department of Mathematics and Computer Science Seton Hall University South Orange, New Jersey 07079, U.S.A. ABSTRACT A graph
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
Examination paper for MA0301 Elementær diskret matematikk
Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750
Strong Ramsey Games: Drawing on an infinite board
Strong Ramsey Games: Drawing on an infinite board Dan Hefetz Christopher Kusch Lothar Narins Alexey Pokrovskiy Clément Requilé Amir Sarid arxiv:1605.05443v2 [math.co] 25 May 2016 May 26, 2016 Abstract
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
Discrete Applied Mathematics. The firefighter problem with more than one firefighter on trees
Discrete Applied Mathematics 161 (2013) 899 908 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam The firefighter problem with
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
Analysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Degree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
Cycle transversals in bounded degree graphs
Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.
Generalized Induced Factor Problems
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
Network (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 [email protected],
Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor
Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai
Game Chromatic Index of Graphs with Given Restrictions on Degrees
Game Chromatic Index of Graphs with Given Restrictions on Degrees Andrew Beveridge Department of Mathematics and Computer Science Macalester College St. Paul, MN 55105 Tom Bohman, Alan Frieze, and Oleg
Network File Storage with Graceful Performance Degradation
Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed
Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages
Frans J.C.T. de Ruiter, Norman L. Biggs Applications of integer programming methods to cages Article (Published version) (Refereed) Original citation: de Ruiter, Frans and Biggs, Norman (2015) Applications
Balloons, Cut-Edges, Matchings, and Total Domination in Regular Graphs of Odd Degree
Balloons, Cut-Edges, Matchings, and Total Domination in Regular Graphs of Odd Degree Suil O, Douglas B. West November 9, 2008; revised June 2, 2009 Abstract A balloon in a graph G is a maximal 2-edge-connected
1 Definitions. Supplementary Material for: Digraphs. Concept graphs
Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.
arxiv:1203.1525v1 [math.co] 7 Mar 2012
Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle [email protected] arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
On an anti-ramsey type result
On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
