Contents XIII. Preface XVII. List of Contributors. PartOne ColdAtomsandMolecules 1

Size: px
Start display at page:

Download "Contents XIII. Preface XVII. List of Contributors. PartOne ColdAtomsandMolecules 1"

Transcription

1 V Contents Preface XIII List of Contributors XVII PartOne ColdAtomsandMolecules 1 1 Cooling and Trapping of Atoms 3 Peter van der Straten and Harold Metcalf 1.1 Introduction Phase-Space Density Doppler Cooling Two-Level Atom in a Light Field Optical Bloch Equations Steady State Force on a Two-Level Atom Atoms in Motion Laser Slowing Introduction Slowing of an Atomic Beam Zeeman-Compensated Slowing Measurements and Results Laser Cooling Optical Molasses Low-Intensity Theory for a Two-Level Atom in One Dimension Experiments in Three-Dimensional Optical Molasses Magneto-Optical Traps Introduction Cooling and Compressing Atoms in an MOT Measurements and Results Cooling Below the Doppler Limit Introduction Linear Linear Polarization Gradient Cooling 35 Cold Atoms and Molecules. Edited by Matthias Weidemüller and Claus Zimmermann Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:

2 VI Contents Magnetically Induced Laser Cooling Optical Molasses in Three Dimensions Magnetic Trapping Evaporative Cooling Introduction Basic Assumptions The Simple Model Speed and Limits of Evaporative Cooling Experimental Results Beyond Optical Molasses Raman Sideband Cooling Trapping Atoms with a CO 2 Laser Conclusions 57 References 57 Appendix: Cooling Limits 61 2 Quantum Collisions 63 John Weiner 2.1 General Introduction Introduction to Cold Collision Theory Basic Concepts of Scattering Theory Quantum Properties as Energy Approaches Zero Relations Between Phase Shift, Scattering Length, and Bound States Scattering Length in a Square-Well Potential Collisions in a Light Field Inelastic Exoergic Collisions in MOTS Excited-State Trap-Loss Collisions Early Quasistatic Models The Gallagher Pritchard Model Excited-State Trap-Loss Measurements Photoassociation at Ambient and Cold Temperatures Associative and Photoassociative Ionization Photoassociative Ionization in a MOT Photoassociative Ionization in Atom Beams Ground-State Collisions Early Work Bose Einstein Condensation Designer Condensates Quantum-Information Collisions 124 References Frozen Rydberg Gases 147 Thomas Amthor, Markus Reetz-Lamour, and Matthias Weidemüller 3.1 Introduction Experimental Realizations 148

3 Contents VII 3.3 Rydberg Atoms and Their Interactions Quantitative Description of Alkali Rydberg Atoms Alkali Rydberg States Rydberg Wavefunctions Dipole Moments and Stark Shifts Dipolar Interactions Induced Dipoles van der Waals Interaction Resonant Dipoles Förster Resonances Permanent Dipoles Ultralong-Range Forces and Exotic Molecules Ionizing Collisions Avalanches and Ultracold Plasmas Molecules of Rydberg Atoms Molecules of Rydberg and Ground-State Atoms Resonant Energy Transfer Resonance Broadening by Excitation Diffusion Dynamics of Energy Transfer Quantum-Information Processing and Dipole Blockade Fast Quantum Gates with Rydberg Atoms Excitation Suppression Coherent Excitation Conclusion 174 References Cold Molecules 179 Eberhard Tiemann 4.1 Introduction and Motivation From Atoms to Molecules Atomic Basics Atom Pairs and Asymptotic Coupling Molecules Born Oppenheimer Approximation Hund s Coupling Cases Determination of Molecular Potentials Determination of the Asymptotic Potential The LeRoy Bernstein Approach The Accumulated Phase Method Determination of the Full Potential Transition Probabilities and Franck Condon Principle A Spectroscopic Example for Cold Collisions Schemes for Generating Cold Molecules Cooling in a Coolant Environment: Supersonic Expansion, Matrix Isolation, Buffer Gas Cold Molecules from Photoassociation Cold Molecules Through Feshbach Resonances 215

4 VIII Contents Deceleration of Polar Molecules by Inhomogeneous Electric Fields Cold Molecular Ions Current Status and Future Aspects of Cold Molecules 221 Acknowledgment 224 References 225 Part Two Cool Interactions Introduction to Bose Einstein Condensation 233 Kai Bongs and Klaus Sengstock 5.1 Introduction Theory What is BEC? Qualitative Answer Quantum Statistics (Ideal Gas Case) Statistics Finite Systems Statistics Interactions Condensate Wavefunction Interactions The Ideal Gas Interacting Gas The Gross Pitaevskii Equation Thomas Fermi Approximation Bogoliubov Approximation Limits of the Gross Pitaevskii Equation A Few Relevant Scales Length Scales Energy Scales Experimental Creation of BEC Selected Examples of the Physics of BEC Excitations BEC Interference Evidence of Interference Nonlinear Effects Four-Wave Mixing Solitons Superfluidity Phase Fluctuations and Coherence Properties Magnetism in Quantum Gases Quantum Gas Mixtures Creation of Ultracold Molecules from Ultracold Atoms 272 Acknowledgments 275 References 276

5 Contents IX 6 Ultracold Fermi Gases: Properties and Techniques 283 Selim Jochim 6.1 Introduction Ultracold Fermions in a Trap Ideal Fermi Gas Finite Temperature Chemical Potential Preparing an Ultracold Fermi Gas Several Spin States Different Isotopes Different Atoms Very Low Temperatures: Overcome Pauli Blocking Diagnostics: Temperature Measurements Interactions Collisions Weakly Attractive Fermions, Superfluidity Tunable Interactions: Feshbach Resonances Feshbach Resonances Weakly Bound Molecules Enhancing Elastic Collision Rates Strong Interactions Feshbach Molecules and Molecular Condensates Formation of Feshbach Molecules Magnetic Field Ramps Three-Body Recombination Three-Body Recombination of a Spin Mixture of Fermions Chemical Equilibrium Detection of Feshbach Molecules BEC of Molecules A Molecular BEC Out of a Fermi Sea A Molecular BEC by Direct Evaporation of Thermal Fermions BEC BCS Crossover From Fermions to Bosons, a Continuous Crossover! High-T C -Superfluidity in a Fermi Gas of Atoms Conclusion 309 References Bose Einstein Condensates in Optical Lattices 315 Immanuel Bloch, Markus Greiner, and Theodor W. Hänsch 7.1 Introduction Periodic Potentials with Optical Lattices Optical Lattices in Different Dimensions D Lattice Potential D Lattice Potential D Lattice Potential 317

6 X Contents Bloch Bands Wannier Functions Ground State Wavefunction of a BEC in an Optical Lattice Discretization Ground State Superfluid to Mott Insulator Transition Experimental Setup Bose Hubbard Hamiltonian Ground States of the Bose Hubbard Hamiltonian Double-Well Case Multiple-Well Case Superfluid to Mott Insulator Transition Collapse and Revival of the Matter-Wave Field of a Bose Einstein Condensate 330 References 333 Part Three Bonus Chapter Tutorial on Experimental Physics of Ultracold Gases 337 Allard Mosk 8.1 Introduction Peace of Mind and Safety Where to Find More Information Ultrahigh Vacuum Residual-Gas-Induced Decay Time Vacuum Science is Residual Gas Science Common Residual Gases Patience and Cleanliness Vacuum Seals Optical Access in Vacuum Systems Glass Cells Viewports Leaks Pumping Valves Further Reading Trapping of Neutral Particles Magnetostatic Trapping Scaling Cooling of Coils Switching of Magnetic Fields Cryogenic Techniques Superconducting Coils Principles of Cryogenic Cooling Dilution Refrigerators 354

7 Contents XI Further Reading Dealing with Noise Know your Noise The Spectrum Analyzer Lowest Frequencies: Drifts Low-Frequency Vibrations Mechanical Vibrations Electromagnetic Interference Good and Clean Contacts Line Hum EMI and Computers Photodetection Vacuum Photodiodes and Photomultiplier Tubes Semiconductor Photodiodes and Preamplifiers Imaging Detectors Electron Multiplying CCD Control Loops Applications of Feedback Loops Common Problems with Servo Loops Transfer Functions Nonlinearity and Unlocking Servo Nonlinearity and Limits PID Controllers Measurement of the Transfer Functions 374 Acknowledgments 375 Epilogue 375 References 375 Index 379

8

Optics and Spectroscopy at Surfaces and Interfaces

Optics and Spectroscopy at Surfaces and Interfaces Vladimir G. Bordo and Horst-Gunter Rubahn Optics and Spectroscopy at Surfaces and Interfaces WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface IX 1 Introduction 1 2 Surfaces and Interfaces 5

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

RICE UNIVERSITY. Tunable Interaction in Quantum Degenerate Lithium. by Kevin Edwin Strecker

RICE UNIVERSITY. Tunable Interaction in Quantum Degenerate Lithium. by Kevin Edwin Strecker RICE UNIVERSITY Tunable Interaction in Quantum Degenerate Lithium by Kevin Edwin Strecker A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved, Thesis

More information

Lattice approach to the BCS-BEC crossover in dilute systems: a MF and DMFT approach

Lattice approach to the BCS-BEC crossover in dilute systems: a MF and DMFT approach Scuola di Dottorato Vito Volterra Dottorato di Ricerca in Fisica Lattice approach to the BCS-BEC crossover in dilute systems: a MF and DMFT approach Thesis submitted to obtain the degree of Dottore di

More information

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde AMPLIFIATION OF ATOMI WAVES BY STIMULATED EMISSION OF ATOMS hristian J. Borde Laboratoire de Physique des Lasers, NRS/URA 8, Universite Paris-Nord, Villetaneuse, France. INTRODUTION: The recent development

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Quantum Computing for Beginners: Building Qubits

Quantum Computing for Beginners: Building Qubits Quantum Computing for Beginners: Building Qubits Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham 28/03/2007 Overview of this presentation What is a Qubit?

More information

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany. NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

More information

Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique Université Lille 1 Sciences et Technologies, Lille, France Lille Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique FRISNO 11 Aussois 1/4/011 Quantum simulators: The Anderson

More information

The Role of Electric Polarization in Nonlinear optics

The Role of Electric Polarization in Nonlinear optics The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Department of Physics and Astronomy

Department of Physics and Astronomy Department of Physics and Astronomy University of Heidelberg Diploma thesis in Physics submitted by Romain Müller born in Geseke 2011 Optical cooling and trapping of fermionic 6 Li and bosonic 133 Cs

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

DOCTOR OF PHILOSOPHY IN PHYSICS

DOCTOR OF PHILOSOPHY IN PHYSICS DOCTOR OF PHILOSOPHY IN PHYSICS The Doctor of Philosophy in Physics program is designed to provide students with advanced graduate training in physics, which will prepare them for scientific careers in

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

European Benchmark for Physics Bachelor Degree

European Benchmark for Physics Bachelor Degree European Benchmark for Physics Bachelor Degree 1. Summary This is a proposal to produce a common European Benchmark framework for Bachelor degrees in Physics. The purpose is to help implement the common

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Diatomic Molecules. Atom -> Molecule. Diatomic Molecules - Lukas Schott

Diatomic Molecules. Atom -> Molecule. Diatomic Molecules - Lukas Schott Diatomic Molecules Atom -> Molecule Outline 1. Introduction and motivation 1. Overview of natural molecules (and sneak preview) 2. Reasons of interest 2. A Brief History of Molecules 3. Born Oppenheim

More information

Exploring spin-orbital models with cold gases loaded in p-bands of zig-zag optical lattice

Exploring spin-orbital models with cold gases loaded in p-bands of zig-zag optical lattice Exploring spin-orbital models with cold gases loaded in p-bands of zig-zag optical lattice Temo Vekua Institut für Theoretische Physik Leibniz Universität Hannover in collaboration with: G. Sun, G. Jackeli

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential

Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential Martin Ligare Department of Physics, Bucknell University, Lewisburg, Pennsylvania 17837 Received 24

More information

Scanning Probe Microscopy

Scanning Probe Microscopy Ernst Meyer Hans Josef Hug Roland Bennewitz Scanning Probe Microscopy The Lab on a Tip With 117 Figures Mß Springer Contents 1 Introduction to Scanning Probe Microscopy f f.1 Overview 2 f.2 Basic Concepts

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

The Challenges of Low Temperature Research. Luke Mauritsen, Brian Smithgall Montana Instruments Corporation, USA

The Challenges of Low Temperature Research. Luke Mauritsen, Brian Smithgall Montana Instruments Corporation, USA The Challenges of Low Temperature Research Luke Mauritsen, Brian Smithgall Montana Instruments Corporation, USA Introduction The study of material science at cryogenic temperatures is full of challenges.

More information

Any Service Technician Can Fix It A Good Service Technician Can Figure Out What s Wrong With It.

Any Service Technician Can Fix It A Good Service Technician Can Figure Out What s Wrong With It. I Dave s Statement If the thermostat calls for cooling, and the furnace fan is running properly, and the coil airflow is adequate, and the condenser fan is running properly, and the condenser airflow is

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique 16 years of experiments on the atomic kicked rotor! Chaos, disorder

More information

Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate

Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate Markus Greiner, Olaf Mandel, Theodor W. Hänsch & Immanuel Bloch * Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

) and mass of each particle is m. We make an extremely small

) and mass of each particle is m. We make an extremely small Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, --6, kl 9.-5. Hjälpmedel: Students may use any book including the textbook Thermal physics. Present your solutions in details: it will

More information

Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect

Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect Hagelstein, P.L. and I. Chaudhary. Excitation transfer and energy exchange processes for modeling the Fleischmann-Pons excess heat effect. in ICCF-14 International Conference on Condensed Matter Nuclear

More information

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description

More information

Preparation and Highly Sensitive Detection of Ultracold Molecules

Preparation and Highly Sensitive Detection of Ultracold Molecules Preparation and Highly Sensitive Detection of Ultracold Molecules Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

The Physics Degree. Graduate Skills Base and the Core of Physics

The Physics Degree. Graduate Skills Base and the Core of Physics The Physics Degree Graduate Skills Base and the Core of Physics Version date: September 2011 THE PHYSICS DEGREE This document details the skills and achievements that graduates of accredited degree programmes

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

PCV Project: Excitons in Molecular Spectroscopy

PCV Project: Excitons in Molecular Spectroscopy PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

Photoinduced volume change in chalcogenide glasses

Photoinduced volume change in chalcogenide glasses Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010

More information

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract Quantum Computation with Bose-Einstein Condensation and Capable of Solving NP-Complete and #P Problems Yu Shi Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Abstract It

More information

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System The 5 th Scienceweb GCOE International Symposium 1 Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System Department of Physics, Tohoku University Joji Nasu In collaboration

More information

Chapter 8 Maxwell relations and measurable properties

Chapter 8 Maxwell relations and measurable properties Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate

More information

1 Introduction. 1.1 Historical Perspective

1 Introduction. 1.1 Historical Perspective j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes

More information

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards. Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Piotr Deuar Emilia Witkowska, Mariusz Gajda Institute of Physics, Polish Academy of Sciences, Warsaw Kazimierz Rzążewski

More information

PETITS SYSTEMES THERMOELECTRIQUES: CONDUCTEURS MESOSCOPIQUES ET GAZ D ATOMES FROIDS

PETITS SYSTEMES THERMOELECTRIQUES: CONDUCTEURS MESOSCOPIQUES ET GAZ D ATOMES FROIDS ``Enseigner la recherche en train de se faire Chaire de Physique de la Matière Condensée PETITS SYSTEMES THERMOELECTRIQUES: CONDUCTEURS MESOSCOPIQUES ET GAZ D ATOMES FROIDS Antoine Georges Cycle «Thermoélectricité»

More information

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed. Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

More information

QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS. Ph.D. Thesis Anders Søndberg Sørensen

QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS. Ph.D. Thesis Anders Søndberg Sørensen QUANTUM COMPUTATION AND MULTI-PARTICLE ENTANGLEMENT WITH TRAPPED ATOMS AND IONS Ph.D. Thesis Anders Søndberg Sørensen Institute of Physics and Astronomy University of Aarhus July 2001 ii Preface This thesis

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Introduction to Superconducting RF (srf)

Introduction to Superconducting RF (srf) Introduction to Superconducting RF (srf) Training Course on Particle Accelerator Technology May 10.-11. 2007 Mol, Belgium Holger J. Podlech Institut für Angewandte Physik J.W.-Goethe-Universität, Frankfurt

More information

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop

More information

Spatial and temporal coherence of polariton condensates

Spatial and temporal coherence of polariton condensates Spatial and temporal coherence of polariton condensates R. Spano Dpt. Fisica de Materiales, Universidad Autónoma Madrid. SPAIN XIV JORNADA DE JÓVENES CIENTÍFICOS DEL INSTITUTO DE CIENCIA DE MATERIALES

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Quantum Computing with NMR

Quantum Computing with NMR Quantum Computing with NMR Sabine Keiber, Martin Krauÿ June 3, 2009 Sabine Keiber, Martin Krauÿ Quantum Computing with NMR June 3, 2009 1 / 46 1 A Short Introduction to NMR 2 Di Vincenzo's Requirements

More information

Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD

Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY INTRODUCTION TO SCANNING TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXJORD UNIVERSITY PRESS Contents Preface

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

CryoEDM A Cryogenic Neutron-EDM Experiment. Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus

CryoEDM A Cryogenic Neutron-EDM Experiment. Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus CryoEDM A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus nedm Overview Theoretical Background The Method of Ramsey Resonance

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) For this laboratory exercise, you will explore a variety of spectroscopic methods used in an analytical

More information

Kinetic Molecular Theory and Gas Laws

Kinetic Molecular Theory and Gas Laws Kinetic Molecular Theory and Gas Laws I. Handout: Unit Notes II. Modeling at the Atomic Scale I. In another unit you learned about the history of the atom and the different models people had of what the

More information

Efficient all-optical production of large 6 Li quantum gases using D 1 gray-molasses cooling

Efficient all-optical production of large 6 Li quantum gases using D 1 gray-molasses cooling Efficient all-optical production of large 6 Li quantum gases using D gray-molasses cooling A. Burchianti,, G. Valtolina,,3, J. A. Seman,, E. Pace 4, M. De Pas, M. Inguscio,5, M. Zaccanti, and G. Roati,

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Application Note AN1

Application Note AN1 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 799A USA Patent App. No. 9/78,7 World Patents Pending SENSOR OVERVIEW Application Note AN The Dynament

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

1 The water molecule and hydrogen bonds in water

1 The water molecule and hydrogen bonds in water The Physics and Chemistry of Water 1 The water molecule and hydrogen bonds in water Stoichiometric composition H 2 O the average lifetime of a molecule is 1 ms due to proton exchange (catalysed by acids

More information

NDSU Department of Physics. Graduate Student Handbook

NDSU Department of Physics. Graduate Student Handbook NDSU Department of Physics Graduate Student Handbook Department of Physics North Dakota State University Fargo, ND 58108-6050 History Draft: August 24, 2014 Table of Contents 1. Contact 2 2. Graduate Program

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Heat. LD Physics Leaflets. Determining the adiabatic exponent c P /c V of various gases using the gas elastic resonance apparatus P2.5.3.

Heat. LD Physics Leaflets. Determining the adiabatic exponent c P /c V of various gases using the gas elastic resonance apparatus P2.5.3. WZ 013-06 Heat Kinetic theory of gases Specific heat of gases LD Physics Leaflets P..3. Determining the adiabatic exponent c P /c V of various gases using the gas elastic resonance apparatus Experiment

More information

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008 Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of

More information