Integration of ACO in a Constraint Programming Language
|
|
|
- Brooke Newton
- 10 years ago
- Views:
Transcription
1 Integration of ACO in a Constraint Programming Language Madjid Khichane 12, Patrick Albert 1, and Christine Solnon 2 1 ILOG 2 LIRIS, UMR 5205 CNRS / University of Lyon ANTS 08
2 Motivations Ant Colony Optimization (ACO) Efficient algorithms for solving specific problems...but solving a new problem involves a lot of programming Constraint Programming (CP) High level languages for modelling problems declaratively Branch & Propagate search engine may spend unacceptable time to solve some instances Our goal: use ACO to guide a CP search Describe the problem with the CP language Use the CP solver to propagate and check constraints Use ACO to guide the search First experiments with ILOG solver CP language
3 Basic principle of Constraint Programming (CP) CP modelling languages Define the problem by means of constraints (X, D, C) Define a set X of variables Define the domain D(x i ) of every variable x i X Define a set C of constraints CP solvers Goal: find an assignment of X which satisfies C Basic idea: Branch & Propagate Branch Construct a search tree Iteratively assign variables Backtrack if a constraint is violated Propagate Use constraints to prune the tree reduce domains by removing inconsistent values
4 Using ACO to solve CSPs Existing work [Solnon 00, Solnon 02, Bridge & Solnon 06] Ants build complete assignments: Repeat Assign a variable to a value chosen w.r.t. ACO Until all variables have been assigned Ants goal = minimize the number of violated constraints very competitive results... but ad hoc algorithms New proposition: CP with ants Ants build partial consistent assignments Repeat Assign a variable to a value chosen w.r.t. ACO Propagate to remove inconsistent values from domains Until propagation detects a failure or all variables assigned Ants goal = maximize the number of assigned variables straightforward integration within a CP language
5 Using ACO to solve CSPs Existing work [Solnon 00, Solnon 02, Bridge & Solnon 06] Ants build complete assignments: Repeat Assign a variable to a value chosen w.r.t. ACO Until all variables have been assigned Ants goal = minimize the number of violated constraints very competitive results... but ad hoc algorithms New proposition: CP with ants Ants build partial consistent assignments Repeat Assign a variable to a value chosen w.r.t. ACO Propagate to remove inconsistent values from domains Until propagation detects a failure or all variables assigned Ants goal = maximize the number of assigned variables straightforward integration within a CP language
6 Table of contents 1 Introduction 2 Description of Ant-CP 3 Application to the Car sequencing 4 Experimental Results 5 Conclusion
7 Ant-CP procedure initialize pheromone trails to τ max repeat 1 each ant builds a partial consistent assignment 2 update pheromone trails until solution found or max cycles reached
8 Ant-CP procedure initialize pheromone trails to τ max repeat 1 each ant builds a partial consistent assignment 2 update pheromone trails until solution found or max cycles reached Pheromone structure associated with a CSP (X, D, C) Pheromone is laid on variable/value couples: For every variable X i, and for every value v i D(X i ), τ Xi,v i = quantity of pheromone associated with X i, v i learnt desirability of assigning v i to X i
9 Ant-CP procedure initialize pheromone trails to τ max repeat 1 each ant builds a partial consistent assignment 2 update pheromone trails until solution found or max cycles reached Construction of a partial consistent assignment A Iteratively assign variables until all variables assigned or Failure: Choose a non assigned variable X i Choose a value v i D(X i ) with probability p(v i ) = [τ Xi,v i ] α [η(x i,v i )] β v k D(X i ) [τ X i,v k ] α [η(x i,v k )] β where η(x i, v i ) is a problem-dependent heuristic factor Propagate to remove inconsistent values from domains
10 Ant-CP procedure initialize pheromone trails to τ max repeat 1 each ant builds a partial consistent assignment 2 update pheromone trails until solution found or max cycles reached Pheromone updating step Evaporation: multiply pheromone trails by (1 ρ) ρ = evaporation rate (0 ρ 1) Reward the best assignment A of the cycle: X i, v i A, increment τ Xi,v i by 1/(1 + A best A ) where A best is the best assignment found so far
11 Pheromone strategies Default pheromone strategy pheromone is laid on variable/value couples Specific pheromone strategies The user has to define a set of pheromone trails a function τ pheromone factors a function comp rewarded components
12 Table of contents 1 Introduction 2 Description of Ant-CP 3 Application to the Car sequencing 4 Experimental Results 5 Conclusion
13 The car sequencing problem Goal: Sequence cars along an assembly line Each car requires a set of options Space cars requiring a same option Example Set of cars to be sequenced: Sequencing contraints: Solution: 1/2 ; 2/5 ; 1/5 ; 1/3
14 CP model for the car sequencing problem First model of the User s manual of ILOG Solver Variables For each position i in the sequence, car i = class of the ith car For each position i in the sequence and each option j, opt ij = 1 if car i requires option j and opt ij = 0 otherwise Constraints Constraints on the number of cars to be produced: car class c, #{car i = c} = nb of cars of class c to be produced IloDistribute Constraint between car and opt variables: car i and option j, opt ij = 1 iff car i requires option j IloBoolAbstraction Capacity constraints: option j, subseq. s of q j cars, i s opt ij p j
15 Pheromone strategies Comparison of 4 pheromone strategies Default pheromone is laid on couples (position/car class) Classes [Gravel et al 04] pheromone is laid on couples of consecutive car classes Cars [Solnon 00] pheromone is laid on couples of consecutive cars Empty pheromone is not used
16 Heuristics Recall: choice of a value for a variable p(v i ) = [τ Xi,v i ] α [η(x i,v i )] β P v k D(X i ) [τ X i,v k ] α [η(x i,v k )] β where η(x i, v i ) is a problem-dependent heuristic factor Utilisation rate UR(o i ) of an option o i [Smith 97] UR(o i ) = number of required slots / number of available slots UR(o i ) > 1 no solution Comparison of 2 heuristics DSU = sum of utilization rates of required options favor cars that require options with high utilisation rates DSU+P = sum of utilization rates of required options + failure when UR(o i ) > 1 + filter domains when UR(o i ) = 1
17 Table of contents 1 Introduction 2 Description of Ant-CP 3 Application to the Car sequencing 4 Experimental Results 5 Conclusion
18 Test suites Instances of [Lee et al. 95] available in CSP lib 70 satisfiable instances with 200 cars All solved by Ant-CP in a few cycles and less than one second (whatever the pheromone strategy and the heuristic factor) these instances are too easy to evaluate Ant-CP Instances of [Perron & Shaw 04] 82 instances from 100 to 500 cars; 8 options; 20 car classes all satisfiable nearly half of these instances are difficult
19 Comparison of the 4 pheromone structures with the DSU heuristic Cars Success rate (for 10 runs per instance) Default Classes no pheromone Number of cycles
20 Comparison of the 2 heuristics Success rate (for 10 runs per instance) Cars Default Classes no pheromone DSU+P DSU DSU+P DSU DSU+P DSU DSU+P DSU Number of cycles
21 Table of contents 1 Introduction 2 Description of Ant-CP 3 Application to the Car sequencing 4 Experimental Results 5 Conclusion
22 Using ACO to guide a CP search Complementarity of CP and ACO Use CP for modelling the problem and for propagating and checking constraints Use ACO for guiding the search as a generic value ordering heuristic First results on the car sequencing problem Ant-CP outperforms complete approaches: Complete approaches still have difficulties to solve the 70 instances of Lee (see CP 06, CP 07)...whereas these instances are all quickly solved by Ant-CP. Ant-CP is an order slower than heuristic approaches dedicated to the car sequencing problem...but the programming effort is also much smaller
23 Further work Validate our approach on other CSPs Adaptive parameter tuning towards reactive ACO use resampling and similarity ratio to dynamically tune parameters Use filtering procedures dedicated to a non backtracking search
Ant Colony Optimization and Constraint Programming
Ant Colony Optimization and Constraint Programming Christine Solnon Series Editor Narendra Jussien WILEY Table of Contents Foreword Acknowledgements xi xiii Chapter 1. Introduction 1 1.1. Overview of the
An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem
An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem Challenge ROADEF/EURO 2010 Roman Steiner, Sandro Pirkwieser, Matthias Prandtstetter Vienna University of Technology, Austria Institute
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES
A Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem
A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem Shahrear Iqbal, Md. Faizul Bari, Dr. M. Sohel Rahman AlEDA Group Department of Computer
Heuristics for Dynamically Adapting Constraint Propagation in Constraint Programming
Heuristics for Dynamically Adapting Constraint Propagation in Constraint Programming Kostas Stergiou AI Lab University of the Aegean Greece CPAIOR 09 Workshop on Bound reduction techniques for CP and MINLP
Integrating Benders decomposition within Constraint Programming
Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP
Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
Y. Xiang, Constraint Satisfaction Problems
Constraint Satisfaction Problems Objectives Constraint satisfaction problems Backtracking Iterative improvement Constraint propagation Reference Russell & Norvig: Chapter 5. 1 Constraints Constraints are
Optimal Planning with ACO
Optimal Planning with ACO M.Baioletti, A.Milani, V.Poggioni, F.Rossi Dipartimento Matematica e Informatica Universit di Perugia, ITALY email: {baioletti, milani, poggioni, rossi}@dipmat.unipg.it Abstract.
Clustering and scheduling maintenance tasks over time
Clustering and scheduling maintenance tasks over time Per Kreuger 2008-04-29 SICS Technical Report T2008:09 Abstract We report results on a maintenance scheduling problem. The problem consists of allocating
Using Ant Colony Optimization for Infrastructure Maintenance Scheduling
Using Ant Colony Optimization for Infrastructure Maintenance Scheduling K. Lukas, A. Borrmann & E. Rank Chair for Computation in Engineering, Technische Universität München ABSTRACT: For the optimal planning
A Tool for Generating Partition Schedules of Multiprocessor Systems
A Tool for Generating Partition Schedules of Multiprocessor Systems Hans-Joachim Goltz and Norbert Pieth Fraunhofer FIRST, Berlin, Germany {hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de Abstract.
MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines
MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines Daniil Chivilikhin and Vladimir Ulyantsev National Research University of IT, Mechanics and Optics St.
On the Efficiency of Backtracking Algorithms for Binary Constraint Satisfaction Problems
On the Efficiency of Backtracking Algorithms for Binary Constraint Satisfaction Problems Achref El Mouelhi and Philippe Jégou and Cyril Terrioux LSIS - UMR CNRS 6168 Aix-Marseille Université Avenue Escadrille
A hybrid approach for solving real-world nurse rostering problems
Presentation at CP 2011: A hybrid approach for solving real-world nurse rostering problems Martin Stølevik ([email protected]) Tomas Eric Nordlander ([email protected]) Atle Riise ([email protected])
Constraint Optimization for Highly Constrained Logistic Problems
Constraint Optimization for Highly Constrained Logistic Problems Maria Kinga Mochnacs Meang Akira Tanaka Anders Nyborg Rune Møller Jensen IT University Technical Report Series TR-2007-2008-104 ISSN 1600
An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups
Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 19 An ant colony optimization for single-machine weighted tardiness
Finding Liveness Errors with ACO
Hong Kong, June 1-6, 2008 1 / 24 Finding Liveness Errors with ACO Francisco Chicano and Enrique Alba Motivation Motivation Nowadays software is very complex An error in a software system can imply the
Design and Analysis of ACO algorithms for edge matching problems
Design and Analysis of ACO algorithms for edge matching problems Carl Martin Dissing Söderlind Kgs. Lyngby 2010 DTU Informatics Department of Informatics and Mathematical Modelling Technical University
Journal of Theoretical and Applied Information Technology 20 th July 2015. Vol.77. No.2 2005-2015 JATIT & LLS. All rights reserved.
EFFICIENT LOAD BALANCING USING ANT COLONY OPTIMIZATION MOHAMMAD H. NADIMI-SHAHRAKI, ELNAZ SHAFIGH FARD, FARAMARZ SAFI Department of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad,
Satisfiability Checking
Satisfiability Checking SAT-Solving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF
Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...
Lecture 4 Scheduling 1 Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max structure of a schedule 0 Q 1100 11 00 11 000 111 0 0 1 1 00 11 00 11 00
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
Meta-Heuristics for Reconstructing Cross Cut Shredded Text Documents
Meta-Heuristics for Reconstructing Cross Cut Shredded Text Documents Matthias Prandtstetter Günther R. Raidl Institute of Computer Graphics and Algorithms Vienna University of Technology, Austria www.ads.tuwien.ac.at
INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
Multi-Objective Ant Colony Optimization for Solving the Twin- Screw Extrusion Configuration Problem
Multi-Objective Ant Colony Optimization for Solving the Twin- Screw Extrusion Configuration Problem Cristina Teixeira*, J. A. Covas*, Thomas Stützle** and A. Gaspar-Cunha* *IPC/I3N-Institute for Polymer
An Improved ACO Algorithm for Multicast Routing
An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China [email protected]
Interactive Timetabling
Interactive Timetabling Tomáš Müller, Roman Barták * Charles University Department of Theoretical Computer Science Malostranské náměstí 2/25, Praha 1, Czech Republic [email protected] [email protected]
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)
. 1/ CHAPTER- 4 SIMULATION RESULTS & DISCUSSION CHAPTER 4 SIMULATION RESULTS & DISCUSSION 4.1: ANT COLONY OPTIMIZATION BASED ON ESTIMATION OF DISTRIBUTION ACS possesses
Optimization and Ranking in Web Service Composition using Performance Index
Optimization and Ranking in Web Service Composition using Performance Index Pramodh N #1, Srinath V #2, Sri Krishna A #3 # Department of Computer Science and Engineering, SSN College of Engineering, Kalavakkam-
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
ACO Hypercube Framework for Solving a University Course Timetabling Problem
ACO Hypercube Framework for Solving a University Course Timetabling Problem José Miguel Rubio, Franklin Johnson and Broderick Crawford Abstract We present a resolution technique of the University course
STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1
STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 [email protected],
A Constraint Programming Application for Rotating Workforce Scheduling
A Constraint Programming Application for Rotating Workforce Scheduling Markus Triska and Nysret Musliu Database and Artificial Intelligence Group Vienna University of Technology {triska,musliu}@dbai.tuwien.ac.at
A CP Scheduler for High-Performance Computers
A CP Scheduler for High-Performance Computers Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, and Michela Milano {thomas.bridi,michele.lombardi2,a.bartolini,luca.benini,michela.milano}@
ACO FOR OPTIMAL SENSOR LAYOUT
Stefka Fidanova 1, Pencho Marinov 1 and Enrique Alba 2 1 Institute for Parallel Processing, Bulgarian Academy of Science, Acad. G. Bonchev str. bl.25a, 1113 Sofia, Bulgaria 2 E.T.S.I. Informatica, Grupo
Scheduling Jobs and Preventive Maintenance Activities on Parallel Machines
Scheduling Jobs and Preventive Maintenance Activities on Parallel Machines Maher Rebai University of Technology of Troyes Department of Industrial Systems 12 rue Marie Curie, 10000 Troyes France [email protected]
Representing and Solving Rule-Based Decision Models with Constraint Solvers
Representing and Solving Rule-Based Decision Models with Constraint Solvers Jacob Feldman OpenRules, Inc., 75 Chatsworth Ct., Edison, NJ 08820, USA [email protected] Abstract. This paper describes
ASSIGNMENT OF CONTAINER TRUCKS OF A ROAD TRANSPORT COMPANY WITH CONSIDERATION OF THE LOAD BALANCING PROBLEM
International Journal of Computer Science and Applications Technomathematics Research Foundation Vol. 10, No. 2, pp. 1 14, 2013 ASSIGNMENT OF CONTAINER TRUCKS OF A ROAD TRANSPORT COMPANY WITH CONSIDERATION
Smart Graphics: Methoden 3 Suche, Constraints
Smart Graphics: Methoden 3 Suche, Constraints Vorlesung Smart Graphics LMU München Medieninformatik Butz/Boring Smart Graphics SS2007 Methoden: Suche 2 Folie 1 Themen heute Suchverfahren Hillclimbing Simulated
Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results
Journal of Artificial Intelligence Research 24 (2005) 641-684 Submitted 04/05; published 11/05 Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results Nikolaos
4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY
PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences
Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) Exploits foraging behavior of ants Path optimization Problems mapping onto foraging are ACO-like TSP, ATSP QAP Travelling Salesman Problem (TSP) Why? Hard, shortest path problem
An Ant Colony Optimization Approach to the Software Release Planning Problem
SBSE for Early Lifecyle Software Engineering 23 rd February 2011 London, UK An Ant Colony Optimization Approach to the Software Release Planning Problem with Dependent Requirements Jerffeson Teixeira de
An ACO Algorithm for Scheduling Data Intensive Application with Various QOS Requirements
An ACO Algorithm for Scheduling Data Intensive Application with Various QOS Requirements S.Aranganathan and K.M.Mehata Department of CSE B.S. Abdur Rahman University Chennai 600048, Tamilnadu, India ABSTRACT
DESIGN AND DEVELOPMENT OF CSP TECHNIQUES FOR FINDING ROBUST SOLUTIONS IN JOB-SHOP SCHEDULING PROBLEMS WITH OPERATORS
UNIVERSIDAD POLITÉCNICA DE VALENCIA DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN DESIGN AND DEVELOPMENT OF CSP TECHNIQUES FOR FINDING ROBUST SOLUTIONS IN JOB-SHOP SCHEDULING PROBLEMS WITH OPERATORS
An Autonomous Agent for Supply Chain Management
In Gedas Adomavicius and Alok Gupta, editors, Handbooks in Information Systems Series: Business Computing, Emerald Group, 2009. An Autonomous Agent for Supply Chain Management David Pardoe, Peter Stone
A Shift Sequence for Nurse Scheduling Using Linear Programming Problem
IOSR Journal of Nursing and Health Science (IOSR-JNHS) e-issn: 2320 1959.p- ISSN: 2320 1940 Volume 3, Issue 6 Ver. I (Nov.-Dec. 2014), PP 24-28 A Shift Sequence for Nurse Scheduling Using Linear Programming
A Global Constraint for Bin-Packing with Precedences: Application to the Assembly Line Balancing Problem.
A Global Constraint for Bin-Packing with Precedences: Application to the Assembly Line Balancing Problem. Pierre Schaus and Yves Deville Department of Computing Science and Engineering, University of Louvain,
Throughput constraint for Synchronous Data Flow Graphs
Throughput constraint for Synchronous Data Flow Graphs *Alessio Bonfietti Michele Lombardi Michela Milano Luca Benini!"#$%&'()*+,-)./&0&20304(5 60,7&-8990,.+:&;/&."!?@A>&"'&=,0B+C. !"#$%&'()* Resource
HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS
HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya
LocalSolver: black-box local search for combinatorial optimization
LocalSolver: black-box local search for combinatorial optimization Frédéric Gardi Bouygues e-lab, Paris [email protected] Joint work with T. Benoist, J. Darlay, B. Estellon, R. Megel, K. Nouioua Bouygues
An Ant Colony Optimization Approach to the Software Release Planning Problem with Dependent Requirements
3rd InternaIonal Symposium on Search Based SoKware Engineering September 10 12, Szeged, Hungary An Ant Colony Optimization Approach to the Software Release Planning Problem with Dependent Requirements
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
Disjunction of Non-Binary and Numeric Constraint Satisfaction Problems
Disjunction of Non-Binary and Numeric Constraint Satisfaction Problems Miguel A. Salido, Federico Barber Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia Camino
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
Unit 1 Learning Objectives
Fundamentals: Software Engineering Dr. Rami Bahsoon School of Computer Science The University Of Birmingham [email protected] www.cs.bham.ac.uk/~rzb Office 112 Y9- Computer Science Unit 1. Introduction
CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139
CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.
Crew Assignment via Constraint Programming: Integrating Column Generation and HeuristicTreeSearch
Annals of Operations Research 115, 207 225, 2002 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Crew Assignment via Constraint Programming: Integrating Column Generation and HeuristicTreeSearch
An ACO Approach to Solve a Variant of TSP
An ACO Approach to Solve a Variant of TSP Bharat V. Chawda, Nitesh M. Sureja Abstract This study is an investigation on the application of Ant Colony Optimization to a variant of TSP. This paper presents
Scheduling Single Machine Scheduling. Tim Nieberg
Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe
A Constraint-Based Method for Project Scheduling with Time Windows
A Constraint-Based Method for Project Scheduling with Time Windows Amedeo Cesta 1 and Angelo Oddi 1 and Stephen F. Smith 2 1 ISTC-CNR, National Research Council of Italy Viale Marx 15, I-00137 Rome, Italy,
Modelli di sviluppo software. Enrico Giunchiglia
Modelli di sviluppo software Enrico Giunchiglia The software development process A structured set of activities required to develop a software system, including Specification Design & Development Validation
Keywords: Power Transmission Networks, Maintenance Scheduling problem, Hybrid Constraint Methods, Constraint Programming
SCHEDULING MAINTENANCE ACTIVITIES OF ELECTRIC POWER TRANSMISSION NETWORKS USING AN HYBRID CONSTRAINT METHOD Nuno Gomes, Raul Pinheiro, ZitaVale, Carlos Ramos GECAD Knowledge Engineering and Decision Support
Oracle Real Time Decisions
A Product Review James Taylor CEO CONTENTS Introducing Decision Management Systems Oracle Real Time Decisions Product Architecture Key Features Availability Conclusion Oracle Real Time Decisions (RTD)
Statistical Machine Translation: IBM Models 1 and 2
Statistical Machine Translation: IBM Models 1 and 2 Michael Collins 1 Introduction The next few lectures of the course will be focused on machine translation, and in particular on statistical machine translation
Multi-Robot Traffic Planning Using ACO
Multi-Robot Traffic Planning Using ACO DR. ANUPAM SHUKLA, SANYAM AGARWAL ABV-Indian Institute of Information Technology and Management, Gwalior INDIA [email protected] Abstract: - Path planning is
Multi-Objective Supply Chain Model through an Ant Colony Optimization Approach
Multi-Objective Supply Chain Model through an Ant Colony Optimization Approach Anamika K. Mittal L. D. College of Engineering, Ahmedabad, India Chirag S. Thaker L. D. College of Engineering, Ahmedabad,
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
The ACO Encoding. Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson
The ACO Encoding Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson School of Computing and Centre for Reasoning, University of Kent, Canterbury, UK {A.Moraglio, F.E.B.Otero, C.G.Johnson}@kent.ac.uk
npsolver A SAT Based Solver for Optimization Problems
npsolver A SAT Based Solver for Optimization Problems Norbert Manthey and Peter Steinke Knowledge Representation and Reasoning Group Technische Universität Dresden, 01062 Dresden, Germany [email protected]
University of Potsdam Faculty of Computer Science. Clause Learning in SAT Seminar Automatic Problem Solving WS 2005/06
University of Potsdam Faculty of Computer Science Clause Learning in SAT Seminar Automatic Problem Solving WS 2005/06 Authors: Richard Tichy, Thomas Glase Date: 25th April 2006 Contents 1 Introduction
Beam-ACO hybridizing ant colony optimization with beam search: an application to open shop scheduling
Available online at www.sciencedirect.com Computers & Operations Research ( ) www.elsevier.com/locate/dsw Beam-ACO hybridizing ant colony optimization with beam search: an application to open shop scheduling
The Max-Distance Network Creation Game on General Host Graphs
The Max-Distance Network Creation Game on General Host Graphs 13 Luglio 2012 Introduction Network Creation Games are games that model the formation of large-scale networks governed by autonomous agents.
Global Multiprocessor Real-Time Scheduling as a Constraint Satisfaction Problem
Global Multiprocessor Real-Time Scheduling as a Constraint Satisfaction Problem Liliana Cucu-Grosean & Olivier Buffet INRIA Nancy Grand-Est 615 rue du Jardin Botanique 54600 Villers-lès-Nancy, France [email protected]
ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT
ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT Ying XIONG 1, Ya Ping KUANG 2 1. School of Economics and Management, Being Jiaotong Univ., Being, China. 2. College
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection
Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection Abirami.R 1, Sujithra.S 2, Sathishkumar.P 3, Geethanjali.N 4 1, 2, 3 Student, Department of Computer Science and Engineering,
Comparative Study: ACO and EC for TSP
Comparative Study: ACO and EC for TSP Urszula Boryczka 1 and Rafa l Skinderowicz 1 and Damian Świstowski1 1 University of Silesia, Institute of Computer Science, Sosnowiec, Poland, e-mail: [email protected]
Optimal Scheduling for Dependent Details Processing Using MS Excel Solver
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of
