Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...
|
|
|
- Katrina Roberta Owen
- 10 years ago
- Views:
Transcription
1 Lecture 4 Scheduling 1 Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max structure of a schedule 0 Q b c r(q) C c S b Q interference job b: last scheduled job from Q with q b < q c Lemma: For the objective value L max (EDD) of an EDD schedule we have: (Proofs were asked as exercise) 1. L max (EDD) L max < q c 2. L max (EDD) L max < p b Theorem: EDD is 2-approximation algorithm for 1 r j,d j < 0 L max
2 Lecture 4 Scheduling 2 Single machine models: Maximum Lateness -13- Approximation ratio for EDD for problem 1 r j,d j < 0 L max Remarks: EDD is also a 2-approximation for 1 prec,r j,d j < 0 L max (uses modified release and due dates) by an iteration technique the approximation factor can be reduced to 3/2
3 Lecture 4 Scheduling 3 Single machine models: Maximum Lateness -14- Enumerative methods for problem 1 r j L max we again will use head-body-tail notation Simple branch and bound method: branch on level i of the search tree by selecting a job to be scheduled on position i if in a node of the search tree on level i the set of already scheduled jobs is denoted by S and the finishing time of the jobs from S by t, for position i we only have to consider jobs k with r k < min j / S (max{t,r j} + p j ) lower bound: solve for remaining jobs 1 r j,pmtn L max search strategy: depth first search + selecting next job via lower bound
4 Lecture 4 Scheduling 4 Single machine models: Maximum Lateness -15- Advanced b&b-methods for problem 1 r j L max node of search tree = restricted instance restrictions = set of precedence constraints branching = adding precedence constraints between certain pairs of jobs after adding precedence constraints, modify release and due dates apply EDD to instance given in a node critical sequence has no interference job: EDD solves instance optimal backtrack critical sequence has an interference job: branch
5 Lecture 4 Scheduling 5 Single machine models: Maximum Lateness -16- Advanced b&b-methods for problem 1 r j L max (cont.) branching, given set Q, critical job c, interference job b, and set Q of jobs from Q following b Q C c b c... r(q) S b Q L max = S b + p b + p(q ) + q(q ) < r(q ) + p b + p(q ) + q(q ) if b is scheduled between jobs of Q the value is at least r(q ) + p b + p(q ) + q(q ); i.e. worse than the current schedule
6 Lecture 4 Scheduling 6 Single machine models: Maximum Lateness -16- Advanced b&b-methods for problem 1 r j L max (cont.) branching, given set Q, critical job c, interference job b, and set Q of jobs from Q following b Q C c b c... r(q) S b Q L max = S b + p b + p(q ) + q(q ) < r(q ) + p b + p(q ) + q(q ) if b is scheduled between jobs of Q the value is at least r(q ) + p b + p(q ) + q(q ); i.e. worse than the current schedule branch by adding either b Q or Q b
7 Lecture 4 Scheduling 7 Single machine models: Maximum Lateness -17- Advanced b&b-methods for problem 1 r j L max (cont.) lower bounds in a node: maximum of lower bound of parent node r(q ) + p(q ) + q(q ) r(q {b}) + p(q {b}) + q(q {b}) using the modified release and due dates upper bound UB: best value of the EDD schedules discard a node if lower bound UB search strategy: select node with minimum lower bound
8 Lecture 4 Scheduling 8 Single machine models: Maximum Lateness -18- Advanced b&b-methods for problem 1 r j L max (cont.) speed up possibility: let k / Q {b} with r(q ) + p k + p(q ) + q(q ) UB if r(q ) + p(q ) + p k + q k UB then add k Q if r k + p k + p(q ) + q(q ) UB then add Q k
9 Lecture 4 Scheduling 9 Single machine models: Number of Tardy Jobs -1- Problem 1 U j : Structure of an optimal schedule: set S 1 of jobs meeting their due dates set S 2 of jobs being late jobs of S 1 are scheduled before jobs from S 2 jobs from S 1 are scheduled in EDD order jobs from S 2 are scheduled in an arbitrary order Result: a partition of the set of jobs into sets S 1 and S 2 is sufficient to describe a solution
10 Lecture 4 Scheduling 10 Single machine models: Number of Tardy Jobs -2- Algorithm for 1 U j (Moore-Hodgson) 1. enumerate jobs such that d 1... d n ; 2. S 1 := ; t := 0; 3. FOR j:=1 TO n DO 4. S 1 := S 1 {j}; t := t + p j ; 5. IF t > d j THEN 6. Find job k with largest p k value in S 1 ; 7. S 1 := S 1 \ {k}; t := t p k ; 8. END 9. END
11 Lecture 4 Scheduling 11 Single machine models: Number of Tardy Jobs -3- Remarks on Moore-Hodgson Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late complexity: O(n log(n)) Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)
12 Lecture 4 Scheduling 12 Single machine models: Number of Tardy Jobs -3- Remarks on Moore-Hodgson Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late complexity: O(n log(n)) Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21) d 3
13 Lecture 4 Scheduling 13 Single machine models: Number of Tardy Jobs -3- Remarks on Moore-Hodgson Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late complexity: O(n log(n)) Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21) d 5
14 Lecture 4 Scheduling 14 Single machine models: Number of Tardy Jobs -3- Remarks on Moore-Hodgson Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late complexity: O(n log(n)) Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21) Moore-Hodgson computes an optimal solution Proof on the board
15 Lecture 4 Scheduling 15 Single machine models: Weighted Number of Tardy Jobs -1- Problem 1 w j U j problem 1 w j U j is NP-hard even if all due dates are the same; i.e. 1 d j = d w j U j is NP-hard Proof on the board (reduction from PARTITION) priority based heuristic (WSPT-rule): schedule jobs in increasing p j /w j order
16 Lecture 4 Scheduling 16 Single machine models: Weighted Number of Tardy Jobs -1- Problem 1 w j U j problem 1 w j U j is NP-hard even if all due dates are the same; i.e. 1 d j = d w j U j is NP-hard Proof on the board (reduction from PARTITION) priority based heuristic (WSPT-rule): schedule jobs in increasing p j /w j order WSPT may perform arbitrary bad for 1 w j U j :
17 Lecture 4 Scheduling 17 Single machine models: Weighted Number of Tardy Jobs -1- Problem 1 w j U j problem 1 w j U j is NP-hard even if all due dates are the same; i.e. 1 d j = d w j U j is NP-hard Proof on the board (reduction from PARTITION) priority based heuristic (WSPT-rule): schedule jobs in increasing p j /w j order WSPT may perform arbitrary bad for 1 w j U j : n = 3;p = (1, 1,M); w = (1+ǫ, 1,M ǫ);d = (1+M, 1+M, 1+M) wj U j (WSPT)/ w j U j (opt) = (M ǫ)/(1 + ǫ)
18 Lecture 4 Scheduling 18 Single machine models: Weighted Number of Tardy Jobs -2- Dynamic Programming for 1 w j U j assume d 1... d n as for 1 U j a solution is given by a partition of the set of jobs into sets S 1 and S 2 and jobs in S 1 are in EDD order Definition: F j (t) := minimum criterion value for scheduling the first j jobs such that the processing time of the on-time jobs is at most t F n (T) with T = n j=1 p j is optimal value for problem 1 w j U j Initial conditions: F j (t) = { for t < 0; j = 1,...,n 0 for t 0; j = 0 (1)
19 Lecture 4 Scheduling 19 Single machine models: Weighted Number of Tardy Jobs -3- Dynamic Programming for 1 w j U j (cont.) if 0 t d j and j is late in the schedule corresponding to F j (t), we have F j (t) = F j 1 (t) + w j if 0 t d j and j is on time in the schedule corresponding to F j (t), we have F j (t) = F j 1 (t p j )
20 Lecture 4 Scheduling 20 Single machine models: Weighted Number of Tardy Jobs -3- Dynamic Programming for 1 w j U j (cont.) if 0 t d j and j is late in the schedule corresponding to F j (t), we have F j (t) = F j 1 (t) + w j if 0 t d j and j is on time in the schedule corresponding to F j (t), we have F j (t) = F j 1 (t p j ) summarizing, we get for j = 1,...,n: { min{f F j (t) = j 1 (t p j ),F j 1 (t) + w j } for 0 t d j F j (d j ) for d j < t T (2)
21 Lecture 4 Scheduling 21 Single machine models: Weighted Number of Tardy Jobs -4- DP-algorithm for 1 w j U j 1. initialize F j (t) according to (1) 2. FOR j := 1 TO n DO 3. FOR t := 0 TO T DO 4. update F j (t) according to (2) 5. w j U j (OPT) = F n (d n )
22 Lecture 4 Scheduling 22 Single machine models: Weighted Number of Tardy Jobs -4- DP-algorithm for 1 w j U j 1. initialize F j (t) according to (1) 2. FOR j := 1 TO n DO 3. FOR t := 0 TO T DO 4. update F j (t) according to (2) 5. w j U j (OPT) = F n (d n ) complexity is O(n n j=1 p j ) thus, algorithm is pseudopolynomial
Scheduling Single Machine Scheduling. Tim Nieberg
Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
Introduction to Scheduling Theory
Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France [email protected] November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling
Scheduling Jobs and Preventive Maintenance Activities on Parallel Machines
Scheduling Jobs and Preventive Maintenance Activities on Parallel Machines Maher Rebai University of Technology of Troyes Department of Industrial Systems 12 rue Marie Curie, 10000 Troyes France [email protected]
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually
Scheduling a sequence of tasks with general completion costs
Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France [email protected] Abstract Scheduling a sequence of tasks in the acceptation
From Last Time: Remove (Delete) Operation
CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,
Duplicating and its Applications in Batch Scheduling
Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
Completion Time Scheduling and the WSRPT Algorithm
Completion Time Scheduling and the WSRPT Algorithm Bo Xiong, Christine Chung Department of Computer Science, Connecticut College, New London, CT {bxiong,cchung}@conncoll.edu Abstract. We consider the online
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
Find-The-Number. 1 Find-The-Number With Comps
Find-The-Number 1 Find-The-Number With Comps Consider the following two-person game, which we call Find-The-Number with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Two Algorithms for the Student-Project Allocation Problem
Two Algorithms for the Student-Project Allocation Problem David J. Abraham 1, Robert W. Irving 2, and David F. Manlove 2 1 Computer Science Department, Carnegie-Mellon University, 5000 Forbes Ave, Pittsburgh
Aperiodic Task Scheduling
Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2014 年 11 月 19 日 These slides use Microsoft clip arts. Microsoft copyright
MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research
MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With
List Scheduling in Order of α-points on a Single Machine
List Scheduling in Order of α-points on a Single Machine Martin Skutella Fachbereich Mathematik, Universität Dortmund, D 4422 Dortmund, Germany [email protected] http://www.mathematik.uni-dortmund.de/
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
Clustering and scheduling maintenance tasks over time
Clustering and scheduling maintenance tasks over time Per Kreuger 2008-04-29 SICS Technical Report T2008:09 Abstract We report results on a maintenance scheduling problem. The problem consists of allocating
Online Scheduling for Cloud Computing and Different Service Levels
2012 IEEE 201226th IEEE International 26th International Parallel Parallel and Distributed and Distributed Processing Processing Symposium Symposium Workshops Workshops & PhD Forum Online Scheduling for
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
In Search of Influential Event Organizers in Online Social Networks
In Search of Influential Event Organizers in Online Social Networks ABSTRACT Kaiyu Feng 1,2 Gao Cong 2 Sourav S. Bhowmick 2 Shuai Ma 3 1 LILY, Interdisciplinary Graduate School. Nanyang Technological University,
Load balancing of temporary tasks in the l p norm
Load balancing of temporary tasks in the l p norm Yossi Azar a,1, Amir Epstein a,2, Leah Epstein b,3 a School of Computer Science, Tel Aviv University, Tel Aviv, Israel. b School of Computer Science, The
Real Time Scheduling Basic Concepts. Radek Pelánek
Real Time Scheduling Basic Concepts Radek Pelánek Basic Elements Model of RT System abstraction focus only on timing constraints idealization (e.g., zero switching time) Basic Elements Basic Notions task
1 Approximating Set Cover
CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt
Stiffie's On Line Scheduling Algorithm
A class of on-line scheduling algorithms to minimize total completion time X. Lu R.A. Sitters L. Stougie Abstract We consider the problem of scheduling jobs on-line on a single machine and on identical
6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
Portable Bushy Processing Trees for Join Queries
Reihe Informatik 11 / 1996 Constructing Optimal Bushy Processing Trees for Join Queries is NP-hard Wolfgang Scheufele Guido Moerkotte 1 Constructing Optimal Bushy Processing Trees for Join Queries is NP-hard
R u t c o r Research R e p o r t. A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS.
R u t c o r Research R e p o r t A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS Navid Hashemian a Béla Vizvári b RRR 3-2011, February 21, 2011 RUTCOR Rutgers
The Student-Project Allocation Problem
The Student-Project Allocation Problem David J. Abraham, Robert W. Irving, and David F. Manlove Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK Email: {dabraham,rwi,davidm}@dcs.gla.ac.uk.
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
Fairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
TU e. Advanced Algorithms: experimentation project. The problem: load balancing with bounded look-ahead. Input: integer m 2: number of machines
The problem: load balancing with bounded look-ahead Input: integer m 2: number of machines integer k 0: the look-ahead numbers t 1,..., t n : the job sizes Problem: assign jobs to machines machine to which
How To Solve A Minimum Set Covering Problem (Mcp)
Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix
Scheduling Real-time Tasks: Algorithms and Complexity
Scheduling Real-time Tasks: Algorithms and Complexity Sanjoy Baruah The University of North Carolina at Chapel Hill Email: [email protected] Joël Goossens Université Libre de Bruxelles Email: [email protected]
Online and Offline Selling in Limit Order Markets
Online and Offline Selling in Limit Order Markets Kevin L. Chang 1 and Aaron Johnson 2 1 Yahoo Inc. [email protected] 2 Yale University [email protected] Abstract. Completely automated electronic
Constraint-Based Scheduling: A Tutorial
Constraint-Based Scheduling: A Tutorial Claude Le Pape ILOG S. A. 9, rue de Verdun F-94253 Gentilly Cedex Tel: +33 1 49 08 29 67 Fax: +33 1 49 08 35 10 Email: [email protected] Given a set of resources with
Chapter 6: Episode discovery process
Chapter 6: Episode discovery process Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 1 6. Episode discovery process The knowledge discovery process KDD process of analyzing
A Linear Programming Based Method for Job Shop Scheduling
A Linear Programming Based Method for Job Shop Scheduling Kerem Bülbül Sabancı University, Manufacturing Systems and Industrial Engineering, Orhanlı-Tuzla, 34956 Istanbul, Turkey [email protected]
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
CS711008Z Algorithm Design and Analysis
CS711008Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 The slides were
Dynamic programming formulation
1.24 Lecture 14 Dynamic programming: Job scheduling Dynamic programming formulation To formulate a problem as a dynamic program: Sort by a criterion that will allow infeasible combinations to be eli minated
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
A Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
Competitive Analysis of QoS Networks
Competitive Analysis of QoS Networks What is QoS? The art of performance analysis What is competitive analysis? Example: Scheduling with deadlines Example: Smoothing real-time streams Example: Overflow
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
A Beam Search Heuristic for Multi-Mode Single Resource Constrained Project Scheduling
A Beam Search Heuristic for Multi-Mode Single Resource Constrained Project Scheduling Chuda Basnet Department of Management Systems The University of Waikato Private Bag 3105 Hamilton [email protected]
Steiner Tree Approximation via IRR. Randomized Rounding
Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related
Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
Lecture 4 Online and streaming algorithms for clustering
CSE 291: Geometric algorithms Spring 2013 Lecture 4 Online and streaming algorithms for clustering 4.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
Globally Optimal Crowdsourcing Quality Management
Globally Optimal Crowdsourcing Quality Management Akash Das Sarma Stanford University [email protected] Aditya G. Parameswaran University of Illinois (UIUC) [email protected] Jennifer Widom Stanford
Arithmetic Coding: Introduction
Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation
Notes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06
CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Load balancing in a heterogeneous computer system by self-organizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005
Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable
Load Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
THE SCHEDULING OF MAINTENANCE SERVICE
THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single
Establishing a Mobile Conference Call Under Delay and Bandwidth Constraints
Establishing a Mobile Conference Call Under Delay and Bandwidth Constraints Amotz Bar-Noy Computer and Information Science Department Brooklyn College, CUNY, New York Email: [email protected]
Dimensioning an inbound call center using constraint programming
Dimensioning an inbound call center using constraint programming Cyril Canon 1,2, Jean-Charles Billaut 2, and Jean-Louis Bouquard 2 1 Vitalicom, 643 avenue du grain d or, 41350 Vineuil, France [email protected]
Lecture 6 Online and streaming algorithms for clustering
CSE 291: Unsupervised learning Spring 2008 Lecture 6 Online and streaming algorithms for clustering 6.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
CHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
Minimizing the Number of Machines in a Unit-Time Scheduling Problem
Minimizing the Number of Machines in a Unit-Time Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus [email protected] Frank
6 March 2007 1. Array Implementation of Binary Trees
Heaps CSE 0 Winter 00 March 00 1 Array Implementation of Binary Trees Each node v is stored at index i defined as follows: If v is the root, i = 1 The left child of v is in position i The right child of
Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:
CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm
Treemaps with bounded aspect ratio
technische universiteit eindhoven Department of Mathematics and Computer Science Master s Thesis Treemaps with bounded aspect ratio by Vincent van der Weele Supervisor dr. B. Speckmann Eindhoven, July
A Near-linear Time Constant Factor Algorithm for Unsplittable Flow Problem on Line with Bag Constraints
A Near-linear Time Constant Factor Algorithm for Unsplittable Flow Problem on Line with Bag Constraints Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, and Yogish Sabharwal IBM Research - India, New
