Chapter 17: expected value and standard error for the sum of the draws from a box
|
|
|
- Edwin Haynes
- 9 years ago
- Views:
Transcription
1 Chapter 17: expected value and standard error for the sum of the draws from a box Context When we do this 10,000 times Expected value and standard error Expected value 5 Expected value for sum of the draws, method Expected value for sum of the draws, method Formula for expected value of sum of the draws Standard error 9 Standard error for the sum of the draws Computing the SE for the sum of the draws Example Example (cont d) Example (cont d) Short-cut Normal approximation 16 Use normal approximation Example Example (cont d) Example (cont d) Classifying and counting 21 Replace tickets by 0s and 1s
2 Context We ll look at sum of the draws of a box Example: Count the number of heads in 100 coin tosses Maybe one time the number is 54, the next time it is 48, the third time it is 47. The observed value varies! Observed value = expected value + chance error See computer simulation, where I repeated this 10,000 times 2 / 22 When we do this 10,000 times... Number of heads in 100 coin tosses, repeated times Density nr of heads 3 / 22 Expected value and standard error Note that the number of heads is a random variable, with a distribution! What is the center and spread of this distribution? The center is called the expected value The spread is called the standard error. The standard error gives the likely size of the chance error. We can use a similar model to analyze election polls, and will look into that later. 4 / 22 2
3 Expected value 5 / 22 Expected value for sum of the draws, method 1 We look at the sum of 100 draws from a box with the tickets 0, 1, 1, 6 Observed value = expected value + chance error What is the expected value of the sum of the draws? Method 1: How many 0 s do we expect in our draws? About 25. How many 1 s do we expect in our draws? About 50. How many 6 s do we expect in our draws? About 25. So what do we expect for the sum of the draws? About (25 0) + (50 1) + (25 6) = = / 22 Expected value for sum of the draws, method 2 Method 2: The average of the box is: = 8 4 = 2 So after each draw, we expect the sum of the draws to increase by about 2 So the sum of the draws is expected to be = 200 General formula for the expected value for the sum of the draws, made at random with replacement: (number of draws) (averageof thebox) 7 / 22 Formula for expected value of sum of the draws General formula for the expected value for the sum of the draws, made at random with replacement: Does the formula make sense? (number of draws) (averageof thebox) What happens if the number of draws is doubled? Then the expected value of the sum of the draws doubles. What happens if the average of the box is doubled? Then the expected value of the sum of the draws doubles. 8 / 22 3
4 Standard error 9 / 22 Standard error for the sum of the draws We look at the sum of draws from a box Observed value = expected value + chance error How big is the chance error? The chance error is likely to be similar in size to the standard error (SE) for the sum of the draws If the SE for the sum of the draws is large, then we have large chance errors, and the observed values are widely spread around the expected value If the SE for the sum of the draws is small, then we have small chance errors, and the observed values are tightly clustered around the expected value Observed values are rarely more than 2 or 3 SEs away from the expected value. 10 / 22 Computing the SE for the sum of the draws SEfor thesum of thedraws = number of draws (SDof thebox) This is called the square root law, because it involves the square root of the number of draws Does the formula make sense? What happens if the number of draws is doubled? Then the SE of the sum of the draws is multiplied by a factor 2. This matches with what we learned about the law of large numbers: the chance error grows, but only slowly. What happens if we double the SD of the box? Then the SE of the sum of the draws doubles. 11 / 22 Example We look at the sum of 25 draws from a box with tickets 0,2,3,4,6 Fill in the blank. The sum of the draws is around...(a), give or take...(b) or so. (a) should be the expected value of the sum of the draws: (number of draws) (averageof thebox) = 25 ( ) = 25 3 = 75 (b) should be the SE for the sum of the draws. This is given by the square root law: number of draws (SDof thebox) 12 / 22 4
5 Example (cont d) We need to compute the SE for the sum of the draws: number of draws (SDof thebox) What is the SD of the box 0, 2, 3, 4, 6? Step 1: compute the average of the box: 3 (see part a) Step 2: compute deviation from the average: -3, -1, 0, 1, 3 Step 3: compute r.m.s. size of the deviations: ( 3) 2 + ( 1) So the SD of the box is 2 The SE for the sum of the draws is: 25 2 = 5 2 = = 20 5 = 4 = 2 13 / 22 Example (cont d) We look at the sum of 25 draws from a box with tickets 0,2,3,4,6 Fill in the blank. The sum of the draws is around...(a), give or take...(b) or so. (a) should be the expected value of the sum of the draws: 75 (b) should be the SE for the sum of the draws: 10 So the sum of the draws is around 75, give or take 10 or so. 14 / 22 Short-cut Suppose the box only contains two kinds of tickets: some tickets with a big number and some tickets with a small number. Then there is a shortcut to compute the SD of the box! SDof thebox = (big number small number) (fraction of big numbers) (fraction of smallnumbers) Example: box with tickets 7,7,7,-2,-2 Large number = 7. Fraction of large numbers = 3/5. Small number = -2. Fraction of small numbers = 2/5. SD of the box = (7 ( 2)) (3/5) (2/5) = 9 (3/5) (2/5) Use calculator to compute this 15 / 22 5
6 Normal approximation 16 / 22 Use normal approximation If number of draws is large, we can use the normal approximation to estimate chances. We should use a new average and new SD: New average = expected value for sum of the draws New SD = SE for the sum of the draws So the new standard units tell us how many SEs a number is away from the expected value 17 / 22 Example Consider the sum of 25 draws from the box with tickets 0,2,3,4,6. See computer simulation, where I repeated this 1000 times 18 / 22 Example (cont d) Histogram of sum of the draws, when repeated 1000 times Density sum of the draws 19 / 22 6
7 Example (cont d) About what percentage of observed values should be between 50 and 100? We use the normal approximation: New average: expected value for the sum of the draws = 75 New SD: SE for the sum of the draws = 10 Note that these numbers match with the graph on the previous slide. Then use normal approximation as before. See overhead 20 / 22 Classifying and counting 21 / 22 Replace tickets by 0s and 1s See overhead for example Suppose you draw from a box, and want to count the number of a certain ticket (or tickets) Then: put a 0 on the tickets that you don t want to count put a 1 on the ticket that you do want to count Using the new box: The count is like the sum of the draws from the new box We can compute the expected value and SE as before We can also use the normal curve to approximate probabilities as before 22 / 22 7
Chapter 20: chance error in sampling
Chapter 20: chance error in sampling Context 2 Overview................................................................ 3 Population and parameter..................................................... 4
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
Coins, Presidents, and Justices: Normal Distributions and z-scores
activity 17.1 Coins, Presidents, and Justices: Normal Distributions and z-scores In the first part of this activity, you will generate some data that should have an approximately normal (or bell-shaped)
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 18: Simple Random Sampling Tessa L. Childers-Day UC Berkeley 24 July 2014 By the end of this lecture... You will be able to: Draw box models for real-world
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
John Kerrich s coin-tossing Experiment. Law of Averages - pg. 294 Moore s Text
Law of Averages - pg. 294 Moore s Text When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So, if the coin is tossed a large number of times, the number of heads and the
Chapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
Capital Market Theory: An Overview. Return Measures
Capital Market Theory: An Overview (Text reference: Chapter 9) Topics return measures measuring index returns (not in text) holding period returns return statistics risk statistics AFM 271 - Capital Market
Chapter 4: Average and standard deviation
Chapter 4: Average and standard deviation Context................................................................... 2 Average vs. median 3 Average.................................................................
Characteristics of Binomial Distributions
Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation
The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
Northumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
Chapter 11: r.m.s. error for regression
Chapter 11: r.m.s. error for regression Context................................................................... 2 Prediction error 3 r.m.s. error for the regression line...............................................
MEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2
Calculator Notes for the TI-Nspire and TI-Nspire CAS
CHAPTER 11 Calculator Notes for the Note 11A: Entering e In any application, press u to display the value e. Press. after you press u to display the value of e without an exponent. Note 11B: Normal Graphs
4.1 4.2 Probability Distribution for Discrete Random Variables
4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
Week 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
How to compute Random acceleration, velocity, and displacement values from a breakpoint table.
How to compute Random acceleration, velocity, and displacement values from a breakpoint table. A random spectrum is defined as a set of frequency and amplitude breakpoints, like these: 0.050 Acceleration
Week 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
Two-sample inference: Continuous data
Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
Math 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
Part III. Lecture 3: Probability and Stochastic Processes. Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149
Part III Lecture 3: Probability and Stochastic Processes Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149 Today Basics of probability Empirical distributions Properties of probability distributions
OPTIONS TRADING AS A BUSINESS UPDATE: Using ODDS Online to Find A Straddle s Exit Point
This is an update to the Exit Strategy in Don Fishback s Options Trading As A Business course. We re going to use the same example as in the course. That is, the AMZN trade: Buy the AMZN July 22.50 straddle
The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
MBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
Chapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
Section 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
FACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
Chapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
Lesson 17: Margin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information
TEST 2 STUDY GUIDE. 1. Consider the data shown below.
2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes
Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes Simcha Pollack, Ph.D. St. John s University Tobin College of Business Queens, NY, 11439 [email protected]
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7 C2. Health Insurance: Risk Pooling Health insurance works by pooling individuals together to reduce the variability
Thursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001
Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
p-values and significance levels (false positive or false alarm rates)
p-values and significance levels (false positive or false alarm rates) Let's say 123 people in the class toss a coin. Call it "Coin A." There are 65 heads. Then they toss another coin. Call it "Coin B."
Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
You flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
Means, standard deviations and. and standard errors
CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard
COMMON CORE STATE STANDARDS FOR
COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in
Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)
Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center
University of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
Chapter 26: Tests of Significance
Chapter 26: Tests of Significance Procedure: 1. State the null and alternative in words and in terms of a box model. 2. Find the test statistic: z = observed EV. SE 3. Calculate the P-value: The area under
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
Problem Solving and Data Analysis
Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
STAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
Monte Carlo simulations and option pricing
Monte Carlo simulations and option pricing by Bingqian Lu Undergraduate Mathematics Department Pennsylvania State University University Park, PA 16802 Project Supervisor: Professor Anna Mazzucato July,
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1
Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables
WISE Sampling Distribution of the Mean Tutorial
Name Date Class WISE Sampling Distribution of the Mean Tutorial Exercise 1: How accurate is a sample mean? Overview A friend of yours developed a scale to measure Life Satisfaction. For the population
Key Concept. Density Curve
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
Introduction to Game Theory IIIii. Payoffs: Probability and Expected Utility
Introduction to Game Theory IIIii Payoffs: Probability and Expected Utility Lecture Summary 1. Introduction 2. Probability Theory 3. Expected Values and Expected Utility. 1. Introduction We continue further
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Lecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science
STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science Mondays 2:10 4:00 (GB 220) and Wednesdays 2:10 4:00 (various) Jeffrey Rosenthal Professor of Statistics, University of Toronto
REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
University of Chicago Graduate School of Business. Business 41000: Business Statistics
Name: University of Chicago Graduate School of Business Business 41000: Business Statistics Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper for the formulas. 2. Throughout
Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
Analyzing Portfolio Expected Loss
Analyzing Portfolio Expected Loss In this white paper we discuss the methodologies that Visible Equity employs in the calculation of portfolio expected loss. Portfolio expected loss calculations combine
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Stats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
Algebra 2 C Chapter 12 Probability and Statistics
Algebra 2 C Chapter 12 Probability and Statistics Section 3 Probability fraction Probability is the ratio that measures the chances of the event occurring For example a coin toss only has 2 equally likely
Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.
Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
RISK AND RETURN WHY STUDY RISK AND RETURN?
66798_c08_306-354.qxd 10/31/03 5:28 PM Page 306 Why Study Risk and Return? The General Relationship between Risk and Return The Return on an Investment Risk A Preliminary Definition Portfolio Theory Review
3. What is the difference between variance and standard deviation? 5. If I add 2 to all my observations, how variance and mean will vary?
Variance, Standard deviation Exercises: 1. What does variance measure? 2. How do we compute a variance? 3. What is the difference between variance and standard deviation? 4. What is the meaning of the
3. Data Analysis, Statistics, and Probability
3. Data Analysis, Statistics, and Probability Data and probability sense provides students with tools to understand information and uncertainty. Students ask questions and gather and use data to answer
How to bet and win: and why not to trust a winner. Niall MacKay. Department of Mathematics
How to bet and win: and why not to trust a winner Niall MacKay Department of Mathematics Two ways to win Arbitrage: exploit market imperfections to make a profit, with certainty Two ways to win Arbitrage:
WEEK #22: PDFs and CDFs, Measures of Center and Spread
WEEK #22: PDFs and CDFs, Measures of Center and Spread Goals: Explore the effect of independent events in probability calculations. Present a number of ways to represent probability distributions. Textbook
Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples
Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The
Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
