What is Laser Ablation? Mass removal by coupling laser energy to a target material

Size: px
Start display at page:

Download "What is Laser Ablation? Mass removal by coupling laser energy to a target material"

Transcription

1 Laser Ablation Fundamentals & Applications Samuel S. Mao Department of Mechanical Engineering University of California at Berkeley Advanced Energy Technology Department March 1, 25

2 Laser Ablation What is Laser Ablation? Mass removal by coupling laser energy to a target material

3 laser ablation Is it important? Film deposition * oxide/superconductor films * nanocrystals/nanotubes substrate material plume target Materials characterization * semiconductor doping profiling * solid state chemical analysis plasma lens mass spectrometer Micro structuring * direct wave guide writing * 3D micro fabrication target target microstructure optical spectrometer transparent solid

4 laser ablation Is it important? Film deposition * oxide/superconductor films * nanocrystals/nanotubes Materials characterization * semiconductor doping profiling * solid state chemical analysis 1 µm Micro structuring * direct wave guide writing * 3D micro fabrication

5 laser ablation Do we really understand? laser beam target plasma Laser ablation is still largely unexplored at the fundamental level. J. C. Miller & R. F. Haglund, Laser Ablation and Desorption (Academic, New York, 1998)

6 What is happening? Laser Ablation laser pulse target femtosecond picosecond nanosecond microsecond 1-15 s 1-12 s 1-9 s 1-6 s

7 Experiments - ultrafast imaging Pump-probe technique ablation laser beam pump beam probe beam delay time CCD? target imaging laser beam

8 1 fs = 1 15 s Femtosecond Time Scale laser pulse Ultrafast imaging - time dependent energy transfer air glass 1 µm electronic excitation e-h plasma C V self-focusing 1 fs,8 nm E = 3 µj

9 Femtosecond Time Scale Electron number density n e time/space dependence z laser pulse electron number density (1 19 cm -3 ) n e ~ 1 19 cm -3 z (µm) fs 333 fs 667 fs 1 fs 1333 fs 1667 fs 2 fs Transmittance (probe beam) I I Absorption coefficient α = ω τ nc ω 2 p ω τ Plasma frequency 2 nee m ε d p = = e αd e

10 Femtosecond Time Scale Peak electron number density n e - time dependence electron number density (1 19 cm -3 ) 5 fs fs fs 5 1 fs fs fs 5 2 fs z (µm) N e, max (cm -3 ) 6x1 19 5x1 19 4x1 19 3x1 19 2x1 19 1x time (fs) no breakdown flattened peak electron number density

11 Femtosecond Time Scale laser pulse Fundamental processes Nonlinear optics Self-focusing - intensity dependence of refractive index positive refractive index change Nonlinear absorption Electronic excitation - interband absorption z C negative refractive index change V suppress self-focusing

12 Femtosecond Time Scale Propagation of electronic excitation in glass 1 fs,8 nm E = 3 µj z (µm) µj 12 µj 6 µj 3 µj 12 µj v = 1.8x1 8 m/s n = t (fs) [Appl. Phys. A 79, (24)]

13 What is happening? Laser Ablation laser pulse target femtosecond picosecond nanosecond microsecond

14 1ps= 1 12 s Picosecond Time Scale Picosecond imaging ablation laser pulse t = 5 ps t = 5 ps 5 µm (air) 5 µm target Cu (laser pulse: 35 ps, fluence: 6 J/cm 2 ) (laser pulse: 35 ps, fluence: 9 J/cm 2 )

15 Picosecond Time Scale Threshold behavior regime-1 plasma onset regime µm ablation depth (µm) J/cm 2 85 J/cm 2 11 J/cm 2 (laser pulse length 35 ps; pictures taken at 2 ps) laser fluence (J/cm 2 ) Threshold for picosecond plasma formation same as the threshold for ablation efficiency reduction: ~ 85 J/cm 2 (laser fluence) ~ 1 12 W/cm 2 (power density) (threshold for direct laser-induced air breakdown: ~ 1 13 W/cm 2 )

16 Ultrafast interferometry Picosecond Time Scale t = 15 ps interference pattern z 5 µm target r

17 Electron number density Picosecond Time Scale 1.2x1 2 1.x1 2 z t = 15 ps N e (cm -3 ) air density 8.x x x x Z (µm) A large electron number density! (close to target surface)

18 Longitudinal (z) expansion Picosecond Time Scale longitudinal plasma extent vs. time 5 4 z 5 µm z (µm) (laser energy: 1 mj) t (ps) longitudinal expansion is suppressed (t > 5 ps)!

19 Picosecond Time Scale Lateral (r) expansion (t > 5 ps: expansion only in lateral direction) lateral plasma radius vs. time 5 4 r (µm) r (laser energy: 1 mj) t (ps) lateral expansion follows a power law!

20 Picosecond Time Scale Energy deposition to picosecond plasma r (µm) 1 1 t 1/2 power law r similarity relation (2D blast wave - line energy source) E ρ o 2 Distribution of laser energy (1%): 1 ~ 5% absorbed by the picosecond micro-plasma 5 µm 4 J/cm 2 time (ps) t 1/2 1. mj 7.5 mj 85 J/cm 2 11 J/cm 2 1/ 4 1/ 2 ~ 5% reaching target surface plasma onset t E: energy deposition density (laser axis) ρ : ambient gas (air) density ablation depth (µm) reduced efficiency laser fluence (J/cm 2 )

21 Picosecond Time Scale Theoretical model (laser-solid-gas interaction) laser beam electron ion (gas) atom (gas) gas (1atm) photon Cu atom Cu before after laser irradiation electron laser heating of target (metal) electron heating - absorption of laser energy lattice heating - electron-phonon collisions plasma development above target surface electron emission (seed) impact ionization of gas

22 What is happening? Laser Ablation laser pulse target femtosecond picosecond nanosecond microsecond

23 1 ns = 1 9 s Nanosecond Time Scale Plasma evolution picosecond to nanosecond time dependence (35 ps, 7 mj) laser energy dependence (35 ps, 2 ns)

24 Plasma development Nanosecond Time Scale plasma advancement: ~ 1 6 cm/s ~ 1 µm every 1 ns (1 ps) laser pulse shock wave plasma vapor target solid

25 Nanosecond Time Scale Plasma shielding nanosecond laser Theory without plasma 1 Experiment 2 GW/cm 2 3 GW/cm 2 ablation depth (µm) 1.1 solid t (ns) 1 GW/cm 2 3 ns, 164 nm laser ablation of Si (single pulse) 1 1 laser fluence (J/cm 2 ) 25 ns, 248 nm laser ablation of Cu (single pulse, in air, 1 µm spot diameter)

26 What is happening? Laser Ablation laser pulse target femtosecond picosecond nanosecond microsecond

27 1 µs = 1 6 s Microsecond Time Scale ) Plume evolution z below threshold 1 ns 64 ns 16 ns 76 ns 1.6 µs 4.9 µs 1 µm (3 ns, 1.8x11 W/cm2) z above threshold 5 ns 7 ns 2 ns 86 ns 1.3 µs 4.2 µs 1 µm (3 ns, 2.1x11 W/cm2) University of California at Berkeley Q

28 Threshold behavior Microsecond Time Scale ablation depth (µm) GW/cm µs ablation depth (µm) ablation depth (µm) GW/cm µs laser intensity (W/cm 2 )

29 Theoretical model Microsecond Time Scale superheated liquid layer ~ 1 ns solid ~ 1 ns solid ~ 1 µs solid Normal vaporization (Hertz-Knudsen equations) x t = βp m (2πmk ρ T) L exp[ k m 1 ( T 1/ 2 ev b B x= B b T ablation below threshold: normal evaporation Explosive boiling (heat diffusion T max ~ T c ) T T ρc = ( k ) + αi laser exp( αx) t x x 1 )] ablation above threshold: normal evaporation and explosive boiling ablation depth (µm) experiment theory laser intensity (W/cm 2 )

30 What is happening? Laser Ablation laser pulse target femtosecond picosecond nanosecond microsecond

31 Fundamental processes Laser Ablation ps ns µs fs laser µs boiling droplets electronic plasma plasma vapor electronic liquid excitation heated zone ns ps radiation ionization (shock wave) vaporization convection melting ionization (photon) conduction solid fs absorption/excitation

32 Laser Ablation Applications 1. ns laser, 266 nm fs laser, 266 nm Zn/Cu ratio time (s) micro-analysis nano-material

33 Applications of Ultrafast Laser Ablation Ultrafast laser ablation (τ pulse < t thermal ) FEL capability! Non-thermal ablation regime ion fs laser - + E electron target Reduced dependence on thermal properties Reduced larger cluster particles generation

34 Applications of Ultrafast Laser Ablation Micro Analysis The problem of nanosecond laser ablation MS signal: Zn/Cu ratio 1. ns laser, 266 nm fs laser, 266 nm.5 ns fs time(s) Mass Spectrometry - Laser ablation of brass (CuZn alloy)

35 Micro-Analysis Application New magnetic film material (data storage applications) laser 1 1 depth profile (bulk material) 1 9 sputtering target depth profiling laser element counts (a.u.) Fe Cu time (s) surface profiling (film material) deposited film surface profiling Cu/Fe ratio time (s) 15

36 Applications of Ultrafast Laser Ablation Nano Material The problem of nanosecond laser ablation 5 µm 5 µm 1 µm Nanowires with large particles

37 Nano-Material Application Pulsed laser deposition ZnO nanowire growth gas fabrication chamber target Setup ultrafast laser substrate temperature control gas

38 Nano-Material Application Nanowire nanolaser Nanolaser spectra excitation source 266 nm (Nd:YAG) UV lasing (room temperature) intensity (a.u.) above threshold below threshold ZnO nanowire ZnO nanowire: natural laser cavity ~ 1 nm sapphire substrate emission intensity (a.u.) wavelength (nm) spontaneous lasing excitation energy (mj) [Science 292 (21) 1897]

39 Acknowledgements U. S. Department of Energy Yanfeng Zhang Quanming Lu Peidong Yang Richard Russo Xianglei Mao

Femtosecond Laser Micromachining

Femtosecond Laser Micromachining Femtosecond Laser Micromachining 02/03/2010 Spring 2010 MSE503 Seminar Deepak Rajput Center for Laser Applications University of Tennessee Space Institute Tullahoma, Tennessee 37388-9700 Email: drajput@utsi.edu

More information

Pulsed laser deposition of organic materials

Pulsed laser deposition of organic materials Pulsed laser deposition of organic materials PhD theses Gabriella Kecskeméti Department of Optics and Quantum Electronics University of Szeged Supervisor: Dr. Béla Hopp senior research fellow Department

More information

Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids

Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids Applied Surface Science 247 (2005) 418 422 www.elsevier.com/locate/apsusc Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids N.V. Tarasenko *, A.V. Butsen,

More information

Laser Based Micro and Nanoscale Manufacturing and Materials Processing

Laser Based Micro and Nanoscale Manufacturing and Materials Processing Laser Based Micro and Nanoscale Manufacturing and Materials Processing Faculty: Prof. Xianfan Xu Email: xxu@ecn.purdue.edu Phone: (765) 494-5639 http://widget.ecn.purdue.edu/~xxu Research Areas: Development

More information

Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water

Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water Chris B. Schaffer, Nozomi Nishimura, and Eric Mazur * Harvard University, Department of Physics, Cambridge, MA 02138

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015 Ti:Sapphire Lasers Tyler Bowman April 23, 2015 Introduction Ti:Sapphire lasers are a solid state laser group based on using titanium-doped sapphire (Ti:Al 2O 3) plates as a gain medium. These lasers are

More information

Pump-probe experiments with ultra-short temporal resolution

Pump-probe experiments with ultra-short temporal resolution Pump-probe experiments with ultra-short temporal resolution PhD candidate: Ferrante Carino Advisor:Tullio Scopigno Università di Roma ƒla Sapienza 22 February 2012 1 Pump-probe experiments: generalities

More information

2. Nanoparticles. Introduction to Nanoscience, 2005 1

2. Nanoparticles. Introduction to Nanoscience, 2005 1 2. Nanoparticles Nanoparticles are the simplest form of structures with sizes in the nm range. In principle any collection of atoms bonded together with a structural radius of < 100 nm can be considered

More information

High power picosecond lasers enable higher efficiency solar cells.

High power picosecond lasers enable higher efficiency solar cells. White Paper High power picosecond lasers enable higher efficiency solar cells. The combination of high peak power and short wavelength of the latest industrial grade Talisker laser enables higher efficiency

More information

Ultraviolet laser removal of small metallic particles from silicon wafers

Ultraviolet laser removal of small metallic particles from silicon wafers Optics and Lasers in Engineering 38 (2002) 405 415 Ultraviolet laser removal of small metallic particles from silicon wafers C. Curran a, *, J.M. Lee b, K.G. Watkins a a Laser Group, Department of Engineering,

More information

Short overview of TEUFEL-project

Short overview of TEUFEL-project Short overview of TEUFEL-project ELAN-meeting may 2004 Frascati (I) Contents Overview of TEUFEL project at Twente Photo cathode research Recent experience Outlook Overview FEL Drive laser Photo cathode

More information

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.

More information

NANOFLAM. Projet ANR Blanc 2011 BS0401001. Aide allouée: 337 000, durée 36+8 mois (fin : Mai 2015) Laboratoire H. Curien

NANOFLAM. Projet ANR Blanc 2011 BS0401001. Aide allouée: 337 000, durée 36+8 mois (fin : Mai 2015) Laboratoire H. Curien Laboratoire H. Curien Centre de Physique Théorique F. Courvoisier R. Stoian & T. Itina A. Couairon NANOFLAM Projet ANR Blanc 2011 BS0401001 Contrôle de la filamentation et de la génération de plasma avec

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

How To Improve Ablation Efficiency In Laser Power Lasers

How To Improve Ablation Efficiency In Laser Power Lasers Laser ablation fundamentals and application Laserová ablace principy a použití Michal Lucki, Stanislav Kraus, Richard Zelený Czech Technical University in Prague, FEE, Department of Telecommunication Engineering

More information

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Page 1 of 6 ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Free electron lasers support unique time-resolved experiments over a wide range of x-ray wavelengths,

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Program of the talk... What we have now What we know about silicon What

More information

Solid Sample Analysis by ICP- Spectrometry with Femtosecond Laser Ablation and Online Flow Digestion

Solid Sample Analysis by ICP- Spectrometry with Femtosecond Laser Ablation and Online Flow Digestion Solid Sample Analysis by ICP- Spectrometry with Femtosecond Laser Ablation and Online Flow Digestion Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Dortmund vorgelegt

More information

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice. CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

More information

Femtosecond laser-induced silicon surface morphology in water confinement

Femtosecond laser-induced silicon surface morphology in water confinement Microsyst Technol (2009) 15:1045 1049 DOI 10.1007/s00542-009-0880-8 TECHNICAL PAPER Femtosecond laser-induced silicon surface morphology in water confinement Yukun Han Æ Cheng-Hsiang Lin Æ Hai Xiao Æ Hai-Lung

More information

University of Pécs in ELI

University of Pécs in ELI Dept. of Experimental Physics Institute of Physics 7624 Pécs, Ifjúság ú. 6. http://physics.ttk.pte.hu University of Pécs in ELI József Fülöp fulop@fizika.ttk.pte.hu Budapest, April 16, 2008 Outline ELI

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of

More information

HEAT TRANSFER IN FEMTOSECOND LASER PROCESSING OF METAL

HEAT TRANSFER IN FEMTOSECOND LASER PROCESSING OF METAL Numerical Heat Transfer, Part A, 44: 219 232, 2003 Copyright # Taylor & Francis Inc. ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407780390210224 HEAT TRANSFER IN FEMTOSECOND LASER PROCESSING

More information

Structure and properties of transparent conductive ZnO films grown by pulsed laser

Structure and properties of transparent conductive ZnO films grown by pulsed laser Structure and properties of transparent conductive ZnO films grown by pulsed laser deposition (PLD) by Yu Hsiu, Lin A dissertation submitted to the University of Birmingham for the degree of Master of

More information

Advanced Laser Microfabrication in High Volume Manufacturing

Advanced Laser Microfabrication in High Volume Manufacturing Advanced Laser Microfabrication in High Volume Manufacturing IPG Photonics Microsystems Division 220 Hackett Hill Road, Manchester NH, 03102USA E-mail: jbickley@ipgphotonics.com There is increased interest

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Laser-induced surface phonons and their excitation of nanostructures

Laser-induced surface phonons and their excitation of nanostructures CHINESE JOURNAL OF PHYSICS VOL. 49, NO. 1 FEBRUARY 2011 Laser-induced surface phonons and their excitation of nanostructures Markus Schmotz, 1, Dominik Gollmer, 1 Florian Habel, 1 Stephen Riedel, 1 and

More information

Why Using Laser for Dust Removal from Tokamaks

Why Using Laser for Dust Removal from Tokamaks 1 FTP/P1-25 Why Using Laser for Dust Removal from Tokamaks Ph. Delaporte 1), A. Vatry 1), 2), D. Grojo 1), M. Sentis 1), C. Grisolia 2) 1) Laboratoire Lasers, Plasmas et Procédés Photoniques, campus de

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Femtosecond Laser Ablation

Femtosecond Laser Ablation Femtosecond Laser Ablation Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Dortmund vorgelegt von Vanja Margetić Dortmund 2002 Erstgutachter: Prof. Dr. K. Niemax Zweitgutachter:

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Real-world applications of intense light matter interaction beyond the scope of classical micromachining. Dr. Lukas Krainer lk@onefive.com CEO Real-world applications of intense light matter interaction beyond the scope of classical micromachining. 1 Management & Company Company Based in Zürich, Switzerland

More information

Session 2A2a Femtosecond Photonics: Microfabrication and Optical Data Storage 2

Session 2A2a Femtosecond Photonics: Microfabrication and Optical Data Storage 2 Session 2A2a Femtosecond Photonics: Microfabrication and Optical Data Storage 2 Femtosecond Photonics for Multilayered Optical Memory Yoshimasa Kawata (Shizuoka University, Japan); M. Miyamoto (Shizuoka

More information

the laser beam [CHR02], [KRD05]. Formation mechanisms of laser-generated ripples and the underlying microscopic processes are still discussed.

the laser beam [CHR02], [KRD05]. Formation mechanisms of laser-generated ripples and the underlying microscopic processes are still discussed. Introduction Laser-induced periodic surface structures were detected in early experiments on laser application [Bir65] and have been studied experimentally ever since. The first widely accepted theoretical

More information

Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium

Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium Jörn Bonse,* Guillaume Bachelier, Jan Siegel, and Javier Solis Laser

More information

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT MultiWave Hybrid Laser Processing of Micrometer Scale Features for Flexible Electronics Applications J. Hillman, Y. Sukhman, D. Miller, M. Oropeza and C. Risser Universal Laser Systems, 7845 E. Paradise

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere Printed Electronics Europe April 7-8, 2009 Dresden, Germany Dr. Zvi Yaniv Applied

More information

Tecnologie convenzionali nell approccio top-down; I: metodi e problematiche per la deposizione di film sottili

Tecnologie convenzionali nell approccio top-down; I: metodi e problematiche per la deposizione di film sottili LS Scienza dei Materiali - a.a. 2005/06 Fisica delle Nanotecnologie part 8 Version 4, Dec 2005 Francesco Fuso, tel 0502214305, 0502214293 - fuso@df.unipi.it http://www.df.unipi.it/~fuso/dida Tecnologie

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

The CVD diamond booklet

The CVD diamond booklet available at: www.diamond-materials.com/download Content 1. General properties of diamond... 2 2. Optical Properties... 4 Optical transparency...4 Absorption coefficient at 10.6 µm...5 Refractive index:

More information

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko Towards large dynamic range beam diagnostics and beam dynamics studies Pavel Evtushenko Motivation Linacs with average current 1-2 ma and energy 1-2.5 GeV are envisioned as drivers for next generation

More information

Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation L. ZHAO 1, A. NORMAND, J. HOUARD, I. BLUM, F. DELAROCHE, F. VURPILLOT Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM,

More information

FAST and CURIOUS A brief introduction to ultrafast lasers and their applications

FAST and CURIOUS A brief introduction to ultrafast lasers and their applications FAST and CURIOUS A brief introduction to ultrafast lasers and their applications Dr. Maria Ana Cataluna m.a.cataluna@dundee.ac.uk School of Engineering, Physics and Mathematics University of Dundee How

More information

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons D.Monaghan, V. Bellido-Gonzalez, M. Audronis. B. Daniel Gencoa, Physics Rd, Liverpool, L24 9HP, UK. www.gencoa.com,

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

Status of the FERMI@Elettra Free Electron Laser

Status of the FERMI@Elettra Free Electron Laser Status of the FERMI@Elettra Free Electron Laser E. Allaria on behalf of the FERMI team Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3

More information

Investigation of the Optical Properties of Liquid Deposition CuSO 4 Thin Film

Investigation of the Optical Properties of Liquid Deposition CuSO 4 Thin Film 015 IJSRST Volume 1 Issue 5 Print ISSN: 395-6011 Online ISSN: 395-60X Themed Section: Science and Technology Investigation of the Optical Properties of Liquid Deposition CuSO 4 Thin Film Nafie A. Almuslet

More information

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical

More information

Development of certified reference material of thin film for thermal diffusivity

Development of certified reference material of thin film for thermal diffusivity Development of certified reference material of thin film for thermal diffusivity Takashi Yagi, Thermophysical properties section, NMIJ/AIST Joshua Martin MML, National Institute of Standards and Technology

More information

Laser beam sintering of coatings and structures

Laser beam sintering of coatings and structures Laser beam sintering of coatings and structures Anne- Maria Reinecke, Peter Regenfuß, Maren Nieher, Sascha Klötzer, Robby Ebert, Horst Exner Laserinstitut Mittelsachsen e.v. an der Hochschule Mittweida,

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A. FEMTOSECOND MEASUREMENTS COMBINED WITH NEAR FIELD OPTICAL MICROSCOPY Artyom A. Astafiev, Semyonov Institute of Chemical Physics, Moscow, Russian Federation. Keywords: diffraction limit nearfield scanning

More information

LASER MICROVIA DRILLING AND ABLATION OF SILICON USING 355 NM PICO AND NANOSECOND PULSES Paper M507

LASER MICROVIA DRILLING AND ABLATION OF SILICON USING 355 NM PICO AND NANOSECOND PULSES Paper M507 LASER MICROVIA DRILLING AND ABLATION OF SILICON USING 355 NM PICO AND NANOSECOND PULSES Paper M507 Henrikki Pantsar 1, Hans Herfurth 1, Stefan Heinemann 1, Petri Laakso 2, Raimo Penttila 2, Yi Liu 3, Golam

More information

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION Olivier Palais, Damien Barakel, David Maestre, Fabrice Gourbilleau and Marcel Pasquinelli 1 Outline Photovoltaic today

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Christine E. Hatch University of Nevada, Reno

Christine E. Hatch University of Nevada, Reno Christine E. Hatch University of Nevada, Reno Roadmap What is DTS? How Does it Work? What Can DTS Measure? Applications What is Distributed Temperature Sensing (DTS)? Temperature measurement using only

More information

Excimer Laser Technology

Excimer Laser Technology D. Basting G. Marowsky (Eds.) Excimer Laser Technology With 257 Figures ^y Springer Contents 1 Introduction 1 1.1 Introductory Remarks 1 1.1.1 The Unique Microstructuring Capabilities of Excimer Lasers

More information

Time scale effects in laser material removal: a review

Time scale effects in laser material removal: a review Int J Adv Manuf Technol 2005) 26: 598 608 DOI 10.1007/s00170-003-2026-y ORIGINAL ARTICLE Y. Lawrence Yao Hongqiang Chen Wenwu Zhang Time scale effects in laser material removal: a review Received: 20 August

More information

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability Technical Note Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability This whitepaper reviews how design choices, manufacturing steps and testing protocols substantially

More information

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................

More information

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,

More information

Spectral Measurement Solutions for Industry and Research

Spectral Measurement Solutions for Industry and Research Spectral Measurement Solutions for Industry and Research Hamamatsu Photonics offers a comprehensive range of products for spectroscopic applications, covering the, Visible and Infrared regions for Industrial,

More information

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen Dr. Frank Allenstein 3D-Micromac AG 3D-Micromac At a Glance 141 employees in R&D, manufacturing and service Worldwide more than 300 industrial

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium

Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium 90% added energy However can reaction can chemically

More information

Broadband THz Generation from Photoconductive Antenna

Broadband THz Generation from Photoconductive Antenna Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

More information

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy Structural and optical characterisation of planar waveguides obtained via Sol-Gel F. Rey-García, C. Gómez-Reino, M.T. Flores-Arias, G.F. De La Fuente, W. Assenmacher, W. Mader ABSTRACT Planar waveguides

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Micro-Power Generation

Micro-Power Generation Micro-Power Generation Elizabeth K. Reilly February 21, 2007 TAC-meeting 1 Energy Scavenging for Wireless Sensors Enabling Wireless Sensor Networks: Ambient energy source Piezoelectric transducer technology

More information

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation

More information

Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

The study of structural and optical properties of TiO 2 :Tb thin films

The study of structural and optical properties of TiO 2 :Tb thin films Optica Applicata, Vol. XXXVII, No. 4, 2007 The study of structural and optical properties of TiO 2 :Tb thin films AGNIESZKA BORKOWSKA, JAROSLAW DOMARADZKI, DANUTA KACZMAREK, DAMIAN WOJCIESZAK Faculty of

More information

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics

X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-rays have come a long way 1895 1993 10 cm 10 µm 100 nm Collaborators: SSRL Stanford:

More information

OPTICAL DETECTION OF KCl VAPOR AND ATOMIC K RELEASES FROM BIOMASS FUELS COMBUSTED IN SINGLE PARTICLE REACTOR

OPTICAL DETECTION OF KCl VAPOR AND ATOMIC K RELEASES FROM BIOMASS FUELS COMBUSTED IN SINGLE PARTICLE REACTOR OPTICAL DETECTION OF KCl VAPOR AND ATOMIC K RELEASES FROM BIOMASS FUELS COMBUSTED IN SINGLE PARTICLE REACTOR Tapio Sorvajärvi*, Juha Toivonen Tampere University of Technology Department of Physics, Optics

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Technology Developments Towars Silicon Photonics Integration

Technology Developments Towars Silicon Photonics Integration Technology Developments Towars Silicon Photonics Integration Marco Romagnoli Advanced Technologies for Integrated Photonics, CNIT Venezia - November 23 th, 2012 Medium short reach interconnection Example:

More information

Efficiency of Concrete Removal With a Pulsed Nd:YAG Laser

Efficiency of Concrete Removal With a Pulsed Nd:YAG Laser 1 Efficiency of Concrete Removal With a Pulsed Nd:YAG Laser Michael Savina 1, Zhiyue Xu 2, Yong Wang 2, Claude Reed 2, Michael Pellin 1 1 Materials Science and Chemistry Divisions, Argonne National Laboratory,

More information

Surface plasmon nanophotonics: optics below the diffraction limit

Surface plasmon nanophotonics: optics below the diffraction limit Surface plasmon nanophotonics: optics below the diffraction limit Albert Polman Center for nanophotonics FOM-Institute AMOLF, Amsterdam Jeroen Kalkman Hans Mertens Joan Penninkhof Rene de Waele Teun van

More information

Calculation of Liquefied Natural Gas (LNG) Burning Rates

Calculation of Liquefied Natural Gas (LNG) Burning Rates Calculation of Liquefied Natural Gas (LNG) Burning Rates Carolina Herrera, R. Mentzer, M. Sam Mannan, and S. Waldram Mary Kay O Connor Process Safety Center Artie McFerrin Department of Chemical Engineering

More information

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Applied Surface Science 186 2002) 453±457 Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Lianne M. Doeswijk a,*, Hugo H.C. de Moor b, Horst Rogalla a, Dave

More information

Thermal diffusivity and conductivity - an introduction to theory and practice

Thermal diffusivity and conductivity - an introduction to theory and practice Thermal diffusivity and conductivity - an introduction to theory and practice Utrecht, 02 October 2014 Dr. Hans-W. Marx Linseis Messgeräte GmbH Vielitzer Str. 43 D-95100 Selb / GERMANY www.linseis.com

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices berlin Nanoscale Resolution Options for Optical Localization Techniques C. Boit TU Berlin Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009 Jan 26,

More information

EFFICIENT USE OF SHORT PULSE WIDTH LASER FOR MAXIMUM MATERIAL REMOVAL RATE Paper# M602

EFFICIENT USE OF SHORT PULSE WIDTH LASER FOR MAXIMUM MATERIAL REMOVAL RATE Paper# M602 EFFICIENT USE OF SHORT PULSE WIDTH LASER FOR MAXIMUM MATERIAL REMOVAL RATE Paper# M602 Ashwini Tamhankar and Rajesh Patel Spectra-Physics Lasers, Newport Corporation, 3635 Peterson Way, Santa Clara, CA

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Applied Surface Science 8118 (2002) 1 5

Applied Surface Science 8118 (2002) 1 5 3 Radioactive oxide removal by XeCl laser 4 Ph. Delaporte a,*, M. Gastaud a, W. Marine b, M. Sentis a, O. Uteza a, 5 P. Thouvenot c, J.L. Alcaraz c, J.M. Le Samedy c, D. Blin d 6 a Lasers, Plasmas and

More information

METHODS FOR PULSED LASER DEPOSITION OF LARGE-AREA FILMS USING MORE THAN ONE TARGET

METHODS FOR PULSED LASER DEPOSITION OF LARGE-AREA FILMS USING MORE THAN ONE TARGET Laser Physics 0 International Journal of Modern Physics: Conference Series Vol. 5 (0) 70 78 World Scientific Publishing Company DOI: 0.4/S009450078 METHODS FOR PULSED LASER DEPOSITION OF LARGE-AREA FILMS

More information

Photoinduced volume change in chalcogenide glasses

Photoinduced volume change in chalcogenide glasses Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu Zn Alloys

Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu Zn Alloys Spectrochimica Acta Part B 54 1999 1351 1365 Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu Zn Alloys O.V. Borisov a, X.L. Mao

More information

Laser Material Processing

Laser Material Processing William M. Steen Jyotirmoy Mazumder Laser Material Processing 4th Edition yq. Springer Contents Prologue 1 References 8 1 Background to Laser Design and General Applications 11 1.1 Basic Principles of

More information