CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY

Size: px
Start display at page:

Download "CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY"

Transcription

1 CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples to determine if they are significantly different from each other. Such comparisons can only be conducted when the researcher has interval level data. While the use of interval level data is preferred by most researchers because it provides a more precise measurement of the phenomena under consideration, it is often impossible to obtain. Researchers must then turn to another set of statistical tools that allow the testing of hypotheses using nominal and ordinal data. These tools are referred to in the field of statistics as non-parametric tests. A parameter is a quantity which is constant for a given population. Parameters can also be defined as numerical descriptive measures of a population. Two major parameters already explained in earlier chapters are measures of central tendency and variability. For example, the mean is a parameter which describes an entire distribution of values. Obviously, these parameters cannot be obtained for nominal and ordinal data. It follows then that statistics not dependent on calculating measures of central tendency or variability are non-parametric. However, this is not to say that parameters are not studied when using non-parametric statistics. One just does not know or make assumptions about any specific values of a parameter. Statisticians generally refer to T-tests and ANOVA tests as parametric statistics. This chapter introduces and explains the use of Chi-Square, used to test hypotheses involving nominal data, while the next is devoted to a statistic called Mann-Whitney U which is employed for hypothesis testing when working with ordinal measures. It should be pointed out by way of a cautionary note that statistics designed to test hypotheses for nominal and 137

2 ordinal data are no better than the data which they are designed to analyze. Interval data are more precise and accurate. The lower level of precision possible using nominal or ordinal measures makes the non-parametric statistics are somewhat less accurate for hypothesis testing. This limitation is partially addressed through the use of more stringent demands for statistical significance when non-parametric statistics are used. CHI-SQUARE The most frequently used non-parametric statistic for testing hypotheses with nominal data is Chi-Square. The nature of nominal data as explained in chapter one involves assigning data to mutual exclusive categories, labeling, or naming the data. Nominal data are most generally analyzed by frequency of occurrence. The non-parametric statistic Chi- Square is a comparison of relative frequencies among two or more groups. The null hypothesis for Chi-Square is that there is no statistically significant difference in the relative frequency of one outcome over another. For example, a possible null hypothesis might be that there is no statistically significant difference in the relative frequency of Hispanics failing their first math course in college and the relative frequency of Whites failing their first math course. In other words, there is no statistical difference between the two groups as measured by frequency of failure. Nominal data for testing this hypothesis can be organized in a twoby-two data matrix containing two rows and two columns for pass-fail categories and by group. This approach to organization is shown for a sample of 100 Hispanics and a sample of 100 Whites in Figure 11:1. 138

3 FIGURE 11:1 Pass Fail Total Whites Hispanics Total In this example, the null hypothesis would be accepted because one can simply observe that there is no difference between Hispanics and Whites. The frequencies of pass or fail rates are the same for both groups. No statistics are necessary for nominal data equally distributed between groups, but not all frequencies are this simple. Generally, decisions relative to accepting and rejecting null hypotheses require far more complex analyses because differences between samples do occur. Whether or not these differences are sufficient to suggest a statistically significant difference in the overall populations is the reason for conducting statistical tests. Calculation of the Chi-Square statistic is basically a comparison between observed and expected frequencies. Observed frequencies are actual nominal data for each characteristic under consideration by the researcher. In the above example, one observes that fifty Whites and Hispanics failed and fifty Whites and Hispanics passed. The expected frequencies are the nominal data results one would expect to find if the null hypothesis is to be accepted. In the above example, one would expect the proportion of pass and fail frequencies for Whites and Hispanics to be the same. The theory behind the Chi-Square statistic is that if the difference between the observed and expected frequencies is large, that even with assumed sampling error, the null hypothesis is rejected. One would conclude that a statistically significant difference between two or more groups does exist. By implication, this also means 139

4 that not all differences between observed and expected frequencies are significant, some are the result of sampling error or too small to be significant. The formula for calculating the Chi-Square statistic is: Where: the observed frequencies for each position in the matrix the expected frequencies for each position in the matrix Calculation of the Chi-Square statistic is a simple process involving the use of a solution matrix. For example, suppose a researcher wanted to test the difference between frequencies of high or low incomes for men and women in the same profession. A research question could be stated as follows: Do male lawyers have higher incomes than female lawyers? The null hypothesis might be stated as follows: There is no statistically significant difference between the frequencies of the high and low incomes for males and the frequencies of the high and low incomes for females. Organizing the solution matrix for the Chi-Square statistic is simple and easy. First, the data are organized by row and column in the form of a data matrix. The actual or observed values for each place in the data matrix are recorded. Then the values in each rows and column are totaled and the total number of cases under consideration (n) is determined. The solution matrix will vary in size depending on the number of rows and columns needed to display the observed frequencies. In figure 11:2 the following data matrix was constructed 140

5 using the observed frequencies of high and low incomes (nominal) for men and women (nominal) are displayed in a 2 x 2 data matrix. Figure 11:2: DATA MATRIX Men Women Total High Income 15 (19.66) Low Income 14 (9.34) 25 (20.34) 5 (9.66) Once the data matrix has been constructed, the expected frequencies for each cell in the matrix can be determined using the formula: Total For example, row 1 and column 1 square of the matrix, which represents high income men, the calculation of the expected frequency is: Row 1 column 2 is calculated: Expected frequencies are similarly obtained for all of the squares of the data matrix and included in parentheses within the data matrix immediately below the observed values. When the expected frequencies have been calculated, the remaining Chi-Square calculations are 141

6 simple mathematics. Solution Matrix for Row Column The value of the Chi-Square statistic is The next step in the process of testing the hypothesis requires that the degrees of freedom be determined. The simple formula for finding 2 the degrees of freedom for is: d.f. = (Total Rows - 1) (Total Columns - 1) In the context of the present example, df= (2-1)(2-1)=1(1)=1 2 By consulting the table in Appendix H the critical values for at.05 and.01 are 3.84 and 6.63 for 1 degree of freedom. The researcher compares the obtained value for 2 with the critical value to determine if the observed difference in frequencies is statistically significant. The null hypothesis is rejected at both the.05 and.01 levels At the 95% and 99% confidence levels in this case because the obtained value is higher than either of the critical values from Appendix H. Therefore, the researcher must conclude that there is a statistically significant difference between the relative frequencies of high and low incomes for men and 142

7 2 women. Even allowing for the presence of sampling error, the value of is large enough to suggest that a real difference exists between the populations represented by these samples. In this example, the research conclusion is that the female lawyers have higher incomes than 2 male lawyers. A very useful rule for accepting or rejecting the null hypothesis for is as follows: 2 2 Accept null if the obtained is less than the critical values in the table. Reject the null hypothesis if the obtained is equal to or greater than the critical values in the 1 table. 2 2 Under certain circumstances when working with a 2x2 data matrix, the formula used to calculate the Chi-Square statistic is adjusted slightly. This process is utilized when any of the expected frequencies within the data matrix are lower than 10. The alternative Chi-Square formula is known as the Yates' Correction. When expected frequencies are this low, researchers have determined that it is appropriate to make the standard for rejecting the null hypothesis more stringent by subtracting.5 from the absolute value of the difference between each observed and expected frequency before the differences are squared. The formula for Chi-Square using Yate s Correction is as follows: Applying this correction requires an additional column in the solution matrix and the 1 The critical values are critical because they are the basis for accepting or rejecting the null hypothesis. Since Chi-Square is a statistic based on nominal data, the obtained Chi-Square must be larger than these critical values in the table for a significant difference in the frequencies. 143

8 correction will also reduce the size of Chi-Square. The reduction is an effort to be more conservative and reduce the probability of making the alpha error. The comparison of frequencies of men and women in high and low income categories earlier in the chapter provides an example of a context in which Yate s Correction is to be applied. Compare the solution matrix using Yate s Correction presented in figure 11:3 below with the one produced earlier. Notice the difference in the value of Chi-Square and the difference in statistical conclusions required when the Yate s Correction is employed. FIGURE 11:3: YATE S CORRECTION Men Women Total High Income 15 (19.66) Low Income 14 (9.34) 25 (20.34) 5 (9.66) Total Row Column The obtained value for Chi-Square is 5.37 which is still significant at the.05 level but which 144

9 is no longer significant at the.01 level. In summation, the Chi-Square statistic is used to test hypotheses by comparing observed and expected frequencies of a characteristic for two or more groups. Chi-Square is not limited to the comparison of two samples. One may have a 5 x 5, 10 x 10, 7 x 10, or any size data matrix for many independent samples. Unlike the t test, Chi-Square is not used for dependent samples. In addition, Chi-Square is used only for nominal data, and a researcher should make use of Yates' Correction when it applies. 145

10 EXERCISES - CHAPTER 10 (1) A researcher wants to determine whether students who had taken a driver s education course sponsored by the school passed their state driver s examination with a higher relative frequency than those who did not take the class. Using the data provided in the 2x2 matrix below and Yate s Correction: A. Write a null hypothesis B. Calculate the value for Chi-Square C. Draw statistical and research conclusions Taken Driver s Education Test Result Yes No Total Pas Fail Total (2) In a poll of New York residents, the following results were recorded with reference to political ideology and party affiliations. For 65 Republicans: 20 conservative, 35 liberal, and 10 neither. For 120 Democrats: 40 conservative, 70 liberal, and 10 neither. Test a null hypothesis for these data and draw statistical conclusions. 146

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution

More information

CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V

CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V Chapters 13 and 14 introduced and explained the use of a set of statistical tools that researchers use to measure

More information

Association Between Variables

Association Between Variables Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

More information

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails. Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U

CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U Previous chapters of this text have explained the procedures used to test hypotheses using interval data (t-tests and ANOVA s) and nominal

More information

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170 Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label

More information

Chapter 13. Chi-Square. Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running two separate

Chapter 13. Chi-Square. Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running two separate 1 Chapter 13 Chi-Square This section covers the steps for running and interpreting chi-square analyses using the SPSS Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running

More information

Is it statistically significant? The chi-square test

Is it statistically significant? The chi-square test UAS Conference Series 2013/14 Is it statistically significant? The chi-square test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chi-square? Tests whether two categorical

More information

TABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2

TABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2 About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (One-way χ 2 )... 1 Test of Independence (Two-way χ 2 )... 2 Hypothesis Testing

More information

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE TWO-WAY ANOVA UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

More information

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Odds ratio, Odds ratio test for independence, chi-squared statistic. Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review

More information

Nonparametric Tests. Chi-Square Test for Independence

Nonparametric Tests. Chi-Square Test for Independence DDBA 8438: Nonparametric Statistics: The Chi-Square Test Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Nonparametric Statistics: The Chi-Square Test." My name is Dr. Jennifer Ann Morrow. In

More information

One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate 1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

More information

Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

More information

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont

CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

This chapter discusses some of the basic concepts in inferential statistics.

This chapter discusses some of the basic concepts in inferential statistics. Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details

More information

Chi-square test Fisher s Exact test

Chi-square test Fisher s Exact test Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions

More information

The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

More information

In the past, the increase in the price of gasoline could be attributed to major national or global

In the past, the increase in the price of gasoline could be attributed to major national or global Chapter 7 Testing Hypotheses Chapter Learning Objectives Understanding the assumptions of statistical hypothesis testing Defining and applying the components in hypothesis testing: the research and null

More information

Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples

Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours

More information

Crosstabulation & Chi Square

Crosstabulation & Chi Square Crosstabulation & Chi Square Robert S Michael Chi-square as an Index of Association After examining the distribution of each of the variables, the researcher s next task is to look for relationships among

More information

Descriptive Analysis

Descriptive Analysis Research Methods William G. Zikmund Basic Data Analysis: Descriptive Statistics Descriptive Analysis The transformation of raw data into a form that will make them easy to understand and interpret; rearranging,

More information

Chi Square Tests. Chapter 10. 10.1 Introduction

Chi Square Tests. Chapter 10. 10.1 Introduction Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square

More information

Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

More information

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217 Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

More information

One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

More information

Two Correlated Proportions (McNemar Test)

Two Correlated Proportions (McNemar Test) Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with

More information

Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table

Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live

More information

First-year Statistics for Psychology Students Through Worked Examples

First-year Statistics for Psychology Students Through Worked Examples First-year Statistics for Psychology Students Through Worked Examples 1. THE CHI-SQUARE TEST A test of association between categorical variables by Charles McCreery, D.Phil Formerly Lecturer in Experimental

More information

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA Chapter 13 introduced the concept of correlation statistics and explained the use of Pearson's Correlation Coefficient when working

More information

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

More information

Elementary Statistics

Elementary Statistics lementary Statistics Chap10 Dr. Ghamsary Page 1 lementary Statistics M. Ghamsary, Ph.D. Chapter 10 Chi-square Test for Goodness of fit and Contingency tables lementary Statistics Chap10 Dr. Ghamsary Page

More information

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other 1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

More information

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

More information

Using Stata for Categorical Data Analysis

Using Stata for Categorical Data Analysis Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,

More information

Math 108 Exam 3 Solutions Spring 00

Math 108 Exam 3 Solutions Spring 00 Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8

More information

Statistical tests for SPSS

Statistical tests for SPSS Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

More information

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or 1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

More information

Chapter 23. Two Categorical Variables: The Chi-Square Test

Chapter 23. Two Categorical Variables: The Chi-Square Test Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

Chi Square Distribution

Chi Square Distribution 17. Chi Square A. Chi Square Distribution B. One-Way Tables C. Contingency Tables D. Exercises Chi Square is a distribution that has proven to be particularly useful in statistics. The first section describes

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2 Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

More information

Section 12 Part 2. Chi-square test

Section 12 Part 2. Chi-square test Section 12 Part 2 Chi-square test McNemar s Test Section 12 Part 2 Overview Section 12, Part 1 covered two inference methods for categorical data from 2 groups Confidence Intervals for the difference of

More information

CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS

CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

The Chi-Square Test. STAT E-50 Introduction to Statistics

The Chi-Square Test. STAT E-50 Introduction to Statistics STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed

More information

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Comparing Multiple Proportions, Test of Independence and Goodness of Fit

Comparing Multiple Proportions, Test of Independence and Goodness of Fit Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2

More information

Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

More information

Sample Size and Power in Clinical Trials

Sample Size and Power in Clinical Trials Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance

More information

Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

More information

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

More information

statistics Chi-square tests and nonparametric Summary sheet from last time: Hypothesis testing Summary sheet from last time: Confidence intervals

statistics Chi-square tests and nonparametric Summary sheet from last time: Hypothesis testing Summary sheet from last time: Confidence intervals Summary sheet from last time: Confidence intervals Confidence intervals take on the usual form: parameter = statistic ± t crit SE(statistic) parameter SE a s e sqrt(1/n + m x 2 /ss xx ) b s e /sqrt(ss

More information

How To Check For Differences In The One Way Anova

How To Check For Differences In The One Way Anova MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics

More information

Testing differences in proportions

Testing differences in proportions Testing differences in proportions Murray J Fisher RN, ITU Cert., DipAppSc, BHSc, MHPEd, PhD Senior Lecturer and Director Preregistration Programs Sydney Nursing School (MO2) University of Sydney NSW 2006

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable

Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,

More information

Variables Control Charts

Variables Control Charts MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables

More information

SPSS Explore procedure

SPSS Explore procedure SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

More information

Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

More information

CHAPTER 12. Chi-Square Tests and Nonparametric Tests LEARNING OBJECTIVES. USING STATISTICS @ T.C. Resort Properties

CHAPTER 12. Chi-Square Tests and Nonparametric Tests LEARNING OBJECTIVES. USING STATISTICS @ T.C. Resort Properties CHAPTER 1 Chi-Square Tests and Nonparametric Tests USING STATISTICS @ T.C. Resort Properties 1.1 CHI-SQUARE TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS (INDEPENDENT SAMPLES) 1. CHI-SQUARE TEST FOR

More information

An introduction to IBM SPSS Statistics

An introduction to IBM SPSS Statistics An introduction to IBM SPSS Statistics Contents 1 Introduction... 1 2 Entering your data... 2 3 Preparing your data for analysis... 10 4 Exploring your data: univariate analysis... 14 5 Generating descriptive

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Mind on Statistics. Chapter 15

Mind on Statistics. Chapter 15 Mind on Statistics Chapter 15 Section 15.1 1. A student survey was done to study the relationship between class standing (freshman, sophomore, junior, or senior) and major subject (English, Biology, French,

More information

Statistics Review PSY379

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

More information

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

More information

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

More information

Using Excel for inferential statistics

Using Excel for inferential statistics FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

More information

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

More information

Multiple-Comparison Procedures

Multiple-Comparison Procedures Multiple-Comparison Procedures References A good review of many methods for both parametric and nonparametric multiple comparisons, planned and unplanned, and with some discussion of the philosophical

More information

Research Methods & Experimental Design

Research Methods & Experimental Design Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

More information

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

More information

Introduction to Statistics and Quantitative Research Methods

Introduction to Statistics and Quantitative Research Methods Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

More information

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

Contingency Tables and the Chi Square Statistic. Interpreting Computer Printouts and Constructing Tables

Contingency Tables and the Chi Square Statistic. Interpreting Computer Printouts and Constructing Tables Contingency Tables and the Chi Square Statistic Interpreting Computer Printouts and Constructing Tables Contingency Tables/Chi Square Statistics What are they? A contingency table is a table that shows

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine 2 - Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels

More information

Solutions to Homework 10 Statistics 302 Professor Larget

Solutions to Homework 10 Statistics 302 Professor Larget s to Homework 10 Statistics 302 Professor Larget Textbook Exercises 7.14 Rock-Paper-Scissors (Graded for Accurateness) In Data 6.1 on page 367 we see a table, reproduced in the table below that shows the

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory

Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory LA-UR-12-24572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia Garcia-Lopez Steven R. Booth September 2012

More information

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

More information

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

More information